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Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative

neoplasm that develops during infancy and early childhood. The array-based interna-

tional consensus definition of DNA methylation has recently classified patients with

JMML into the following 3 groups: high (HM), intermediate (IM), and low methylation

(LM). To develop a simple and robust methylation clinical test, 137 patients with JMML

were analyzed using the Digital Restriction Enzyme Analysis of Methylation (DREAM),

which is a next-generation sequencing–based methylation analysis. Unsupervised consen-

sus clustering of the discovery cohort (n 5 99) using DREAM data identified HM

(HM_DREAM; n 5 35) and LM subgroups (LM_DREAM; n 5 64). Of the 98 cases that could

be compared with the international consensus classification, 90 HM (n 5 30) and LM

(n 5 60) cases had 100% concordance with DREAM clustering results. Of the remaining

8 cases comprising the IM group, 4 were classified as belonging to the HM_DREAM group

and 4 to the LM_DREAM group. A machine-learning classifier was successfully con-

structed using a support vector machine (SVM), which divided the validation cohort (n 5

38) into HM (HM_SVM, n 5 18) and LM (LM_SVM; n 5 20) groups. Patients with the

HM_SVM profile had a significantly poorer 5-year overall survival rate than those with

the LM_SVM profile. In conclusion, we developed a robust methylation test using DREAM

for patients with JMML. This simple and straightforward test can be easily incorporated

into diagnosis to generate a methylation classification for patients so they can receive

risk-adapted treatment in the context of future clinical trials.

Introduction

Disruption of the epigenome is a common finding in cancer cells, often resulting in altered DNA methyla-
tion patterns that can be accurately assessed using DNA methylation analysis.1 Some aberrant DNA
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Key Points

� A total of 137
patients with JMML
were analyzed using
DREAM.

� We developed a
robust DNA
methylation test that
is highly consistent
with the array-based
international consen-
sus definition for
JMML.
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methylation patterns have been associated with specific genetic
mutations that promote neoplasia, and these patterns can be used
as biomarkers for disease progression.2

Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/
myeloproliferative neoplasm that develops during infancy and early
childhood.3 JMML is characterized by excessive myelomonocytic
cell proliferation and hypersensitivity to granulocyte-macrophage col-
ony-stimulating factor. We and other groups conducted a genome-
wide methylation profiling of promoter-associated CpG sites using
the Infinium Human Methylation 450K BeadChip (450K; Illumina,
San Diego, CA), which enabled the identification of patients with
JMML with a high-methylation (HM) profile.4–6 The HM profile corre-
lated significantly with genetic markers predicting poor outcome,
including PTPN11/NF1 gene mutations, $2 genetic mutations, an
acute myeloid leukemia (AML)–type gene expression profile, and
LIN28B overexpression.4 Furthermore, an array-based international
consensus definition of DNA methylation was recently reported, cat-
egorizing patients with JMML into 3 groups: HM, intermediate meth-
ylation (IM), and low methylation (LM), in an international
collaborative study.7 To incorporate methylation profiling into the
clinical decision-making process and future clinical trials, a robust
but simple and less labor-intensive method for evaluating methyla-
tion patterns in patients with JMML is needed.

The Digital Restriction Enzyme Analysis of Methylation (DREAM) is
a method for quantitative mapping of DNA methylation at 10s of
thousands of CpG sites on a genome using a next-generation
sequencing technology. Methylation levels at each of the target
CpG sites are calculated by high-throughput sequencing of DNA
fragments, with specific signatures for unmethylated and methylated
CpG sites obtained by sequential digestion of genomic DNA using
restriction enzymes SmaI and XmaI, which have the same
CCCGGG recognition site but different sensitivity to CpG methyla-
tion and cleavage patterns.8

We report our progress toward establishing and implementing a
method to evaluate DNA methylation using DREAM.

Patients and methods

Patients

In this study, DREAM was performed in 137 patients (JMML,
n 5 124; Noonan syndrome–associated myeloproliferative disorder
[NS/MPD], n 5 13) using genomic DNA from peripheral blood or
bone marrow mononuclear cells. Patients were divided into 2 groups,
a discovery cohort (n 5 99) and a validation cohort (n 5 38), and a
diagnosis of JMML or NS/MPD was made based on internationally
accepted criteria.9,10 Patients in the validation cohort were selected
from 2 groups (Japan, n 5 18; United States, n 5 20) and had no
previous DNA methylation classification or preselection according
to known risk factors or parameters.

Written informed consent was obtained from the parents of all
patients, and the study was approved by the ethics committee of
Nagoya University Graduate School of Medicine.

Sample preparation

Genomic DNA was extracted from mononuclear cells derived from
the peripheral blood or bone marrow of patients using the QIAamp
DNA Blood Mini Kit (QIAGEN, Hilden, Germany), according to the

manufacturer’s instructions. All DNA samples were measured using
Nanodrop 1000 (Thermo Fisher Scientific, Waltham, MA) to ensure
that the A260/A280 ratios ranged between 1.8 and 2.0. Addition-
ally, the DNA integrity number was also measured using the Agilent
2200 Tape Station System and the Agilent Genomic DNA Screen
Tape Assay to ensure that DNA integrity number scores were .6.0
(Agilent, Santa Clara, CA).

Mutational analysis

Mutational analysis was performed in 99 patients from the discovery
cohort using whole-exome sequencing (n 5 60), targeted capture
sequencing covering 184 genes (n 5 2),11 and polymerase chain
reaction (PCR) amplicon sequencing covering 8 genes (PTPN11,
NRAS, KRAS, CBL, NF1, SETBP1, JAK3, and SH3BP1; n 5 61).
The same patients were also included in our previous cohort with
unique patient numbers (UPNs) 1 to 152,4 and detailed descrip-
tions of the methodology used and relevant genetic information
have been provided elsewhere.4,12 In the validation cohort of 38
patients, canonical RAS pathway gene mutations (PTPN11, NRAS,
KRAS, CBL, and NF1) were confirmed using Sanger sequencing
(Japanese cohort, n 5 18) or custom amplicon-based targeted
sequencing (US cohort, n 5 20), as previously described.13

The number of genetic mutations carried by each case was calcu-
lated by adding the number of driver gene mutations within
(PTPN11, NF1, NRAS, KRAS, and CBL) and outside (ASXL1,
IKZF1, JAK3, RRAS2, SETBP1, SH3BP1, and SOS1 and ALK/
ROS1 fusions) the RAS pathway. Of the 99 patients, 16 (16.2%)
harbored $2 driver gene mutations within and outside the RAS
pathway, when chromosomal abnormalities were not counted in the
number of gene mutations.

450K array analysis

Global DNA methylation profiles were analyzed in all patients in the
discovery cohort using 450K, as previously reported and according
to the manufacturer’s instructions.4

DREAM

DREAM was performed, as previously described.8 Briefly, 100 ng
of genomic DNA extracted from JMML samples was sequentially
cut using 2 restriction enzymes (SmaI and XmaI) recognizing the
same sequence, 5'-CCCGGG-3' sites in DNA. Initially, genomic
DNA was digested with 25 units of SmaI (New England Biolabs,
Ipswich, MA) for 3 hours at 25�C. Thereafter, 12.5 units of XmaI
(New England Biolabs) was added, and digestion was continued
for an additional 16 hours at 37�C. The genomic DNA was then
treated at 65�C for 1 hour to inactivate the restriction enzymes.
SmaI does not cut methylated sites and leaves blunt ends, whereas
XmaI can cleave methylated sites, leaving a 5' overhang sequence
(Figure 1A), thus creating specific signatures for the methylated and
unmethylated sites. The enzyme-treated DNA was then used to gen-
erate sequencing libraries according to protocols using the NEB-
Next Ultra II DNA Library Prep Kit for Illumina (New England
Biolabs), which repaired the ends of the DNA fragments and filled
the 5' overhang sequences derived from XmaI digestion with com-
plementary nucleotides.

The prepared libraries were run on a HiSeq 2500 with 2 3 150 bp
end reads (Illumina), and sequencing data were mapped to the
hg19 human reference genome using the Burrows-Wheeler Aligner
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Figure 1. Performance evaluation of DREAM. (A) Schematic outline of the principles of DNA methylation analysis. In DREAM, DNA is sequentially cut using 2

restriction enzymes, SmaI and XmaI. Estimated durations are indicated alongside each step. Individual sample sequencing could be completed in 4 to 5 days, including
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(https://github.com/lh3/bwa) with default and mem options. The end
of the sequencing reads generated by SmaI or XmaI would locate
at 5'-CCCGGG-3' sites, with 4 types of read ends, as shown in Fig-
ure 1B. The methylation ratio was simply calculated as the fraction
of total 5'-CCCGGG-3' site sequencing reads (m 1 u) that were
mapped to the methylated signature (m), using the bioinformatic
scripts (supplemental script files [dreamtest.pdf and probefindtest.
pdf]).

Although the human genome has 28 million CpG sites,14 374921
CpG sites can theoretically be evaluated using DREAM, including
6455 CpG sites on the 450K platform (Figure 1C; supplemental
Table 1).

Calibration standards for DREAM

Calibration standards with defined methylation levels for 19 patients
in the discovery cohort were added to the DREAM library. These
standards consisted of PCR products created using unsheared
Escherichia coli DNA as a template, as previously described.8 The
sequences of the calibrators and primers used for making the PCR
products (EC293, EC466, and EC247) are shown in supplemental
Table 2. The unmethylated calibration standard consisted of the
PCR products without further treatment, whereas the fully methyl-
ated calibration standard consisted of PCR products methylated
using M.SssI CpG methyltransferase. The unmethylated and methyl-
ated standards of different sequences were mixed in a 1:1 ratio and
were used as a methylation calibrator in subsequent experiments.

Clustering analysis

To perform clustering analysis, DREAM data were filtered, and sites
with $20 reads in 95% of the 99 samples from the discovery
cohort were included, resulting in 30408 CpG sites. Of these,
7360 promoter-associated CpG sites located within 1000 bases
from transcription start sites were used for bioinformatic analysis
(supplemental Table 3).

For clustering analysis, missing values in each sample were imputed
as the median of all nonmissing values for the corresponding CpG
site. Unsupervised hierarchical clustering was performed according
to the Canberra distance and Ward’s method (Ward.D2), as imple-
mented by the hclust function in R (R Foundation for Statistical
Computing, Vienna, Austria). The approved unbiased P value was
calculated for each cluster using the bootstrap method of the R
package, pvclust.15

SVM classifier construction

To construct an optimal support vector machine (SVM) classifier,
the tune.svm function of the e1071 package in R was used.16

RRBS

RRBS was used to assess 10 patients with JMML.17 Briefly, puri-
fied genomic DNA was digested by the methylation-insensitive
restriction enzyme MspI to generate short fragments that contained
CpG dinucleotides at the ends. The CpG-rich DNA fragments (40-
220 bp) were size selected, subjected to bisulfite conversion, PCR
amplified, and end sequenced on an Illumina HiSeq2500 (Figure
1A). RRBS data were filtered to include sites with at least 10 reads
in all samples, resulting in 4971 promoter-associated CpG sites
located within 1000 bases from transcription start sites for bioinfor-
matic analysis.18 Unsupervised hierarchical clustering was per-
formed according to the Canberra distance and Ward.D2, as
implemented by the hclust function in R.

RNA sequencing and expression analysis

In the discovery cohort, 78 patients were dichotomized into groups
of patients with AML-type and non–AML-type expression profiles,
respectively, as defined by Bresolin et al,19 using expression data
for 435 genes based on the RNA sequencing data already analyzed
in our previous study.4

The R package DESeq2 was used for differential expression analy-
sis and differential methylation analysis for the 78 cases in the dis-
covery cohort.20 Starburst plots comparing DNA methylation and
transcriptomes between methylation subgroups were constructed
as previously described.21

Gene ontology and pathway analysis

Gene ontology annotations and the Kyoto Encyclopedia of Genes
and Genomes pathway of the differentially expressed genes were
performed using the DAVID (Database for Annotation, Visualization,
and Integrated Discovery) online tool.22

Statistical analysis

Pearson’s (r2) and Spearman’s (r) correlation coefficients were
used to measure the degree of association between 2 variables,
including methylation ratios and b values. For unsupervised hierar-
chical clustering, the Canberra distance and Ward.D2 were used,
as implemented by the hierarchical clustering (hclust) function in R.
For comparison of the frequency of mutations and other clinical

Figure 1. (continued) SmaI digestion (3 hours), XmaI digestion (16 hours), end repair (2 hours), adaptor ligation (1 hour), PCR amplification (2 hours), final library quality

control (1 day), sequencing (2-3 days), and data analysis time. The hands-on time was ,6 hours per sample for the entire process. In reduced representation bisulfite

sequencing (RRBS), DNA is digested by MspI to generate short fragments that contain CpG dinucleotides at the 3' ends. (B) In DREAM, the ends of the sequencing reads

generated by SmaI or XmaI locate at 5'-CCCGGG-3' sites, with 4 types of read ends. Left-1, left-3, right-2, and right-4 can be caused by these restriction enzymes,

whereas others can be caused by random fragmentation. Unmethylated 5'-CCCGGG-3' sites (presumed to be digested by SmaI) generate left-3 and right-2 ends

(unmethylated signature [u]), and methylated 5'-CCC(me)GGG-3' sites (presumed to be digested by XmaI) generate left-1 and right-4 (methylated signature [m]). The

methylation ratio was simply calculated as the fraction of total 5'-CCCGGG-3' site sequencing reads (m 1 u) that were mapped to m. (C) The human genome has 28.0

million CpG sites, and the GRCh37/hg19 annotation provides coordinates for 374921 5'-CCCGGG-3' sites targeted by DREAM, including the 6455 sites covered by

450K. (D) Results of DREAM of 4 pg of methylation calibrators spiked in 100 ng of sample DNA from 19 patients are shown. EC247, EC293, and EC466 were used as

unmethylated or 100% methylated calibration standards. (E) The median number of CpG sites and the median Pearson’s correlation coefficient (r2) between DREAM

methylation ratios and 450K b values at 6455 overlapping CpG sites classified according to DREAM sequence depth for 19 cases are shown. Error bars represent

standard errors. (F) Correlation of the discovery cohort (n 5 99) between ratios obtained using DREAM and 450K b values at 1703 overlapping CpG sites with sufficient

coverage ($20 reads in 95% of 99 samples). The best (G) and worst (H) correlations are shown. TSS, transcription start site.
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features between groups, categorical and continuous variables were
analyzed using Fisher’s exact and Mann-Whitney U tests, respec-
tively. Overall survival (OS), defined as time from date of diagnosis

to death, and transplantation-free survival (TFS), defined as time
from date of diagnosis to transplantation or death resulting from any
cause, were estimated using the Kaplan-Meier method. The

Table 1. Patient characteristics

Total cohort

(N 5 137)

Discovery cohort

(n 5 99)

Validation cohort

(n 5 38) P

Cohort

Japan 117 (85) 99 (100) 18 (47)

United States 20 (15) 0 20 (53)

Sex .406

Male 96 67 29

Female 41 32 9

Age at diagnosis, mo 15 (1-160) 14 (1-160) 19 (1-50) .422

Diagnosis .112

JMML 124 (91) 87 (88) 37 (97)

NS/MPD 13 (9) 12 (12) 1 (3)

Canonical RAS pathway mutations

PTPN11

Somatic 46 (34) 31 (31) 15 (39) .421

Germline 11 (8) 10 (10) 1 (3) .29

NF1 13 (9) 10 (10) 3 (8) 1

NRAS 20 (15) 13 (13) 7 (18) .429

KRAS 19 (14) 12 (12) 7 (18) .408

CBL 19 (14) 17 (17) 2 (5) .097

No mutation 13 (9) 10 (10) 3 (8) 1

WBCs at diagnosis, 310
9/L 29.5 (2.9-563) 27.6 (2.9-563) 34.8 (5.0-166) .208

HbF at diagnosis, % 15.6 (0-87) 15 (1-87) 20 (0-69) .563

Age-adjusted HbF elevation .668

Elevated 80 (58) 54 (55) 26 (68)

Not elevated 37 (27) 27 (27) 10 (26)

Not evaluated 20 (15) 18 (18) 2 (5)

PLTs at diagnosis, 310
9/L 68.0 (6-730) 73.0 (6-730) 65.5 (11-490) .676

HSCT 1.17 3 1023

Yes 90 57 33

No 47 42 5

Alive .557

Yes 88 62 26

No 49 37 12

5-y OS, % 60.3 (50.5-68.8) 59.6 (48.2-69.2) 57.9 (32.9-76.4) .588

5-y TFS, % 16.8 (10.5-24.4) 22.3 (13.8-32.1) 0 .025

1-y TFS, % 31.4 (23.5-39.7) 35.6 (25.7-45.6) 21.6 (10.2-35.8)

Follow-up period, mo 33 (0-291) 42 (0-291) 28 (2-109) .095

Methylation subgroup defined by 450K data

HM 40 (40)

LM 59 (60)

Methylation subgroup defined by DREAM data .241

HM 53 (39) 35 (35) 18 (47)

LM 84 (61) 64 (65) 20 (53)

Data are presented as n, n (%), median (range), or probability (95% CI; for OS and TFS).
HbF, fetal hemoglobin; HSCT, hematopoietic stem cell transplantation; PLT, platelet; WBC, white blood cell.
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P = 3.45 × 10–3
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Figure 2. Classifier construction for risk stratification of patients with JMML using DREAM. (A) Patients with JMML or NS/MPD (discovery cohort, n 5 99;

validation cohort, n 5 38) were subjected to unsupervised hierarchical clustering using DREAM data. The heat map displays the methylation ratios calculated for a selected
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difference in survival was tested using the log-rank test, and hazard
ratios for survival with 95% confidence intervals (CIs) were esti-
mated according to the Cox proportional hazards model. To identify
predictors of survival, we performed multivariable and univariable
Cox regression analyses. Stepwise variable selection based on
Akaike’s information criterion was used for the selection of variables
in multivariable Cox regression analyses for all variables. All statisti-
cal analyses were performed using EZR (Saitama Medical Center,
Jichi Medical University, Saitama, Japan), which is a graphical user
interface for R.23

Results

Patient characteristics

In this study, DREAM was performed in 137 patients (JMML, n 5

124; NS/MPD, n 5 13). Characteristics of the 137 patients are
summarized in Table 1 and supplemental Table 4. All patients and
their 450K (n 5 99) and RNA sequencing (n 5 78) results have
been included in our previous publications.4,7 The median age at
diagnosis was 15 months (range, 1-160), and 80 patients (58.4%)
showed age-adjusted fetal hemoglobin elevation (supplemental
Table 5).24 Of the 137 patients, 90 (66%) underwent allogeneic
hematopoietic stem cell transplantation, and the median follow-up
period was 33 months (range, 0-291).

DREAM

DREAM8 was performed for 137 samples (discovery cohort, n 5

99; validation cohort, n 5 38). The median number of sequence
reads was 8269354 (range, 3256572-16359479), and the
median number of CpG sites with $20 reads was 91515 (range,
31204-210378; supplemental Table 6). Results of DREAM of the
standard DNA spiked in 19 samples of the discovery cohort are
shown in Figure 1D. The median calculated methylation ratios for
fully methylated and unmethylated standard DNA were 0.957
(range, 0.841-0.986) and 0.001 (range, 0.000-0.085), respectively.
To evaluate the reproducibility of DREAM, a replicate analysis of the
3 independent JMML samples (UPN 7, UPN 101, and UPN 118)
was performed. The methylation ratios of CpG sites with $20 reads
showed good correlation, and the Pearson’s correlation coefficients
(r2) of the replicates of UPN 7, UPN 101, and UPN 118 were
0.989, 0.987, and 0.975, respectively (supplemental Figure 1; sup-
plemental Table 7).

Analysis of correlation between methylation ratios

of DREAM and b values of 450K array

To investigate how total sequence reads per sample affected the
measurement of methylation using the DREAM assay, the sequenc-
ing read data of UPN 118 (total, 79 million reads) were randomly

reduced into 38 million, 19 million, 9.6 million, 6.3 million, and 3.1
million reads. When all theoretically overlapping 6455 CpG sites
were compared, the DREAM methylation ratios were shown to have
a significant correlation with Infinium 450K b values, even with 3.1
million reads (supplemental Figure 2; supplemental Table 8).

How the sequencing depth of each CpG site affected the results
was also assessed. Moreover, the distribution of the median
sequencing depth of 374921 CpG sites on the genome that could
theoretically be analyzed by the DREAM method in 19 cases is also
shown (Figure 1E). Pearson’s correlation and Spearman’s rank cor-
relation coefficients between the DREAM methylation ratios and
450K b values of 6455 overlapping CpG sites in 19 samples in the
discovery cohort were calculated according to sequence depth.
CpG sites with $20 reads showed especially good correlation
coefficients compared with CpG sites with ,20 reads (supplemen-
tal Figure 3).

On the basis of these findings, the correlation between the methyla-
tion ratios of DREAM and the b values of the 450K platform in
1703 overlapping CpG sites with $20 reads in 95% of samples
was assessed (supplemental Table 9) using the discovery cohort
(n 5 99), and a high correlation between the 2 methods was
observed (median Pearson’s r2 5 0.954; range, 0.918-0.964;
Figure 1F-H; supplemental Figure 4).4

Evaluation of the batch effect of DREAM

The 99 cases in the discovery cohort were subjected to library
preparation on 8 different dates, and Pearson’s and Spearman’s
correlations between the DREAM methylation ratios and 450K
bvalues of 1703 sites were similar according to batch based on
library preparation date (supplemental Table 10).

Clustering analysis

Next, an unsupervised hierarchical clustering of the discovery cohort
was performed using DREAM data for 7360 promoter-associated
CpG sites, and HM (HM_DREAM; n 5 35) and LM subgroups
(LM_DREAM; n 5 64) with a 95% concordance (94 of 99 sam-
ples) with the previously reported 450K clustering results were iden-
tified4 (Figure 2A). Of the 98 cases that could be compared
with the international consensus classification,7 all 90 cases of HM
(n 5 30) and LM (n 5 60) had 100% concordance with the
DREAM clustering results. Of the 8 cases classified as the IM
group by the international consensus classification, 4 were classified
as belonging to the HM_DREAM group and 4 to the LM_DREAM
group (Figure 2A).

OS and TFS for both cohorts were estimated using the Kaplan-
Meier method. Patients with JMML with the HM_DREAM profile in
the discovery cohort (excluding those with NS/MPD) had

Figure 2. (continued) subset of 1000 CpG sites with high differential average methylation levels between HM_DREAM and LM_DREAM subgroups. The methylation ratios

were color coded, with a gradual change from blue (0% methylation) to red (100% methylation). Known clinical and biological features were annotated for each patient.

Each column indicates 1 patient. (B) Schematic outline of the SVM classifier construction using DREAM data. (C) Performance of SVM. This plot shows the performance of

various models using color coding. Darker regions with lower mean square error (MSE) indicate better accuracy. (D) OS of patients with JMML in the discovery cohort using

clustering with DREAM data. (E) OS of patients with JMML in the validation cohort using SVM with DREAM data. (F) Patients with JMML (n 5 9) and NS/MPD (n 5 1)

were subjected to unsupervised hierarchical clustering using RRBS data. The heat map displays the methylation ratios calculated for a select 1000 CpG sites with high

differential average methylation levels between HM (HM_RRBS) and LM (LM_RRBS) subgroups. HbF, fetal hemoglobin; LOH, loss of heterozygosity; PLT, platelet.

28 DECEMBER 2021 • VOLUME 5, NUMBER 24 SIMPLE AND ROBUST METHYLATION TEST FOR JMML 5513

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/5/24/5507/1853760/advancesadv2021005080.pdf by guest on 08 M

ay 2024



significantly poorer OS and TFS than those with the LM_DREAM
profile, with 5-year OS for HM_DREAM of 41.9% (95% CI, 25.3%-
57.6%) vs 71.4% (95% CI, 56.2%-82.1%) for LM_DREAM (P 5
3.45 3 1023; Figure 2D). Similarly, 5-year TFS rates for these 2
cohorts were 0% vs 37.4% (95% CI, 23.6%-51.1%), respectively,
with a P value of 2.17 3 10210. On multivariable Cox regression
analysis, the HM_DREAM profile was identified as a risk factor in
TFS (Table 2).

An unsupervised clustering of the validation cohort (n 5 38) was
also performed using DREAM data obtained from the aforemen-
tioned 7360 promoter-associated CpG sites. Patients in the valida-
tion cohort were also classified as belonging to the HM_DREAM
(n 5 18) or LM_DREAM subgroup (n 5 20; Figure 2A).

SVM classifier construction for DREAM clustering

To develop a machine-learning classifier model using an SVM,25 84
CpG sites that were among those exhibiting a distinct difference in

average methylation levels (.0.3) between JMML-associated
HM_DREAM and LM_DREAM profiles were selected (supplemental
Figure 5; supplemental Tables 11-13). Samples from the discovery
cohort were randomly assigned to the training (n 5 59) or test data
set (n 5 40) and were used along with the tune.svm function of the
e1071 package in R to optimize parameters (Figure 2B).16 The
best g parameter and the best cost parameter were 0.015 and
0.14, respectively. A classifier with the lowest MSE (MSE 5 0) was
created (Figure 2C).

Using the SVM, patients assigned to the validation cohort were
classified as either HM (HM_SVM; n 5 18) or LM (LM_SVM; n 5

20; Figure 2A). Discrepancies in profiling results between the clus-
tering analysis and the SVM were observed in 2 (5%) of 38 cases
in the validation cohort. Patients with the HM_SVM profile had sig-
nificantly poorer 5-year OS (26.3%; 95% CI, 1.9%-64.0%) than
those with the LM_SVM profile (80.5%; 95% CI, 49.1%-93.6%],
with a P value of .024 (Figure 2E). On univariable Cox regression

Table 2. Univariable and multivariable Cox regression analyses of OS and TFS in discovery cohort

Variable

OS TFS

Univariable Multivariable Univariable Multivariable

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Dominant canonical

RAS mutation

Other 1 1 1

Somatic PTPN11 or NF1 1.87 (0.962-3.65) .065 6.24 (3.50-11.1) 5.61 3 10210 4.94 (2.09-11.7) 2.81 3 1024

�2 mutations

No 1 1

Yes 1.28 (0.581-2.82) .541 2.44 (1.35-4.43) 3.29 3 1023

Methylation profile

LM_DREAM 1 1 1 1

HM_DREAM 2.65 (1.35-5.24) 4.88 3 1023 1.95 (0.895-4.24) .093 5.51 (3.09-9.83) 7.19 3 1029 9.41 (2.39-37.1) 1.37 3 1023

Expression profile

Non–AML-like 1 1 1

AML-like 1.39 (0.688-2.83) .357 3.03 (1.65-5.57) 3.42 3 1024 0.440 (0.189-1.02) .0569

LIN28B expression

No 1 1 1

Yes 1.52 (0.757-3.05) .24 2.63 (1.51-4.59) 6.82 3 1024 0.280 (0.0939-0.833) .0222

Monosomy 7

No 1 1 1

Yes 3.47 (1.50-8.04) 3.68 3 1023 2.74 (1.06-7.09) .037 3.21 (1.55-6.62) 1.65 3 1023

Age at diagnosis, mo

#24 1 1

.24 2.20 (1.13-4.28) .0201 2.40 (1.45-3.99) 6.68 3 1024

Elevated HbF level

No 1 1

Yes 2.28 (0.867-5.98) .0949 2.29 (1.24-4.23) 7.80 3 1023

PLTs at diagnosis, 3109/L

$33 1 1

,33 1.78 (0.871-3.64) .114 2.05 (1.20-3.50) 8.30 3 1023

Patients with NS/MPD (n 5 12) were excluded from survival analysis.
HbF, fetal hemoglobin; HR, hazard ratio; PLT, platelet.
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Figure 3. Construction of SVM to identify patients with IM. (A) Using DREAM data of the 38 cases from the discovery cohort that were known to belong to

consensus HM (n 5 30) and consensus IM (n 5 8) subgroups, a volcano plot showing DNA methylation fold changes and P values between consensus HM and IM

subgroups was constructed. Red dots indicate 35 CpG sites that showed a distinct difference (.0.3) in mean methylation level. (B) To develop an SVM that classified HM

and IM, 60% of the samples were randomly assigned to the training data and the remaining 40% to the test data. (C) In the best SVM model, optimal g, cost parameter,

and MSE were 0.0095, 1.05, and 0.1, respectively. (D) Volcano plot shows DNA methylation fold changes and P values between consensus LM (n 5 60) and IM (n 5 8)

subgroups from the discovery cohort. Red dots indicate 12 CpG sites that showed a distinct difference (.0.3) in mean methylation level. (E) To develop an SVM that

classified LM and IM, 60% of the samples were randomly assigned to the training data and the remaining 40% to the test data. (F) In the best SVM model, optimal g, cost

parameter, and MSE were 0.0095, 3.02, and 0.05, respectively. (G) Using these SVM models, 3 of the 38 patients in the validation cohort were classified as belonging to

the IM subgroup (IM_SVM). Kaplan-Meier curves for OS were presented using data from 37 cases, excluding 1 case of NS/MPD.

28 DECEMBER 2021 • VOLUME 5, NUMBER 24 SIMPLE AND ROBUST METHYLATION TEST FOR JMML 5515

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/5/24/5507/1853760/advancesadv2021005080.pdf by guest on 08 M

ay 2024



analysis, the HM_SVM profile was recognized as a risk factor in OS
(supplemental Table 14). No significant differences in TFS were
observed, because a majority of patients (33 [86.8%] of 38) in the
validation cohort underwent hematopoietic stem cell transplantation
(Table 1; supplemental Table 4).

The relationship between the total sequence reads and the number
of CpG sites with sufficient sequence depths ($20 reads) used in
the SVM model was evaluated, and 95 (95%) of 99 samples were
found to have all 84 CpG sites with $20 reads. This was true even
for the sample with the lowest number of sequence reads
(4095131 reads), suggesting that $4 million sequence reads was
sufficient to classify a patient according to the relevant methylation
subgroup (supplemental Figure 6).

SVM classifier construction to identify patients

with IM

Among the 7360 sites used for clustering by DREAM, 35 sites that
showed a difference of .0.3 in mean methylation value between
the consensus IM and the consensus HM were identified. Of the
samples in the discovery cohort, those classified as consensus HM/
IM (n 5 38) were randomly assigned to the training (60% of sam-
ples) or test (40% of samples) data set, and these CpG sites were
analyzed along with the tune.svm function in the R e1071 package.
The SVM_HMIM classifier was created to distinguish between HM
and IM (MSE 5 0.1; Figure 3A-C; supplemental Table 15). Similarly,
12 sites that showed a difference in methylation values between

consensus IM and consensus LM were identified, and the
SVM_IMLM classifier was created to distinguish between IM and
LM using a sample of consensus IM/LM (n 5 68) from the discov-
ery cohort (MSE 5 0.05; Figure 3D-F; supplemental Table 16).
These SVM classifiers identified 3 patients with putative IM
(SVM_IM) from among 38 patients in the validation cohort (Figures
2A and 3G).

RRBS

Moreover, a methylation analysis of 10 samples from patients with
JMML in the discovery cohort using RRBS was performed,17 and
100% concordance (10 of 10) with the classifications provided by
both DREAM and 450K was confirmed (Figure 2F).4

Starburst plot and pathway analyses

To integrate DREAM-based DNA methylation data with gene
expression data, the relationship between methylation of CpG sites
and gene expression by starburst plots was visualized.21 Of the
3564 genes, 77 were significantly downregulated and highly methyl-
ated within the HM_DREAM profile as compared with the
LM_DREAM profile (Figure 4; supplemental Table 17).

A pathway analysis using DAVID22 was performed for these identi-
fied genes. However, the list of enriched genes did not lead to iden-
tification of the molecular pathways or gene interaction networks.
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Figure 4. Comparison of DNA methylation and gene expression between HM_DREAM and LM_DREAM profiles. (A) Starburst plot represents the relationship

between gene expression levels from transcriptome analysis and DNA methylation levels at 7360 CpG sites used for clustering classification of DREAM among HM_DREAM

(n 5 32) and LM_DREAM (n 5 46) subgroups. Log10 (false discovery rate (FDR)–adjusted P value) was plotted for DNA methylation (x-axis) and gene expression (y-axis)

for each gene. In case of a higher mean DNA methylation ratio or mean gene expression value, 21 was multiplied to log10 (FDR-adjusted P value) to provide positive values.

The dashed black lines indicate FDR-adjusted P values at 0.05; the red points indicate genes that are significantly upregulated and LM; the green points indicate genes that

are significantly downregulated and HM. (B) Starburst plot was evaluated for 84 CpG sites used in the SVM model.
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Discussion

Outcomes of patients with JMML were successfully predicted by
classifying these patients as belonging to HM_DREAM and
LM_DREAM subgroups using DREAM, and clear reproducibility of
the international consensus classification using the 450K platform
was documented,7 despite the fact that a majority of CpG sites
used for each classification were not shared (supplemental Figure
7).4,5 The findings were validated in an independent cohort of
patients, which again revealed poor prognosis for those with JMML
with an HM subgroup profile. Furthermore, a prediction model using
SVM as a clinical test was also constructed. To our knowledge, this
is the first large-scale study to classify the methylation status of
patients with JMML using DREAM, a simple and robust assay.8 The
handling time for DREAM is 2 days for preparation of the DREAM
libraries (Figure 1A), and it does not require treatment with bisulfite,
a factor known to promote sequence errors that can limit the accu-
racy of quantitation in CpG-rich areas.26 Thus, DREAM is quantita-
tive and highly reproducible, and performing tests on each sample
to obtain results in a timely manner is possible. Methylation testing
using DREAM in newly diagnosed patients could be used for
patient stratification in prospective clinical trials and could be inte-
grated into the clinical decision-making process.

DREAM can theoretically analyze DNA methylation of CpG sites
within �374000 SmaI/XmaI recognition sites (5'-CCCGGG-3'),
which corresponds to 1.3% of all CpG sites in the human
genome.14 In the data of 137 cases in this study, the median num-
ber of CpG sites with $20 reads was 91515 (range, 31204-
210378). DREAM using JMML specimens adequately reproduced
the results of the international consensus methylation classification
and showed sufficient performance to be used as a clinical test.
Furthermore, comparison between DNA methylation and gene
expression was visualized in a starburst plot (Figure 4). As in other
tumors, a number of genes were identified that showed an inverse
correlation between DNA methylation and gene expression levels,
but even with various pathway analyses, the biological mechanism
by which specific gene methylation is involved in the disease pro-
gression of JMML was not fully unraveled.

This study has several limitations. First, DREAM can only assess the
methylation level of a relatively small number of CpG sites compared
with other next-generation sequencing–based DNA methylation
analysis methods, including RRBS and whole-genome bisulfite
sequencing. This might be 1 of the reasons why the biological
mechanism through which specific gene methylation is involved in
the disease progression of JMML has not been identified.

The second limitation is that unsupervised clustering analysis using
DREAM methylation data could not separate the IM group, because
the proportion of patients classified as IM on the basis of the inter-
national consensus classification in the discovery cohort was as low
as 8% (8 of 99 patients). An international collaborative study
showed that patients with JMML can be divided into 3 groups, HM,
IM, and LM, and that most patients with IM have monosomy 7.7 The
Japanese cohort had a significantly lower frequency of monosomy 7
compared with the European Working Group cohort (Japan, 9%;
European Working Group on Myelodysplastic Syndromes, 22%),7

which may partially explain why IM classification was less frequent
only in the Japanese cohort. We recommend that even if patients

with monosomy 7 are determined to be LM_DREAM, they should
be clinically treated as high-risk cases.

However, a certain number of CpG islands with characteristic meth-
ylation levels in the IM group were identified using DREAM methyla-
tion data, and the SVM model was constructed, which could
separate the IM group (ie, IM_SVM; Figure 3). Using this SVM
model, only 3 of the 38 patients in the validation cohort were classi-
fied as IM_SVM; therefore, a larger cohort with methylation array
data in the future is required to reevaluate whether this SVM model
can correctly identify IM patients.

Low platelet count (,33 3 109/L) is a well-established prognostic
factor associated with poor prognosis in JMML.27 Low platelet
count was significantly associated with both OS and TFS in the vali-
dation cohort (supplemental Table 14). In the discovery cohort, it
was significantly associated with poor TFS, but not with OS (Table
2). The reason behind this observation is unclear; however, we
believe that the relatively small number of transplantations in the dis-
covery cohort and the small number of OS events (37 of 99 cases)
did not provide sufficient statistical power.

In conclusion, a simple and robust methylation test (DREAM) that
can be incorporated at the time of diagnosis of JMML has been
developed. The test can be used to generate a methylation classifi-
cation for patients, thus allowing them to receive risk-adapted treat-
ment in the context of future clinical trials, such as experimental
molecular targeted therapies for the high-risk group or careful
follow-up without transplantation for the low-risk group.
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