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Osteoclasts are multinuclear cells of monocytic lineage, with the ability to resorb bone.

Studies in mouse have identified bone marrow clonal progenitors able to generate

mature osteoclast cells (OCs) in vitro and in vivo. These osteoclast progenitors (OCPs) can

also generate macrophages and dendritic cells. Interestingly, cells with equivalent

potential can be detected in periphery. In humans, cells with OCP activity have been

identified in bone marrow and periphery; however, their characterization has not been

as extensive. We have developed reproducible methods to derive, from human

pluripotent stem cells, a population containing monocyte progenitors able to generate

functional OCs. Within this population, we have identified cells with monocyte and

osteoclast progenitor activity based on CD11b and CD14 expression. A population double

positive for CD11b and CD14 contains cells with expected osteoclastic potential. However,

the double negative (DN) population, containing most of the hematopoietic progenitor

activity, also presents a very high osteoclastic potential. These progenitor cells can also

be differentiated to macrophage and dendritic cells. Further dissection within the DN

population identified cells bearing the phenotype CD152CD1151 as the population with

highest monocytic progenitor and osteoclastic potential. When similar methodology was

used to identify OCPs from human peripheral blood, we confirmed a published OCP

population with the phenotype CD11b1CD141. In addition, we identified a second

population (CD142CD11bloCD1151) with high monocytic progenitor activity that was also

able to form osteoclast like cells, similar to the 2 populations identified from pluripotent

stem cells.

Introduction

Monocytes are a heterogeneous group of cells that play fundamental roles in organogenesis, tissue
repair, and immune responses. In addition, their central role on inflammation can define the course of
many pathological processes.1-4 Thus, a full understanding of the development and function of this line-
age is important to modulate their behavior toward the design of better directed therapies.

Monocytes originate in the bone marrow from a common myelo/erythroid progenitor5 and enter circula-
tion, giving rise to tissue resident macrophages and dendritic cells (DCs) through defined lineage com-
mitment steps.6 The circulating monocyte pool is heterogeneous, consistent with its wide range of
potential functions.7,8 Different subpopulations of monocytes have been defined by cell surface markers
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Key Points

� Generation,
identification, isolation,
and expansion of
monocyte and
osteoclast progenitors
from human
embryonic stem cells.

� CD11b2CD142

CD1151 cells from
embryonic stem-
derived cultures and
peripheral blood
mononuclear cells
contain monocyte/
osteoclast
progenitors.
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and function.9 Based on the relative expression of CD14 and
CD16, human monocytes have been classified in 3 subsets10: clas-
sical (CD1411CD162), intermediate (CD1411CD161), and non-
classical (CD141CD1611) monocytes.11 Comparison of these
subsets to mouse counterparts has shown that the nonclassical
subset (CD141CD1611) has patrolling characteristics similar to
that of Gr12 monocytes in mice; and classical and intermediate
subsets have inflammatory properties similar to that of Gr11 mouse
monocytes.11,12

Osteoclasts are large multinucleated cells of monocytic origin
expressing tartrate-resistant acid phosphatase (TRAcP)13 and form
through fusion of committed mononuclear precursors.14,15 Their
function is to decalcify bone by laying down an acidic environ-
ment16,17 that is degraded by matrix metalloproteinases and cathe-
psins.18,19 Osteoclasts control bone remodeling, a cellular process
by which bone is resorbed (by osteoclasts) and new bone is formed
(by osteoblasts).20 This homeostatic process is crucial for the main-
tenance of bone marrow space, bone growth, repair of microfrac-
tures, and maintenance of blood calcium levels.

Until recently, the identity of human osteoclast progenitors has not
been well defined. Initial experiments, using mobilized CD341 hema-
topoietic precursors in PB, indicated the presence of early progeni-
tors (most likely from bone marrow) able to generate osteoclast like
(OCL) cells in vitro.21 Later, osteoclast progenitors were found to
be more represented within the CD141 fraction of PB monocytes,
albeit CD11b1 and CD331, CD611 fractions also showed the abil-
ity to generate bone resorbing TRAcP-positive osteoclasts.22,23

Subsequently, it was shown that the osteoclastic potential was in
the CD162 fraction, within the proliferative CD141CD162 classical
monocyte subset.11,24 Recently, a study searching for cells with
osteoclastogenic potential was done in human bone marrow aspi-
rates, characterizing cells able to generate osteoclasts, macro-
phages, and DCs.25 This is consistent with previous work in our
laboratory reporting a common monocyte progenitor in murine bone
marrow able to give rise, at a clonal level, to macrophages, DCs,
and osteoclasts.26-28 Importantly, this myeloid progenitor was able
to engraft and form functional osteoclasts that localize to endosteal
surfaces when injected into preconditioned mice.

We hypothesize that equivalent human myeloid progenitors could
be derived from pluripotent stem cells with the potential in the future
to be used as sources of transplantable DCs or osteoclasts able to
modulate immune responses or properties of bone marrow microen-
vironments respectively. Even when mature myeloid cell types such
as osteoclasts, macrophages and DCs from human embryonic stem
cells (hESCs) have been described, a fine phenotypic dissection of
progenitor populations along with comparison with described pro-
genitors from human PB has not been done.29-31 Thus, we
designed a sequential approach to define populations with osteo-
clastogenic potential from early hematopoietic progenitors derived
from hESCs. Osteoclast formation was evaluated by the generation
of large multinucleated cells expressing TRAcP after induction in
media containing MCSF and RANKL.26 The functional identity of
osteoclasts was confirmed by their ability to degrade bone matrix as
well as gene expression signature. Populations with high osteoclas-
togenic activity were then tested for their ability to generate macro-
phages and DCs because this suggests the presence of a common
monocyte progenitor. The characteristics of the progenitors gener-
ated from hESC cultures were compared with equivalent cells

detected in circulating human PB. Surprisingly, this comparison evi-
denced a monocyte progenitor, previously unidentified in human PB,
able to form OCL cells and phenotypically comparable to the one
isolated from hESC-derived cells.

Methods

Cell culture

Cells were cultured in a humidified incubator at 37�C and 5% CO2.
Basal tissue culture reagents were purchased from Gibco BRL/Invi-
trogen Life Technologies, unless stated otherwise. Fetal bovine
serum (FBS) was from Atlanta Biologicals.

Maintenance of hESCs

The hESC lines, H9 (WA09) and H1 (WA01), were purchased
through our institutional stem cell core under our Stem Cell
Research Oversight commitee protocol. hESCs were cultured on
gelatin-coated dishes with irradiated mouse embryonic feeder cells
derived from CF-1 mice.32 The zinc finger nuclease generated ubiq-
uitin mCherry H9 hESC line was a kind gift from Alex Lichtler labo-
ratory at UConn Health.

EB formation and hematopoietic induction

Confluent 6-well dish cultures of hESCs on mouse embryonic fibro-
blast feeders, were incubated with 1 mg/mL Collagenase IV for 5 to
10 minutes at 37�C. Wells were washed and 1 mL of embryoid
body (EB) formation media (KODMEM, 20% FBS, 1% minimum
essential medium nonessential amino acids, 1 mM L-glutamine, and
0.1 mM mercaptoethanol), was added per well. Using a p1000
pipette, colonies were detached, aggregates were placed into a
50-mL tube, and allowed to settle by gravity for 10 minutes. The
upper supernatant was aspirated leaving the ESC aggregates in
about 4 mL of media. Aggregates were plated into Corning Ultra-
Low Attachment 6 well plates with 4 mL of EB media/well, placing
the equivalent of 3 ESC wells into 2 EB wells.

Hematopoietic induction was done based on a described method.29

EBs were allowed to form overnight and media was switched to EB
media containing the following cytokines (EB Cyto6 media): 300
ng/mL hSCF, 300 ng/mL hFLT3L, 50 ng/mL hGCSF, 25 ng/mL
hBMP4, 10 ng/mL hIL3, and 10 ng/mL hIL6 (all ISOkine ORF
Genetics except for BMP4 from R&D Systems). Full media changes
were done at days 5 and 10. Thereafter, half media changes were
done every 3 to 4 days by removing half the media, centrifuging at
450g for 5 minutes, suspending the pellet in fresh media, and plat-
ing back into the original well.

EB dissociation

For early time points or for dissociation of an entire culture, EBs
were incubated at 37�C in 1 mg/mL Collagenase IV for 30 minutes
followed by treatment with 0.05% Trypsin-EDTA for 20 minutes.
Trypsin was inactivated with serum and cells washed. Older cultures
containing visible hematopoietic components (floating and attached)
were processed first by collecting floating cells and EB aggregates
into tubes and centrifuging at 450g for 5 minutes. The pellet frac-
tions were broken up using gentle trituration. Attached cells were
harvested after 5 minutes’ incubation with 0.05% Trypsin-EDTA and
then combined with the nondigested fraction. Remaining EB
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clumps, containing nonhematopoietic components, were filtered out
through a 70-mm filter.

Flow cytometry and cell sorting

At each stage of hematopoietic differentiation of hESCs, and for the
study of PB progenitors, single-cell suspensions were analyzed by
flow cytometry. We used commercial monoclonal antibodies directly
conjugated to fluorochromes. All analyses and sorting were done in
a BD-FACS ARIA II (BD Biosciences) equipped with 5 lasers, 18
fluorescence detectors, and FACS DIVA software. FACS data were
analyzed using BD CellQuest Pro Software. Detailed description of
methods to process cells, antibody specificities, and cell-sorting gat-
ing strategies can be found in the supplemental Data.

Methylcellulose analysis

Sorted cells were plated at a density of 100 or 4000 cells per well
(12-well format) into methylcellulose, Methocult H-4434 (Stem Cell
Technologies). After 10 to 14 days of culture, colonies were enu-
merated, picked for flow cytometry or cytospun, and stained with
Wright-Giemsa kit HEMA-3 (Fisher Scientific).

Osteoclast cultures and bone resorption

Osteoclast formation from dissociated EB cultures was done by
plating in EB Cyto6 media. The following day, cultures developed
floating cells enriched in hematopoietic components. Floating cells
were then plated into a new dish at a density of 4000 cells per well
in triplicate (96-well format with or without dentine bone slices) in
EB media supplemented with osteoclast-inducing cytokines M-CSF
and RANKL, both at 100 ng/mL (ISOkine ORF Genetics). Osteo-
clast formation from total cultures included SCF and FLT3L, both at
100 ng/mL, to aid proliferation of progenitors. After 10 to 14 days
of culture, with half media changes every 2 days, cells were proc-
essed for osteoclast staining and resorption as described.26-28

Macrophage and dendritic differentiation

For macrophage differentiation, sorted populations were plated in
EB media with 100 ng/mL MCSF and for dendritic differentiation
plated in EB media with 50 ng/mL IL4 (ISOkine ORF Genetics) and
50 ng/mL GMCSF (R&D Systems). At day 14, cells were analyzed
by flow cytometry.

Myeloid cell isolation from human PB

Under the approved institutional review board protocols from the
University of Connecticut Medical School (13-119-2), human PB
from 23 healthy volunteers was collected into BD Vacutainer tubes
containing sodium heparin. Blood was centrifuged at 600g for 10
minutes and plasma removed. An equal volume of 0.5 mM EDTA
pH 7.2 was added followed by 3 times the volume of 2% Dextran-
500 in phosphate-buffered saline (Sigma 31392). Sedimentation of
red blood cells was done at 37�C for 30 minutes and the upper
phase containing leukocytes and granulocytes was removed and
washed in phosphate-buffered saline. Residual red blood cells were
lysed using hypotonic lysis buffer. Cells were processed for flow
cytometry or cell sorting. Myeloid populations were evaluated after
exclusion of granulocytes and lymphocytes (gating strategy pre-
sented in supplemental Figure 3). The study was in accordance
with the Declaration of Helsinki.

Human PB progenitor osteoclast differentiation

For osteoclast differentiation, total sorted cells or equal numbers
(10000) were plated into 96-well dishes in 90% MEM-a, 10%
FBS, and 1 3 Pen-Strep containing MCSF and RANKL (both at
100 ng/mL). Cells were grown for 2 to 3 weeks and were fixed and
stained for TRAcP as described.26 For evaluation of myeloid pro-
genitors, cells from sorted populations were plated into Methocult
H-4434 at a density of 30000 for lymphoidneg sorts, 8000 for each
of the 4 populations identified by CD11b and CD14 and 1000 for
CD115 sorts. After 10 to 14 days, colonies were enumerated.

Results

Development of osteoclast progenitors from hESC

Contrasting methods using stromal feeders or low oxygen chambers
to generate osteoclasts,30,31 we modified a published method to dif-
ferentiate hESCs to hematopoietic cells through EB formation and
culture with hematopoietic inducing cytokines.29 EB aggregates
were cultured in 6 basic hematopoietic cytokines, and around day
20, clusters of floating cells began to expand rapidly (supplemental
Figure 1A). These clusters contained cells expressing CD45 and
their representation increased as the cultures proceed for up to 40
days. Cell-surface marker phenotyping was performed and strate-
gies for cell sorting were defined (supplemental Figure 1B).

Our initial readout for cells with monocyte progenitor potential has
been the evaluation of osteoclastogenesis. Floating hematopoietic
components, which were shown to express CD34 and CD45 (Fig-
ure 1A), were plated into tissue culture plates and on top of dentine
bovine slices in the presence of SCF, FLT3L, and MCSF. These
cells expanded and became more homogenous by morphology and
cell-surface expression as shown by the upregulation of the mono-
cyte marker CD14. Upon addition of RANKL, cells began to fuse
into large multinucleated TRAcP1 cells with the ability to resorb
bone, as shown by toluidine staining of the resorption pits (Figure
1B-D). The osteoclastogenic commitment was verified by evaluating
the gene expression of key osteoclasts specific genes in the cells
obtained along the differentiation progression.33-37 Genes such as
Cathepsin K, MMP9, TRAP, and OSCAR were highly expressed in
multinucleated TRAcP1 osteoclasts (supplemental Figure 2),
whereas cells before the addition of RANKL (termed myeloid progen-
itors) showed the highest expression for RANK and CSF1R (MCSF
receptor or CD115). All of these results indicated that we generated,
in a very direct and simple manner, terminally differentiated and func-
tionally active osteoclasts, expressing proper signature genes.

Because this culture system could represent a valuable source of
cells to be used in transplantation experiments, we wanted to verify
this protocol could generate osteoclasts using transgenic hESCs. To
this end, we used a mCherry hESC line expressing mCherry under
the control of the ubiquitin promoter using zinc finger nuclease tech-
nology. mCherry hESCs were able to generate mCherry1CD451

cells in the same manner as nontransgenic hESCs that, when cul-
tured with MCSF and RANKL, showed the ability to generate
mCherry1 progenitors and osteoclasts (Figure 1E-F).

Identification and characterization of osteoclast

progenitors

To identify the OC progenitor populations, we initially sorted the
hematopoietic cell fractions in the context of CD14 expression.
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Interestingly, CD141 and CD142 populations made osteoclasts
(OCs) efficiently when plated at equal densities in the presence of
MCSF and RANKL (data not shown). Because of these results, we

tested the hematopoietic progenitor activity of sorted fractions, dis-
sected by their expression of CD14 and CD11b, using methylcellu-
lose colony formation assays (Figure 2A). Three distinct populations,
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Figure 1. Robust generation of osteoclast progenitors (OCPs) from hESCs and mCherry hESCs. (A) After 20 days of EB differentiation in the 6-cytokine cocktail,

EBs were enzymatically dissociated and analyzed for the expression of CD45 and CD34. Cells were plated back into media containing SCF, FLT3L, and MCSF. Expanded

floating cells were removed from the dish and analyzed for expression of CD14. Cultures were continued in tissue culture wells with and without dentine bovine slices along

with the addition of RANKL. Between 6 and 10 days after RANKL addition, wells or slices were stained for TRAcP and osteoclasts evaluated as multinucleated TRAcP posi-

tive cells. (B) TRAcP1 osteoclasts (low and high magnification) grown on tissue culture dishes and (C) on top of dentine slices. (D) Toluidine blue-stained dentine slices

after OC removal identifies numerous resorption pits. (E) Zinc finger nuclease-derived ubiquitin-mCherry hESC cell line was evaluated by flow cytometry for mCherry and
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within the CD451 gate, were sorted and plated at equal density
onto methylcellulose supplemented with myelo/erythroid lineage-
inducing cytokines. The CD11bCD14 double negative (DN)

population gave rise to the majority of the colonies (Figure 2B-C).
On the other hand, the double positive (DP) population failed to
generate colonies. Individual methylcellulose colonies obtained from
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1
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cells were cytospun onto glass slides and stained with Wright-Giemsa kit HEMA 3 (Fisher Scientific) (7 colonies shown) and (E) evaluated by flow cytometry for the expres-
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DN sorts were cytospun and stained a heterogeneous population of
distinct myeloid subsets including macrophages, foam cells, granu-
locytes, monocytes, and red blood cells (Figure 2D). Flow cytomet-
ric analysis of 2 individual representative colonies was shown to
express CD11b, CD11c, CD14, and CD235 at varying levels.
These results clearly demonstrated that the CD11bCD14 DN popu-
lation contains high numbers of early myeloid-erythroid progenitors
with the ability to differentiate into mature myeloid-erythroid cell
types (Figure 2B-D).

To better evaluate the osteoclastogenic potential within our cell
derivatives, we sorted 4 nonoverlapping populations (Figure 3A),
cells were plated in MCSF and RANKL, and cultured for 10 days
before staining for TRAcP. Figure 3B-C shows the highest OC
potential was contained within the CD11bCD14 DN population.
The DP population had the ability to make an appreciable number
of osteoclasts but not as efficiently as the DN population. In con-
trast, the other populations had very little to no osteoclast potential.

To further define the osteoclastic potential of the DN population, we
dissected this progenitor population with CD15, a marker specific
to granulocytes. CD15 staining identified a positive and negative
fraction. When an antibody to the MCSF receptor (CD115) was
included, all the CD115 expression was within the CD152/low popu-
lation (Figure 3D). Sorted populations equally plated in osteoclastic
or methylcellulose conditions demonstrated that the majority of the
osteoclastic activity and myeloid-erythroid progenitor was within this
CD152/lowCD1151 fraction (Figure 3E-G).

These results confidently demonstrate an early osteoclast progeni-
tor, derived from hESCs through EB hematopoietic induction, with
the phenotype: CD451CD11b2 CD142 CD152/lowCD1151. Inter-
estingly, these cells in culture have the ability to maintain progenitor
activity with a slow but steady increase in more committed cells (or
DP population) (Figure 4A). Cultures can be grown for more than
60 days while maintaining this colony-forming unit (CFU) and OC
progenitor activity. Therefore, we evaluated the DN population for
HSC and myeloid progenitor markers and found that 20% of the
DN population is CD341CD381 compared with 2% of the DP
population (Figure 4A). Similarly, myeloid progenitor markers
CD117 (c-kit) and CD123 (IL3Ralpha) is highly expressed in the
DN population, 90% and 64%, respectively (Figure 4A).

Evaluation of macrophage and DC potentials within

the identified progenitor population

Our laboratory has previously identified in mouse a common bone
marrow-transplantable progenitor that gives rise to functional osteo-
clasts, macrophages, and DCs.26,28 With this in mind, we tested
the ES cell derivative populations with early myeloid progenitor/
osteoclastogenic activity for their ability to form macrophages and
DCs. Initially we evaluated the DN and DP populations identified by
CD11b and CD14 for the following macrophage and dendritic
markers: CD11c, sialoadhesin molecule CD169, major histocompat-
ibility class II or HLA-DR, co-stimulatory molecules CD40, and
CD83 (Figure 4B). As expected, our DN population shows no
expression of macrophage or DC markers. However, the
CD11bCD14 DP population coexpresses CD11c (96%), CD40
(87%), and CD83 (28%). Therefore, the DP population is com-
posed of myeloid lineage committed cell types. Sorted
CD11bCD14 DN populations were cultured in conditions favoring
the generation of macrophages (MCSF) or DCs (GMCSF1IL4)

(Figure 4C). After 14 days in culture, under both conditions, DN
cells showed upregulation of CD11b and CD14 (becoming DP) as
well as CD11c. Both macrophage and dendritic culture conditions
progressed the DN population into cells expressing appropriate and
phenotypically different profiles of CD169, HLA-DR, CD40, and
CD83 differentiation markers. As expected, costimulatory and major
histocompatibility class molecules were more highly expressed in
cells placed into DC conditions compared with macrophage
conditions.

Early monocyte and osteoclast progenitor potential

in human PB correlates with hESC-derived

progenitors

Once we confirmed the identity of monocyte progenitors from
hESC derivatives, we tested their equivalence to progenitors found
in vivo. At the time of these findings, most of the reports on human
monocyte/osteoclast progenitors were from PB CD141 progenitors.
Because progenitors identified from hESC derivatives included pop-
ulations negative for CD14, we determined if we could identify a
CD11bCD14 DN cell type with osteoclastogenic potential in human
PB in the same fashion as we showed using hESC derivatives (sup-
plemental Figure 3A). Leukocyte suspensions from blood of healthy
donors were analyzed by flow cytometry using a gating strategy to
analyze live single cells, excluding granulocytes and lymphoid cells
(CD3, CD19, and CD56). Finally, within these gates the markers
used to dissect the hESC-derived myeloid progenitors were also
used: CD11b, CD14, and CD115.

Initial analyses of populations sorted for granulocyte-lymphoid nega-
tive cells and plated into myeloid-erythroid methylcellulose (supple-
mental Figure 3B) showed that these fractions contained all the
possible colony types (burst-forming unit-erythroid, colony-forming
unit-erythroid, colony-forming unit granulocyte and monocyte,
colony-forming unit granulocyte, erythrocyte, and monocyte) indicat-
ing that these fractions are enriched in early hematopoietic progeni-
tors. Interestingly, comparison between the results from 2
individuals showed variations, suggesting that the distribution of
peripheral early progenitors could be heterogeneous between indi-
vidual subjects. Further dissection of the negative population using
the differential expression of CD11b and CD14, showed a clear
enrichment in early progenitor activity (approximately threefold)
between the total lymphoid negative with sorted lymphoid negative
CD11b2CD142 DN population (supplemental Figure 3C).

Based on CD14 and CD11b expression, 4 populations were sorted
and tested for their ability to generate OCL cells and colony forma-
tion in methylcellulose (Figure 5). As expected, the DP populations
readily formed osteoclasts after culture in media containing
MCSF1RANKL; however, they did not form colonies in methylcellu-
lose. Interestingly the population DN for these markers, with known
early hematopoietic potential, also generated OCL when cultured in
osteoclastogenic conditions, similar to what we observed in our
hESC-derived cultures (Figure 5A-C). Consistent with the observa-
tions from methylcellulose cultures, variations were seen in the oste-
oclast potential of this population between different individuals (2
representative samples shown). Importantly, when plating equal
numbers of each of the four populations, multinucleated TRAcP1

OCs were higher in the DN than in the DP fractions (Figure 5B).
Because the CD141 populations had TRAcP1 mononuclear cells
that were difficult to tell whether they were OC precursors or
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macrophages, these cell types were counted separately and were
highly represented in the DP population.

Finally, further fractionation of the DN population using CD115,
showed that all of the osteoclastogenic and the majority of progeni-
tor activity was contained in the CD1151 fraction, just as observed
in the studies conducted with hESC derivatives (Figure 5D-G). This
was true for both TRAcP1 multinucleated OCL cells as well as
mononuclear cells (Figure 5F).

All these results combined indicated that in human PB, there are 2
defined populations with osteoclast progenitor activity: a
CD14CD11b DP population previously identified in the literature
and a newly defined population, negative for CD11b and CD14 that
also contains cells with early progenitor activity. Both the DN and
DP population correlates to those obtained from hESC-derived pro-
genitors, including further enrichment of osteoclastogenic activity
within the DN population using CD115 selection.
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Early myeloid precursors from human bone marrow have been char-
acterized bearing the phenotype CD11b2CD341CD1171

CD1351CD1231 that was able to generate osteoclasts, macro-
phages, and DCs.25 These unique progenitors are then analogous
to murine progenitors identified by others and us. Thus, we analyzed
our lymphoid-negative, CD11bCD14 DN population for the expres-
sion of these markers and found that there is a variable expression
of all of them, including combined positive expression of all the rele-
vant markers (Figure 6). Unfortunately, the abundance of these cells
is extremely low, making it challenging to isolate enough cells for
functional assays.

Discussion

The ability of hESCs to differentiate into hematopoietic cells has
been established in the literature. Hematopoietic progression has

been reported using stromal support30,38,39 and EB formation fol-
lowed by induction with various cocktails of hematopoietic cyto-
kines.8,29 In general, methods using mouse stromal supporting cells
result in the generation of heterogeneous populations of derivatives
with modest representation of hematopoietic components. In con-
trast, protocols based on EB formation followed by hematopoietic
induction render more defined methods. Myeloid cells (including
osteoclasts) have been derived using both methods; however, the
reported EB method used a complex 4-step protocol of cytokine
induction along with culture in low-oxygen chambers.30,31 In this
report, we modified a simple method of EB formation in the pres-
ence of 6 basic hematopoietic cytokines. Our method clearly ren-
dered very efficiently hematopoietic cells including cells of the
myeloid lineage and also using a mCherry reporter line. We were
able to produce large numbers of these progenitors and study mye-
lopoiesis using osteoclast formation as an initial readout. Our initial
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studies showed that osteoclasts could be generated from a deriva-
tive population expressing CD11b and CD14 that gets efficiently
expanded upon induction with myelopoietic cytokines. This is con-
sistent with results from studies defining human osteoclast progeni-
tors in PB. However, further dissection of derived hematopoietic
progenitors showed clearly that cells with the best osteoclast pro-
genitor potential were contained in the CD11b/CD14 DN fraction,
more specifically in cells expressing low levels of CD15 and high
levels of CD115. Importantly, these fractions are also capable to
generate macrophage and DC-like cells and have the potential to
be expanded. The ability of these cultures to robustly generate
hematopoietic progenitors is important because these cells are very
difficult to obtain from human subjects in high numbers and could
serve as a substrate to study human myelopoiesis.

These findings prompted us to search for equivalent progenitor pop-
ulations in human PB. As expected, we confirmed an osteoclast pro-
genitor population expressing CD14, which we also detected as
CD11b1CD141 DP population. More interestingly, we found a pop-
ulation with osteoclastogenic potential contained in the fractions
negative for CD11b and CD14 and with high expression of CD115.
We propose that this DN cell population corresponds to a very early
monocyte progenitor, more prevalent in the bone marrow, and that
the DP population represents a precursor more exclusive in periph-
ery. In fact, this DN population shared markers with the identified
osteoclast progenitor population in the bone marrow.25 One interest-
ing observation is that this population seems to be differentially rep-
resented in the circulation of different individuals and could
represent variable egress of hematopoietic progenitors because of a
particular physiological status of the individual.40 In fact, recent litera-
ture has suggested that inflammatory signals could dictate the num-
ber of circulating early progenitors.41-43 Within our patient cohort,

we were unable to identity the cause of such differences when look-
ing at age, race, or sex. Even when very preliminary, the evaluation of
these populations could have potential to be a diagnostic marker in
many physiopathological processes and would require a large-scale
study of control patients first to understand these differences.

Interestingly, the osteoclast progenitor activity of the DN popula-
tion is superior to the one observed from the DP populations,
both in hESC and PB-derived cells. We think that this difference
relates to differential ability of these populations to expand
under the osteoclastogenic-inducing cytokines. Visually, the DN
population proliferates very quickly, creating optimal densities
for larger number of fusion events, whereas the DP population,
although further along in differentiating toward an OC, has
much slower proliferation rate.

Our laboratory has extensively characterized mouse myeloid progeni-
tors from bone marrow and periphery in mouse.26-28 These progeni-
tors are transplantable and can contribute to monocyte cells and
progression in different anatomical sites. Future experiments are
needed to determine if these human myeloid progenitors isolated
from hESCs under these differentiation and sorting techniques could
represent a source for a new osteoclast transplantable progenitor
and provide a tool to facilitate the study of human monocyte biology.
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