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Hematopoietic cell homing after hematopoietic cell transplant (HCT) is governed by several

pathways involving marrow niche cells that are evoked after pre-HCT conditioning. To

understand the factors that play a role in homing, we performed expression analysis on

zebrafish marrow niche cells following conditioning. We determined that the noncollage-

nous protein extracellular matrix related protein dermatopontin (Dpt) was upregulated

sevenfold in response to irradiation. Studies in mice revealed DPT induction with radiation

and lipopolysaccharide exposure. Interestingly, we found that coincubation of zebrafish or

murine hematopoietic cells with recombinant DPT impedes hematopoietic stem and pro-

genitor cell homing by 50% and 86%, respectively. Similarly, this translated into a 24%

reduction in long-term engraftment (vs control; P 5 .01). We found DPT to interact with

VLA-4 and block hematopoietic cell–endothelial cell adhesion and transendothelial migra-

tion. Finally, a DPT-knockout mouse displayed a 60% increase in the homing of hemato-

poietic cells vs wild-type mice (P 5 .03) with a slight improvement in long-term

lin2SCA11cKIT1-SLAM cell engraftment (twofold; P 5 .04). These data show that the

extracellular matrix–related protein DPT increases with radiation and transiently

impedes the transendothelial migration of hematopoietic cells to the marrow.

Introduction

The hematopoietic cell microenvironment, or niche, contains a rich variety of cell types, including endo-
thelial, stromal, perivascular, osteocyte, and neural lineages.1-5 These cells work in concert to orchestrate
maintenance of hematopoiesis, regulating quiescence, division, longevity, movement, and differentiation.
Niche cells perform their actions through paracrine signaling involving a variety of secreted proteins,
such as stroma-derived factor-1 (SDF1), stem cell factor, adiponectin, and others.6-8 Many of these
same cell maintenance pathways are also responsible for the recruitment of hematopoietic stem and pro-
genitor cells (HSPCs) after hematopoietic cell transplant (HCT). One well-characterized pathway govern-
ing HSPC homing to the marrow niche is SDF1-CXCR4. Pre-HCT conditioning (often consisting of
radiation or chemotherapy) drives up the concentration of SDF1 secreted by marrow niche cells. HSPCs
(along with other cell types) express CXCR4, a cell surface receptor for SDF1, which facilitates cell
migration (or “homing”) toward the established SDF1 concentration gradient, with an ultimate destination
of the marrow proper.9 Advancements in our understanding of how HSPCs are recruited to the marrow
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Key Points

� Dermatopontin
increases in response
to radiation and slows
migration of
hematopoietic cells
into the niche.

� Excess dermatopontin
may reduce
hematopoietic cell
interaction with the
endothelium.
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have led to a number of preclinical and clinical studies to modify
HSPC-recruiting factors, with the goal of improving HSPC marrow
homing and decreasing the time of immune reconstitution.10-12 The
outcomes of these studies have had mixed success, calling for a
better understanding of the factors that mediate HSPC migration.
Conversely, but related to the HSPC-homing process, there is a
need to improve the mobilization of highly purified peripheral blood
HSPCs, which is governed by overlapping mechanisms.13

To investigate additional novel niche-secreted factors that can modu-
late HSPC homing during HCT, we used the zebrafish (Danio rerio)
model of HCT. The zebrafish has been a robust model of hematopoi-
etic cell development and HCT because of the similarity in the hema-
topoietic genetic programs between mammals and zebrafish.14-16

We have previously shown that successful HCT in the zebrafish
relies, in part, on an intact SDF1-CXCR4 pathway that mediates
HSPC homing to the marrow niche and is analogous to mam-
mals.17,18 Our goal in this study was to determine microenvironmen-
tal niche–related factors that modulate HSPC behavior during HCT.
We analyzed the gene expression signature of isolated zebrafish
marrow niche (ie, nonhematopoietic) cells before and after condition-
ing (radiation) and found increased expression of a small noncollage-
nous protein, dermatopontin (Dpt), that negatively impacted HSPC
homing to the niche when delivered exogenously in zebrafish and
mice. In vitro studies indicated a deficiency in HSPC adhesion and
transmigration through endothelial cells upon DPT exposure. Further
studies indicated that DPT may directly block VLA-4, which is
required for efficient HSPC homing. This observation was confirmed
by HCT in DPT-knockout mice, which showed improved HSPC
homing and long-term engraftment after sublethal conditioning.

Methods

Zebrafish husbandry

Zebrafish were bred and maintained at the University of Minnesota
Zebrafish Core Facility according to standard guidelines and with
the approval of the Institutional Animal Care and Use Committee,
University of Minnesota.19 The following lines were used: Segrest
wild-type (WT), ubi:luciferase,20 and bactin2:EGFP.

Zebrafish niche cell isolation

Whole kidney marrow from 3-month-old zebrafish (n 5 12-13) was
surgically excised. In irradiation experiments, zebrafish were exposed
to 30 Gy x-ray irradiation 24 hours earlier. Marrow was titurated
with a P1000 pipette in 1 mL of PBS to create a single-cell suspen-
sion. The cells were filtered through a 40-mm mesh filter, and the
cells from the retentate and filtrate were centrifuged at 1000g for 5
minutes to pellet the cells.

RNA preparation and expression array

Protocols are available in supplemental Methods.

Immunofluorescence and western blot. Protocols are
available in supplemental Methods.

HSPC homing in zebrafish. A total of 250 000 ubi:luciferase
or bactin2:EGFP donor cells was injected via the intracardiac route
into recipient animals 2 days after 25-Gy irradiation. Luciferase-
positive cells that homed to the marrow were assessed 48 hours after

HCT, as previously described.20 To assess the numbers of homed
bactin:EGFP donor cells, recipients underwent marrow harvest 16
hours after HCT, and EGFP1 cells were enumerated by flow cytome-
try on a BD FACSCanto flow cytometer using counting beads.

DPT enzyme-linked immunosorbent assay. Plasma levels
or marrow of murine DPT was assessed using a Mouse Dermato-
pontin/DPT ELISA Kit (Sandwich ELISA, #LS-F53048; LSBio,
Seattle, WA), following the manufacturer’s instructions.

Murine homing assays

Recipient C57BL/6NCr CD45.2 or DPT-knockout (KO) mice were
subjected to 9 Gy of myeloablative radiation, at a dose rate of 83
rad/min, 24 hours prior to transplant. Donor marrow was prepared
from animals constitutively expressing EGFP under control of a
chicken b-actin promoter21 (cell homing) or from B6.SJL-Ptprca-
Pepcb/BoyCrl (CD45.1) mice (colony-forming unit [CFU] experi-
ments) at a concentration of 2.5 3 107 cells per milliliter in Hank’s
balanced salt solution. A total of 2 3 106 cells was delivered via
tail vein injection. Marrow was harvested from recipients 16 hours
posttransplant. Mice were first perfused with 10 mL of phosphate-
buffered saline (PBS). Femurs and tibia were crushed using a mor-
tar and pestle, followed by incubation in Accutase (Sigma-Aldrich,
St. Louis, MO) at 37�C for 15 minutes while shaking to isolate
hematopoietic cells. Cells were passed through a 40-mm filter and
washed twice in PBS prior to enumeration of donor cells by flow
cytometry (see antibodies by specificity). In some experiments, 2
mg of recombinant DPT (rDPT; #5749-DP; R&D Systems, Minne-
apolis, MN) was given exactly 30 minutes prior to adoptive transfer
in the right lateral tail vein. The donor cells were delivered in the left
lateral tail vein to avoid any physical effects from the prior injection.

CFU-spleen assay

Wild-type, rDPT-treated, or DPT-KO animals received 9-Gy radiation
24 hours prior to tail vein injection of 500 000 whole bone marrow
(WBM) cells from congenic donor animals. Initial experiments in
DPT-KO animals revealed colonies too numerous to count; there-
fore, the cell dose was decreased to 100 000 donor cells and later
normalized. Eight days after HCT, spleens were harvested and fixed
overnight in Bouin’s fixative (#7831; EMD Millipore, Billerica, MA),
and colonies were enumerated under a dissection microscope.

CFU-C assay

Recipient mice received 9-Gy radiation 24 hours prior to the transfer
of 500 000 WBM cells from donor animals. Marrow and spleens
were harvested 8 days after HCT (for peripheral blood, the time
point was 12 hours). CFU-cell (CFU-C) assays were performed with
MethoCult M3434 (STEMCELL Technologies, Vancouver, BC, Can-
ada), according to the manufacturer’s protocol, and colonies were
analyzed on a Leica DM6000 microscope with a 53 objective after
10 to 14 days of incubation at 37�C and 5% CO2.

Murine cell isolation and transplantation. Protocols are
available in supplemental Methods.
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Figure 1. Gene expression analysis in zebrafish marrow niche cells reveals dpt as a modulator of hematopoietic cell homing. (A) Strategy for enriching

marrow niche cells. The zebrafish marrow compartment contains hematopoietic cells, endothelial cells, renal tubules, and other supportive niche cells shown by hematoxylin

and eosin staining. Tituration and filtration through a 40-mm filter allows for smaller HSPCs to be separated from larger niche cells. See supplemental Figure 1 for full image.

Scale bar, 50 mm. (B) qRT-PCR of hematopoietic (red) and niche-related (blue) factors in marrow cells that were separated using a filter into 2 cell fractions. n 5 3 to 6 ani-

mals per group (technical triplicates) in 2 independent experiments. P , .01 for each gene (niche vs hematopoietic). (C) Scatter plot of Affymetrix RNA array expression

data from niche cells isolated 24 hours after zebrafish received 0-Gy or 30-Gy radiation. Axes give expression in log2. The thin red lines demark a twofold change in gene

expression; radiation-induced increased gene expression is indicated by red dots and decreased expression is indicated by green dots (n 5 3 per condition). (D) Unsuper-

vised cluster analysis of 144 niche-related genes induced after radiation. Red indicates genes that were expressed more highly (more than twofold) after 30 Gy. Green indi-

cates genes with a lower expression level in irradiated animals (more than twofold). Scale bar indicates absolute log2 expression scale (2.3-11.7). (E) Ingenuity Pathway

Analysis showing the highest ranked network (score of 41) and its composition of 18 proteins. (F) qRT-PCR of Dpt expression in the marrow after 30-Gy radiation (n 5 6

per group). (G) Immunofluorescence of Dpt in zebrafish 24 hours after radiation. Quantitation was performed using ImageJ; 24 images were quantified across 3 biologic rep-

licates per condition. (H) Western blot of zebrafish WKM for Dpt (�) 24 hours after radiation. A human fibroblast line served as a positive control.
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Murine cell migration, adhesion, release, and flow
assays. Protocols are available in supplemental Methods.

Far-western blot

Seven micrograms of rDPT was run on a 4% to 12% Tris-Bis gel
(Invitrogen) and electro-transferred to a polyvinylidene difluoride
membrane. The blot was blocked with 5% blocking buffer (Bio-Rad,
Hercules, CA) for 1 hour at room temperature, followed by cutting
into strips. TIME endothelial cell lysate was prepared by solubilizing
whole cells in lysis buffer (1% NP-40, 10 mM CHAPS, 150 mM
NaCl, 10 mM sodium phosphate, 2 mM EDTA, plus cOmplete Pro-
tease Inhibitor [Sigma], pH 7.2, in blocking buffer). DPT-containing
membrane strips were incuatred with the TIME lysate overnight at
4�C. Membrane strips were washed 3 times in Tris-buffered saline
(TBS) and 0.1% Polysorbate 20. Primary antibodies were rabbit
anti-ITGA3 (#ab190731), rabbit anti-ITGA4 (#ab81280), rabbit
anti-ITGA5 (#ab150361), and rabbit anti-ITGB1 (#ab179471; all
from Abcam); they were diluted 1:1000 in TBS for 4 hours at room
temperature. Membranes were washed 3 times in TBS and 0.1%
Polysorbate 20. The secondary antibody was peroxidase AffiniPure
Goat Anti-Rabbit IgG (H1L) (#111-035-045; Jackson ImmunoRe-
search, West Grove, PA). diluted 1:5000 in TBS. Detection was
performed using Amersham ECL Western Blotting Detection
Reagent, according to the manufacturer’s instructions (GE Health-
care Life Science, Pittsburg, PA). Lane quantification was performed
after image scanning and post hoc analysis using ImageJ.

Results

To achieve our goal of evaluating niche-related genes that play a
role in HSPC activity after transplant, we sought to compare the
gene expression of irradiated niche cells with that of nonirradiated
niche cells. We chose the zebrafish for our initial screen based on
its conservation of the hematopoietic system,15 our prior experience
in characterizing HSPC homing in the zebrafish,17,22 and the relative
ease of isolation of marrow niche cells vs that of mice.

Zebrafish marrow is a center-body organ that can be quickly iso-
lated by dissection. In contrast, murine marrow is housed within a
mineralized bone cavity that is rich in adherent dense connective

tissues and often requires enzymatic digestion for ideal cellular isola-
tion. We capitalized on the fact that many of the marrow niche cells
are larger in size compared with HSPCs, a phenomenon that is con-
served across species. Estimates for HSPCs are 5 to 13 mm, which
can be isolated in a single-cell suspension.23 In contrast, fibroblasts,
endothelial cells, mesenchymal stromal cells, and other niche cells
are often much larger (40-100 mm) and frequently are densely con-
nected.24,25 Zebrafish marrow is located within the kidney and con-
tains a few additional cell types not normally found in mammalian
marrow, such as renal tubules and duct cells that are also much
larger than the surrounding HSPCs.26 Although these renal cells’
role in hematopoiesis is not completely clear, they have been shown
to be a source of SDF1 and play a role in HSPC homing.18 There-
fore, we used a simple filtering technique to separate niche-related
cells from HSPCs based on cell size (Figure 1A). We isolated adult
zebrafish whole kidney marrow (WKM) by dissection, followed by fil-
tering through a 40-mm mesh filter to allow for niche cell enrichment
(the retentate).

To show that this simple method could enrich for niche cells, we
performed quantitative reverse transcription polymerase chain reac-
tion (qRT-PCR) for genes expressed in HSPCs vs niche cells. Fig-
ure 1B shows that niche-associated gene expression (spon1,
pdgfra, sox9a, vegf, sdf1b, col12a1) was significantly increased (up
to 10-fold) in the retentate portion of the cell isolation. HSPC-
related genes (cmyb, gata1, mpx1, lck) were more highly expressed
(up to 10-fold) in the flow-through fraction, suggesting that we could
achieve enrichment of niche-related cell types that would benefit our
downstream studies.15

Following marrow pre-HCT conditioning, such as radiation, numer-
ous cytokines that govern HSPC homing are increased in concen-
tration prior to HCT.27 To determine niche gene expression
changes induced by conditioning in the zebrafish, we performed
expression analysis on RNA prepared from filter-enriched zebrafish
WKM niche cells after myeloablative radiation compared with nonir-
radiated controls. We found 194 upregulated (at least twofold)
genes and 439 downregulated (at least twofold) genes in irradiated
niche cells (Figure 1C-D). Gene network analysis was performed
using Ingenuity Pathways Analysis; the top-ranked network is shown
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Figure 2. DPT reduces HSPC homing in the zebrafish. (A) Schema of zebrafish homing assays. Zebrafish received 25-Gy radiation and 2 days later underwent HCT

via intracardiac injection of 250 000 ubi:luciferase or bactin2:EGFP donor WKM cells. (B) Representative BLI 48 hours after transplantation of ubi:luciferase marrow cells

pretreated with rDPT (or bovine serum albumin) (left panel). BLI was determined using an IVIS Spectrum in vivo imaging system. The recipient WKM region of interest is cir-

cled in red. Bar graph indicating BLI signal quantification is shown (right panel). (C) Flow cytometry quantification of homed of bactin2:EGFP donor marrow cells 16 hours

after HCT. n 5 20 or 21 animals per group in 3 independent experiments. All data are means with standard deviations. The P values were derived using the Student t test.

BSA, bovine serum albumen; 1/2, with or without.
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Figure 3. Murine DPT is induced by conditioning, and supranormal levels of DPT affect the homing and engraftment. (A) qRT-PCR of Dpt expression in marrow

(11-Gy radiation; n 5 6 animals per group) and spleen (9-Gy radiation; n 5 5 animals per group). (B) ELISA of plasma DPT expression in mice after 9-Gy radiation (n 5 4-6
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in Figure 1E. We focused on genes that are expressed at the cell
membrane or are extracellularly secreted vs the transcription factors,
because the former would be more likely to modulate intrinsic
HSPC activity. One particular gene that was found to be elevated in
irradiated niche cells was dermatopontin (dpt), a small (23-kDa) non-
collagenous extracellular matrix (ECM) protein that we previously
described in the murine marrow ECM.28 Other work has shown that
murine DPT can play a positive role in ex vivo culture expansion of
HSPCs,29 although we have shown that DPT-KO mice do not have
any steady-state hematopoietic deficits and do have increased
peripheral HSPC mobilization capacity, suggesting a role in cell traf-
ficking.28 DPT has been described as being present in the skin,
bone, fibroblasts, and plasma.30-32 Interestingly, DPT has deep evo-
lutionary origins, and its protein ancestors can be found in the ECM
that makes up the shells of early sea creatures, such as mollusks.33

We verified the microarray gene expression results using qRT-PCR
and found that zebrafish WKM dpt was induced 4.6-fold after radia-
tion (P 5 .02; Figure 1F). Immunofluorescence for Dpt in zebrafish
WKM showed a non–cell-associated staining pattern as expected
for an ECM-related protein (Figure 1G), and there was a 2.1-fold
increase in Dpt protein in WKM 24 hours after radiation (P ,

.0001), which was verified by western blot (Figure 1H).

To understand the potential role for Dpt in HSPC homing, we used
a previously characterized zebrafish adoptive transfer model (Figure
2A).34 We initially used a bioluminescence (BLI)-based system to
evaluate donor marrow cell homing to the recipient marrow.20 Donor
WKM cells harboring luciferase under the control of the constitutive
ubiquitin promoter (ubi:luciferase) were coincubated with murine
rDPT prior to adoptive transfer into irradiated recipients via intracar-
diac injection. Homed cells were assessed via BLI of the recipient
WKM region 2 days after transplant, as previously described.20 We
found a significant decrease in the amount of donor cells homed
after rDPT exposure (Figure 2B; P 5 .03). To allow for more precise
quantification of the number of homed donor cells using flow cytom-
etry, we performed a similar experiment using GFP1 donor marrow
from bactin2:EGFP zebrafish and found a 50% reduction in WKM-
homed donor cells with rDPT exposure (Figure 2C; P 5 .02). These
data gave the first indication that DPT may hinder the ability of
HSPCs to migrate to the marrow niche after adoptive transfer.

To determine whether dermatopontin biology was similar in the
mouse and zebrafish, we next evaluated murine bone marrow Dpt
expression in response to radiation exposure; like in the zebrafish,
we found an 8.4-fold increase in expression (P 5 .005; Figure 3A).
Similarly, murine spleen exhibited a 3.6-fold increase in Dpt expres-
sion after irradiation (P 5 .005; Figure 3A). DPT has also been

identified in the human serum as a possible factor that aids in
wound healing.35 We measured circulating levels of plasma DPT by
enzyme-linked immunosorbent assay (ELISA) and immunoblot that
showed an increase in circulating DPT in mice postradiation expo-
sure (Figure 3B-C). We observed a significant increase at 24 and
48 hours (499 pg/mL vs 1047 pg/mL; P , .01) after radiation and
a return to baseline levels starting at 72 hours. Finally, we found that
mice exposed to lipopolysaccharide (LPS) can generate increased
levels of circulating DPT (approximately twofold), suggesting that
plasma DPT levels are responsive to an inflammatory trigger other
than radiation (Figure 3D). As an additional measure of radiation-
induced inflammation, we measured the response of C-reactive pro-
tein and found a 27% increase in its concentration over baseline
(supplemental Figure 2).

To understand whether increasing plasma levels of DPT could alter
HSPC marrow homing in a murine model of adoptive transfer, we
treated animals with 2 mg of rDPT just prior to HCT (see schema in
Figure 3E). To assure that DPT levels were supranormal, we per-
formed western blot immediately after rDPT injection and found bol-
stered levels of DPT within minutes in the circulation that lasted for
$30 minutes (Figure 3F). Therefore, all subsequent transplants
were performed within 30 minutes of rDPT delivery. Initial homing
experiments demonstrated that rDPT pretreatment led to an 86%
decrease in bone marrow mononuclear cell homing to the marrow
(Figure 3G; P 5 .001). Not unexpectedly, the CFU-Cs that were in
the peripheral circulation were elevated in the rDPT group by almost
twofold compared with control animals (Figure 3H; P 5 .003).
CFU-spleen Day 8, a measure of committed progenitors, was 63%
lower after rDPT pretreatment (33 colonies vs 19 colonies; P 5
.03; Figure 3I). Similarly, we also found that homed CFU-C in the
marrow was decreased 50% in rDPT-pretreated animals after adop-
tive transfer (117 CFU vs 61 CFU per 100 000 cells; P 5 .0001;
Figure 3J). The primary amino acid sequence on DPT contains a
putative heparan binding domain, and heparin has been shown to
inhibit DPT activity in vitro.36,37 We evaluated homing following
rDPT combined with heparin administration and found that heparin
reversed the rDPT-mediated inhibition of cellular homing (P 5
.0013; supplemental Figure 4).

To understand whether rDPT-mediated depressed homing resulted
in a long-term deficit in engraftment, we performed congenic trans-
plant experiments using sublethal conditioning with or without rDPT.
Sublethal conditioning (4 Gy) was intentionally chosen because the
potential loss of hematopoietic homing in a lethally irradiated animal
would likely result in graft failure and no evaluable outcome (schema
shown in Figure 3K). Figure 3L shows that DPT exposure prior to
HCT led to a significantly lower peripheral CD451 donor

Figure 3 (continued) 2 mg of murine rDPT 24 hours after receiving 9-Gy radiation. Following rDPT delivery, 2 million EGFP1 WBMs were injected in the contralateral tail

vein. (F) Western blot of plasma DPT (native) and rDPT following IV injection of rDPT. The rDPT is slightly smaller than native DPT, as shown by a shift in molecular weight.

(G) Number of donor cells homed to the marrow, as determined by flow cytometry 16 hours after transplant (n 5 5-8 animals per group). Gating strategy is shown in supple-

mental Figure 3. (H) Peripheral blood (PB) CFU-C assessed 16 hours after transplant (n 5 6 animals per group). (I) CFU-spleen assessed 8 days after transplant. Photo-

graphs show examples of harvested spleens after fixation with Bouin’s solution (left and middle panels). Scale bars, 5 mm. Each dot represents an individual animal (right

panel). (J) The number of donor hematopoietic CFU-C in the marrow was assessed 8 days after transplant. (K) Schema for primary and secondary HCT. CD45.2 mice were

injected IV via the lateral tail vein with 2 mg of murine rDPT 24 hours after sublethal (4-Gy) radiation. Within 30 minutes following rDPT delivery, 2 million CD45.1 donor

WBM cells were injected in the contralateral tail vein. (L) Peripheral CD45.1 donor engraftment after the primary transplant (n 5 10-12 animals per group). (M) Flow cytome-

try gating strategy for evaluation of donor LSK engraftment at 4 months after primary HCT. (N) Peripheral donor engraftment after secondary transplant (n 5 9-10 animals

per group). All data are shown as means and standard deviation, unless otherwise noted. �P , .05, ��P , .01, Student t test. BMMC, bone marrow mononuclear cell; BSA,

bovine serum albumin; FSC, forward scatter; L, left; PBMC, peripheral blood mononuclear cell; PI, propidium iodide; Pre, pretreatment; R, right; SSC, side scatter.
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Figure 4. DPT alters the hematopoietic-endothelial cell interaction. (A) Adhesion to HUVECS. Cells were grown to confluency in a 96-well plate. Murine WBM cells

were incubated with 2 mg/mL rDPT prior to transfer to endothelial-coated wells. Adhesion occurred over 2 hours, followed by washing and quantification of adhered cells by

flow cytometry and counting beads. (B) Cell migration assay; 100 000 murine WBM cells were incubated in the presence of rDPT for 4 hours. The bottom chamber con-

tained SDF1 (0, 1, 10, 50, or 100 ng/mL). The numbers of cells that migrated to the bottom chamber were enumerated by flow cytometry, normalized, and compiled. See

supplemental Figure 5 for detailed data about each group. (C) Cell migration assay across endothelial cells; 500 000 SCA11 cells were incubated with HUVEC-coated

Transwells in the presence of rDPT for 4 hours. The numbers of cells that migrated to the bottom chamber were enumerated by flow cytometry. (D) Adhesion to HDMECs.

HDMECs were grown to confluency in a 96-well plate and activated with 2 ng/mL TNF-a overnight. Murine WBM cells were labeled with CellTracker Green and incubated

with rDPT prior to transfer to endothelial coated wells. Adhesion occurred over 1 hour followed by washing and quantification of adhered cells by fluorometry. (E) Release

assay. HDMECs were grown to confluency in a 96-well plate and activated 2 ng/mL TNF-a overnight. Murine WBM cells were labeled with CellTracker Green and incubated

with rDPT prior to transfer to HDMEC -containing wells. Adhesion occurred overnight, followed by gentle washing. Increasing amounts of rDPT were added in media for 1

hour at 37�C, followed by gentle washing. Quantification of adhered cells was done by fluorometry. (F) Release assay of lineage separated cells. Experiment was performed

as in (E), with the exception that WBM cells underwent separation into lin1 and lin2 fractions, prior to use, using magnetic bead isolation. rDPT was used at 5 mg/mL. Raw

data for (D-F) are shown in supplemental Figure 6. (G) Schema for microfluidic device to assess HSPC-endothelial adherence under flow; 500 000 lin2 cells per milliliter

from a ubiquitously expressing EGFP1 mouse were flowed through an endothelialized lumen previously activated with TNF-a. Cell adherence was captured in real-time using

fluorescent image capture. (H) Enumeration of cells that adhered to the endothelial wall during flow with and without the addition of 1 mg/mL rDPT (data are pooled from 2

independent experiments). Representative experiments (n 5 3-6 wells per condition) of 2 or 3 biologic replicates are shown. All data are means and standard deviations,

unless otherwise noted. �P , .05, Student t test. CTL, cytotoxic T lymphocyte; 1/2, with or without.
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engraftment of 33% compared with control animals (57%) at 4
months posttransplant (P , .01). Evaluation of donor
lin2SCA11cKIT1 (LSK) cells at 6 months showed donor LSK cell
engraftment of 21% in the rDPT-treated group vs 50% in the con-
trol group (P 5 .01), consistent with a suppressive effect of DPT on
HSPC engraftment (Figure 3M). Finally, secondary HCT reflected
further suppressed peripheral engraftment that was observed in the
primary transplant recipients (Figure 3N).

Adhesion and transmigration through the vascular endothelial wall
are the initial steps in HSPC homing to the marrow. To learn
whether hematopoietic-endothelial interactions were affected by the
presence of DPT, we measured in vitro hematopoietic cell adhesion
to human umbilical vein endothelial cells (HUVECs). We determined
that the addition of rDPT led to a 50% reduction in hematopoietic
cell adhesion to HUVECs (Figure 4A; P 5 .0003). We next per-
formed hematopoietic cell migration assays through Transwell per-
meable support membranes and found that exogenous DPT did not
affect migration of cells alone (Figure 4B; P 5 .38). Contrary to this,
exogenous DPT did negatively affect hematopoietic cell migration

across an endothelial monolayer of HUVECs by nearly 50% (Figure
4C; P 5 .02). We next tested an additional endothelial cell line,
human dermal microvascular cells (HDMECs), in adhesion assays.
We found that rDPT mediated a decrease in hematopoietic cell
adhesion, but it was significantly enhanced upon activation of the
endothelium with tumor necrosis factor-a (TNF-a; Figure 4D; P 5

.03). We subsequently developed a “cell release” assay to deter-
mine whether previously adhered hematopoietic cells could be liber-
ated from an HDMEC monolayer after exposure to rDPT. The
release assay (Figure 4E) showed that previously adhered hemato-
poietic cells were liberated from the endothelial monolayer into the
supernatant upon exposure to increasing doses of DPT; this effect
was more pronounced when lin2 cells were used compared with
lin1 cells (Figure 4D-E; P 5 .0003).

Finally, we used a microfluidic model of hematopoietic cell-
endothelial cell interactions in which the hematopoietic cells were in
a state of flow through an “artificial vessel,” which would better
mimic the microenvironment compared with traditional Transwell
experiments.38 We produced an HDMEC-endothelialized lumen on
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Figure 6. A DPT-KO mouse displays improved homing and long-term engraftment. (A) Homing of donor cells in DPT-KO mice was assessed 16 hours after trans-
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a microscaffold through which GFP1lin2 hematopoietic cells were
flowed, and direct live-cell imaging of the cells binding to the artifi-
cial vascular wall was performed (Figure 4G). We found that 72%
fewer cells adhered in the presence of rDPT (890 cells vs 250
cells, respectively; P 5 .004; Figure 4H). Taken together, these
data suggest that elevated levels of DPT may disrupt the
hematopoietic-endothelial interaction and help to explain the previ-
ously observed effects on homing.

Thus far, 2 receptors have been shown to be important for DPT and
were established using human epidermal keratinocytes: the integrin
a-3/b-1 and a heparan sulfate proteoglycan-type receptor.36 To
characterize additional potential integrin receptors for DPT in our
studies, we performed far western blots using endothelial cell
membrane–enriched lysate as a source of cellular receptors. We
found that DPT could specifically bind to integrin a-3 (ITGA-3) and
ITGA4 (aka VLA-4). We found weak binding to ITGB1 and little to
no binding to ITGA5 (Figure 5A-C). It is well described that HSPC-
endothelial interactions rely on integrin family members; the most
characterized pathway is the interaction between VLA-4 (on
HSPCs) and VCAM1 (on endothelial cells). This pathway has been
shown to be critically important for HSPC adhesion,5 and blockade
of VLA-4 results in a significant loss of marrow homing/lodging of
HSPCs.39,40 We next tested the effect of rDPT on hematopoietic
cell adherence to VCAM1-coated plates and noted that rDPT could
decrease adherence by 50% (Figure 5D-E; P 5 .002), which was
comparable to the decrease with coincubation of anti–VLA-4 anti-
body (a 36% reduction in adherence; P 5 .02). A short peptide
sequence, DP-4, (PHGQVVVAVRS) from DPT has been shown to
compete with the full-length protein in fibroblast adhesion assays.36

Testing DP-4’s effect on cell adherence to VCAM1-coated plates
showed that DP-4 could decrease adherence by 52% (Figure 5F-
G; P 5 .01) compared with a scrambled control peptide (DP-S).

Collectively, these data indicate that DPT potentially interacts with
VLA-4 and blocks cellular adhesion and transmigration. We created
a DPT-KO mouse to more precisely define the role of DPT in hema-
topoietic cell biology. Mice were viable and did not have obvious
deficits in lifespan or fertility or intrinsic hematopoietic defects.28

Homing experiments in DPT-KO mice revealed that bone marrow
mononuclear cells migrated 60% more efficiently to the marrow in
DPT-KO mice compared with WT mice, as assessed 16 hours after
adoptive transfer, and donor LSK cells migrated 50% more effi-
ciently (Figure 6A; P 5 .029 and P 5 .038, respectively). The
administration of rDPT to DPT-KO mice prior to adoptive transfer
experiments led to a 46% reduction in homing (Figure 6B;

P 5 .0006). CFU-spleen Day 8 were also increased significantly in
DPT-KO mice after adoptive transfer compared with WT mice
(Figure 6C; P , .0001). These data suggest that DPT is involved in
the reduction of hematopoietic cell trafficking, and its absence
allows for more accelerated homing to occur after adoptive transfer.

To understand whether DPT affected cell homing in the absence of
radiation, we performed adoptive transfer in DPT-KO animals with-
out preconditioning. We found a twofold increase in CD45 donor
cell homing to marrow and a 2.3-fold increase in homing of donor
LSK cells to the marrow in DPT-KO animals (P 5 .0027 and P 5
.0146, respectively; Figure 6D-F). These data suggest that donor
cells are more efficient at entering the marrow space, even in the
absence of radiation.

Therefore, we next performed experiments in sublethally condi-
tioned animals (Figure 6G). Primary HCT in sublethally irradiated
recipients demonstrated significantly enhanced multilineage
peripheral immune reconstitution in DPT-KO mice at 20 weeks
post-HCT (Figure 6H). Bone marrow from DPT-KO recipients
exhibited a mean donor engraftment of 48% compared with 23%
in WT animals (Figure 6I-K; P 5 .002). Donor LSK and LSK-
SLAM cells were found at higher numbers in DPT-KO mice 20
weeks after adoptive transfer (Figure 6J-K; P 5 .0023 and P 5
.0049, respectively). Some WT animals experienced graft failure,
which is known to occur with nonablative conditioning (although
this did not occur in DPT-KO mice). Analyses of the data exclud-
ing graft failure also showed a significant advantage to engraft-
ment in DPT-KO mice (supplemental Figure 7B).

We performed adoptive transfer of LSK cells in a sublethal irradia-
tion setting in which we expected lower engraftment but were inter-
ested in confirming our prior studies (Figure 6L). We found that
mean donor peripheral engraftment in DPT-KO mice was higher at
20 weeks post-HCT compared with in WT mice (1.1% vs 0.56%,
respectively; P 5 .052; Figure 6M). Mean donor LSK cells in the
marrow were increased 3.7-fold in DPT-KO mice compared with
WT mice (0.77% vs 0.21%, respectively; P 5 .03; Figure 6N).
Finally, mean donor peripheral engraftment after secondary HCT
was higher in DPT-KO mice vs WT mice (2.5% vs 1.0%, respec-
tively; P 5 .04; Figure 6O).

We next tested the effect of DPT’s absence in the setting of lethal
irradiation. Immune recovery after WBM cells were transplanted into
lethally irradiated DPT-KO animals indicated greater total white cell
counts and lymphocyte counts 2 weeks after transplant compared
with WT animals (P 5 .02 and P 5 .007, respectively;

Figure 6 (continued) transplant, spleens were harvested and fixed in Bouin’s solution (middle and right panels), and CFU were enumerated (left panel). Scale bar, 5 mm.

(D) Nonradiation transplant paradigm for (R-S). Enumeration of homed donor CD451 marrow cells (E) and LSK marrow cells (F) in 2 leg bones measured 16 hours after

transplant. (G) Sublethal transplant paradigm for (E-H). (H) Peripheral blood (PB) donor engraftment measured 20 weeks after transplant (n 5 9 or 10 animals per group).

(I) Donor bone marrow (BM) engraftment measured 20 weeks after transplant. (J) Donor LSK cells measured 20 weeks after transplant. (K) Donor LSK-SLAM HSPCs mea-

sured 20 weeks after transplant. The flow cytometry gating strategy for (G-H) is shown in supplemental Figure 7A. (L) Sublethal transplant paradigm for panels (N-P). LSK

HSPCs were isolated by fluorescence-activated cell sorting (FACS) prior to adoptive transfer into irradiated recipients. (M) Peripheral blood mononuclear cell (PBMC) donor

engraftment measured 20 weeks after transplant. (N) Percentage of donor marrow LSK cells in transplanted animals. Four leg bones were harvested for assessment 20

weeks after HCT. (O) Secondary HCT was performed with the primary HCT recipients as donors. Peripheral blood donor engraftment was measured 20 weeks after the

secondary transplant. (P) Lethal transplant paradigm for (J-L). LSK HSPCs were isolated by FACS prior to mixture with rescue cells and adoptive transfer into irradiated

recipients. (Q) Peripheral blood donor engraftment measured 20 weeks after transplant. (R) Percentage of donor marrow LSK cells in transplanted animals. Four leg bones

were harvested for assessment 20 weeks after HCT. (S) Percentage of donor LSK-SLAM HSPCs in transplanted animals. Four leg bones were harvested for assessment

20 weeks after HCT. All data are means and SD. The P values were derived using a Student's t test.
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supplemental Figure 8A-D). Peripheral engraftment was found to be
similar between DPT-KO and WT animals, as was primary engraft-
ment of donor marrow LSK cells at 6 months posttransplant at lev-
els . 90% (supplemental Figure 8E-F).

We evaluated the adoptive transfer of congenic LSK cells into
lethally irradiated DPT-KO recipients, with the addition of rescue
marrow to avoid lethality resulting from slow recovery (Figure 6P).
We determined that DPT-KO mice had higher average peripheral
donor chimerism at 20 weeks after transplant compared with WT
animals (26% vs 15%; P 5 .047; Figure 6Q). Mean donor chime-
rism in LSK cells was also higher in DPT-KO mice than in WT ani-
mals at 20 weeks post-HCT (24% vs 8%, respectively), although
the Student t test yielded P 5 .056 (Figure 6R). Mean donor chime-
rism in LSK-SLAM cells was increased more than twofold in DPT-
KO mice vs WT mice (4.5% vs 1.6%, respectively) after primary
HCT (Figure 6S; P 5 .04).

Discussion

DPT is produced and/or released after irradiation, suggesting
involvement in an inflammatory response. When elevated, we show
that DPT can attenuate cellular migration across an endothelial bar-
rier, as well as reduce cellular homing and engraftment after HCT.
Mice with a ubiquitous deletion of DPT show a measurable increase
in hematopoietic cell homing. Under sublethal irradiation conditions,
we found the greatest effect on long-term engraftment compared
with lethal irradiation in DPT-KO mice. This is likely due to the milieu
that lethal conditioning creates, resulting in remarkable tissue dam-
age. This leads to tremendous pressure on the donor cells to
engraft to allow the animal to survive long term (ie, an “all-or-noth-
ing” phenomenon in terms of engraftment). Host-derived factors that
modulate homing/engraftment can then only be revealed in the sub-
lethal setting.

Whether DPT is an inflammation driver or a responder is unknown.
Irradiation and chemotherapy are known to produce an inflammatory
milieu that affects all cellular compartments/tissues, and the
damage-response system becomes activated, not unlike that follow-
ing LPS exposure.41-43 This response contributes, in part, to the
establishment of chemokine gradients that are necessary for
HSPCs to successfully home to the marrow after HCT,44 as is the
case with SDF1, which increases in the marrow after radiation and
recruits HSPCs to the marrow via CXCR4 receptors.1,2,8 SDF1 is
also a well-established mediator of lymphocyte migration and adhe-
sion in several models of inflammation.45,46 Although preliminary, we
were able to demonstrate higher plasma levels of DPT in patients
after chemotherapy compared with plasma levels in patients preche-
motherapy, suggesting that DPT may behave in a similar manner in
the human host as in these studies (supplemental Figure 9).

One mechanism via which DPT may operate is through blockade of
VLA-4 and reduced hematopoietic cell adhesion to endothelial cells.
Hematopoietic loss of VLA-4 produces HSPCs that have a mark-
edly reduced capacity for marrow homing, increased presence in
the peripheral circulation, and loss of short-term engraftment after
transplant, which are similar to our experimental observations with
DPT.47 One unique difference is that VLA-4–deficient HSPCs retain
the ability to home to the spleen, whereas DPT-treated animals
show a reduction in CFU-spleen.47 This observation may indicate a
broader inhibition of homing processes by DPT beyond VLA-4.

We show that DPT binds VLA-4, a well-characterized receptor on
many cell types and not exclusive to HSPCs. Receptors for DPT on
other cell types (eg, stromal cells) are unknown but likely include
other integrins and cooperating factors, perhaps other ECM-related
proteins. Interestingly, it has been demonstrated that mesenchymal
stem cells (MSCs) from placenta and marrow express VLA-4, with
placental MSCs expressing greater amounts of VLA-448; however,
only placental MSCs bind VCAM1, suggesting that VLA-4 receptor
density is a factor in target interactions.48 This observation could
explain how the same protein acts differently depending on the
microenvironment. We hypothesize that DPT is sterically hindering
VLA-4 activity, although the exact binding site on VLA-4 is not
known. Our observations do not exclude other mechanisms, such
as the potential of DPT to decrease receptor expression via
increased turnover or induce a change in transcription.

Recently, it has been demonstrated that DPT can function in the ex
vivo murine stromal AFT024-mediated culture expansion of murine
hematopoietic stem cells (HSCs), in so far that AFT024 expressing
lower levels of DPT was shown to have less HSC growth-
promoting potential.29 It was hypothesized that DPT was acting to
help tether HSCs to the stromal layer and perhaps allow for
improved contact between HSCs and growth factors produced by
stroma-augmenting paracrine signals. We also observed previously
that DPT can directly bind HSPCs and modulate their adherence to
OP9 murine stroma cells.28 Conversely, in the context of HSPC
adherence to endothelial cells, we found the reverse effect: the
presence of DPT led to reduced adherence. Furthermore, when
exogenous DPT was added to endothelial cells with adhered
HSPCs, the cells detached. This suggests that DPT can have differ-
ent roles depending on the environment in which it is functioning
and what receptors it encounters (and at what expression level).
One can speculate that although circulating DPT attenuates HSPC-
endothelial adherence, intraniche levels of DPT may aid in HSPC
adherence to stromal cells after diapedesis through the endothelial
barrier has occurred, promoting lodgment and support to reestablish
hematopoietic homeostasis of the donor cells.

The ECM is fundamentally important as a modulator of HSPC pas-
sage into, and for maintenance within, the marrow; there are exam-
ples of ECM-related proteins having positive and negative effects
on HSPC activity. Fibronectin and collagen, making up a large com-
ponent of the ECM, have been shown to have positive effects on
adherent cell expansion in long-term human bone marrow cul-
tures.49 The ECM component Tenascin C (TN-C) has been shown
to be upregulated after myeloablation, and TN-C2/2 mice fail to
reconstitute after marrow ablation, although they did not display any
abnormalities in steady-state hematopoiesis.50 Furthermore, expan-
sion of HSPCs on TN-C as a substrate was integrin a9 dependent,
providing an important example of an HSPC integrin–ECM
interaction.

Conversely, galectin-1 (Gal-1), a secreted endothelial ECM-
associated protein structurally related to the lectin family, has been
shown to inhibit lymphocyte adhesion to endothelial cells under
flow.51 Furthermore, Gal-1–KO mice show increases in lymphocyte
homing to lymph nodes.51 Such observations suggest that Gal-1 is
a negative regulator of cellular binding and homing, which is similar
in function to what we observed with DPT. Overall, Gal-1 is believed
to have anti-inflammatory and immune modulatory properties for
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many cell types, including B cells, T cells, and MSCs,52 but it is
unknown whether DPT possesses such a role.

It is worth mentioning that DPT may play a role in the migration/
metastases of cancer cells. Is has been demonstrated that loss of
DPT expression was associated with hepatocellular carcinoma
(HCC) and leiomyoma.53,54 Specially, DPT was significantly down-
regulated in 202 HCC clinical samples, and its expression level was
closely correlated with cancer metastasis and patient prognosis.55

Overexpression of DPT dramatically suppressed HCC cell migration
in vitro and intrahepatic metastasis in vivo.55 Yamatoji et al further
showed that human oral squamous cell carcinoma–derived cells
also showed downregulation of DPT messenger RNA and protein
compared with normal oral keratinocytes.56 DPT overexpression led
to increased adhesion and decreased invasiveness in in vitro
assays. Oral squamous cell carcinoma cells from patients (n 5 97)
with regional lymph node metastasis expressed significantly lower
levels of DPT than did cells from patients without spread.56 DPT
interacts with ECM components, such as collagen species, and
may alter the metastatic microenvironment. We found a slight
decrease in circulating collagen I in DPT-KO mice compared with
WT (supplemental Figure 10; P 5 .10), but a robust analysis of
ECM components has yet to be done. Although specific mecha-
nisms are being investigated, these data suggest a broader role for
DPT in mitigating the migration of cancer cells.

In summary, we show that the small noncollagenous protein DPT is
upregulated after a radiation-induced inflammatory insult in zebrafish
and mice. Exposure to elevated levels of DPT reduced hematopoietic
cell homing, as well as short- and long-term engraftment. DPT-KO
mice displayed enhanced hematopoietic cell homing and engraft-
ment. DPT can interact with the VLA-4 receptor and blocks hemato-
poietic cell adherence to endothelial cells. Whether this serves as an
off-target “bystander” effect or some type of anti-inflammatory mech-
anism remains to be seen. We can only guess that DPT is some
type of “repair protein” that has unintended effects on hematopoietic
cells when highly expressed. The mammalian body was not designed
to experience myeloablative radiation; perhaps as a part of the dam-
age response system, DPT plays a role in tissue repair or clot-
ting57,58 but impedes homing as an unintended side effect.
Alternatively, DPT may force immune cells to stay intravascular for
longer periods of time to facilitate the repair of endothelial cells. We

note that our description of DPT’s activities show it to be a transient
regulator that is ultimately overcome during engraftment, as evi-
denced by the fact that mice/people do engraftment successfully
after conditioning (ie, DPT is only part of a larger regulatory pathway,
and given the ubiquitous expression of DPT, we speculate that it has
multiple roles that depend on its microenvironmental context.
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