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Although ibrutinib improves the overall survival of patients with chronic lymphocytic

leukemia (CLL), some patients still develop resistance, most commonly through point

mutations affecting cysteine residue 481 (C481) in Bruton’s tyrosine kinase (BTKC481S and

BTKC481R). To enhance our understanding of the biological impact of these mutations, we

established cell lines that overexpress wild-type or mutant BTK in in vitro and in vivo

models that mimic ibrutinib-sensitive and -resistant CLL. MEC-1 cell lines stably overex-

pressing wild-type or mutant BTK were generated. All cell lines coexpressed GFP, were

CD191 and CD231, and overexpressed BTK. Overexpression of wild-type or mutant BTK

resulted in increased signaling, as evidenced by the induction of p-BTK, p-PLCg2, and

p-extracellular signal–related kinase (ERK) levels, the latter further augmented upon IgM

stimulation. In all cell lines, cell cycle profiles and levels of BTK expression were similar,

but the RNA sequencing and reverse-phase protein array results revealed that the molecu-

lar transcript and protein profiles were distinct. To mimic aggressive CLL, we created

xenograft mouse models by transplanting the generated cell lines into Rag22/2gc
2/2 mice.

Spleens, livers, bone marrow, and peripheral blood were collected. All mice developed

CLL-like disease with systemic involvement (engraftment efficiency, 100%). We observed

splenomegaly, accumulation of leukemic cells in the spleen and liver, and macroscopically

evident necrosis. CD191 cells accumulated in the spleen, bone marrow, and peripheral

blood. The overall survival duration was slightly lower in mice expressing mutant BTK.

Our cell lines and murine models mimicking ibrutinib-resistant CLL will serve as powerful

tools to test reversible BTK inhibitors and novel, non–BTK-targeted therapeutics.

Introduction

The B-cell receptor (BCR) pathway is responsible for proliferation, maintenance, and survival of normal
and malignant B cells,1 including those in chronic lymphocytic leukemia (CLL). A pivotal enzyme in the
BCR axis is Bruton’s tyrosine kinase (BTK),2 which signals to phospholipase C-g2 (PLCg2) and multiple
signaling cascades, leading to changes in cell metabolism, transcription, and translation.3-5 The impor-
tance of the BCR pathway, the pathophysiology of CLL, and the prominence of BTK in the BCR signalo-
some suggest that BTK may be a good therapeutic target.
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Key Points

� We generated cell
lines that overexpress
wild-type or mutant
BTK (BTKC481S and
BTKC481R) and mimic
ibrutinib-sensitive and
-resistant CLL.

� We developed
xenograft mouse
models by
transplanting these
cells into Rag22/2

gc
2/2 mice to

characterize in vivo
disease.

3134 24 AUGUST 2021 • VOLUME 5, NUMBER 16

REGULAR ARTICLEREGULAR ARTICLE
D

ow
nloaded from

 http://ashpublications.net/bloodadvances/article-pdf/5/16/3134/1818507/advancesadv2020003821.pdf by guest on 27 M
ay 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/bloodadvances.2020003821&domain=pdf&date_stamp=2021-08-20


Ibrutinib binds covalently to the cysteine 481 (C481) residue of the
kinase and irreversibly inactivates BTK.6 Inactivation of BTK results
in inhibition of proliferation and dissociates B cells from microenvi-
ronmental signals in the lymph nodes, leading to their migration to
the peripheral blood.7

Preclinical studies using primary CLL cells and TCL-1 mouse mod-
els have suggested that ibrutinib is efficacious in several B-cell
malignancies.5,8,9 In the clinic, ibrutinib resulted in impressive overall
and progression-free survival with very low untoward toxicity. Thus,
the US Food and Drug Administration approved ibrutinib for the
treatment of patients with previously treated CLL10 and for elderly
patients with CLL,11 disease with poor prognosis (eg, those with
17p deletions),12 and treatment-naive patients.13

Although at the early stage, a small percentage of patients develop
CLL that is resistant to ibrutinib,14 the number steadily increases as
the length of follow-up increases. Some patients have Richter’s
transformation, whereas many show CLL progression. Several stud-
ies have identified mutations in 2 enzymes in the BCR pathway in
prerelapse and postrelapse disease during progression of CLL in
patients receiving ibrutinib therapy. These include BTK and its
immediate downstream kinase, PLCG2.15-18 Of these mutations,
the most common are point mutations in the C481 binding site in
BTK. Such mutations prevent irreversible drug binding on the C481
site, conferring ibrutinib resistance. For the BTK C481 residue, the
site of ibrutinib binding, cysteine-to-serine (C481S) and cysteine-to-
arginine (C481R) mutations are the most prevalent.14 These same
mutations are expected to occur with the use of second-generation
BTK inhibitors, such as acalabrutinib and zanubrutinib.19-21

These data underscore the need to better understand the biology of
BTK-mutated CLL and develop new agents that are effective
against BTK C481 mutations. However, it is challenging to under-
stand the biology of BTK C481 mutations, because there are cur-
rently no models for both in vitro and in vivo use that mimic C481-
mutation–related, ibrutinib-resistant CLL. Such a model has been
created for MYD88-mutated Waldenstr€om macroglobulinemia and
activated B-cell–type diffuse large B-cell lymphoma cells.22 In CLL,
a patient-derived xenograft model has been tested.23

In the current study, we developed ibrutinib-resistant CLL cell lines
harboring BTK C481S and C481R mutations, compared the biol-
ogy of these mutant cell lines to that of cell lines with wild-type
(WT) BTK, and developed and characterized mouse models with
WT and mutant BTK cell lines. Those models could be extended to
other B-cell diseases treated with ibrutinib, such as mantle cell lym-
phoma and Waldenstr€om macroglobulinemia.

Materials and methods

Cell lines and cell cultures

We selected the MEC-1 cell line for this study because it was
established using the peripheral blood of a patient with B-cell CLL
in prolymphocytoid transformation, and a reproducible xenograft
murine CLL model had been developed using this cell line.24,25 A
chromosome analysis of this cell line has been published.24 Details
of the generation of cell lines are provided in the supplemental
Methods. All cell lines were routinely screened for Mycoplasma spe-
cies using a MycoAlert Mycoplasma Detection Kit (Lonza). Parent

cell lines were authenticated by the Cytogenetics and Cell Authenti-
cation Core Facility at MD Anderson Cancer Center.

RNA-sequencing assay

Total RNA was isolated from cells by using an RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions. Samples
were sequenced by the Sequencing and Noncoding RNA Program
at MD Anderson Cancer Center. Details are provided in the supple-
mental Methods.

Reverse-phase protein array assay

Exponentially growing MEC-1 cells were seeded (1 3 107 per
group) and incubated for 24 hours. The cells were lysed with 13
lysis buffer, and the cellular proteins were denatured in 1% sodium
dodecyl sulfate containing b-mercaptoethanol. Lysates were serially
diluted and printed on nitrocellulose-coated plates (Grace Bio-Labs)
at the Functional Proteomics Reverse Phase Protein Array (RPPA)
Core Facility at MD Anderson. Details are provided in the supple-
mental Methods.

In vivo experiments

We used modified MEC-1 cells to establish a xenograft mouse
model.25 Mice were randomly assigned to 4 groups: no disease
(n 5 8), BTKWT (n 5 10), BTKC481S (n 5 10), and BTKC481R (n 5

10). Specifically, 1 3 107 MEC-1 cells (BTKWT, BTKC481S, and
BTKC481R) were injected IV into 8-week-old female Rag22/2gc

2/2

mice that were monitored daily for development of leukemia and
progression. Individual mice were euthanized when they became
moribund. At this point, the spleen, liver, left femur, and peripheral
blood samples were collected. Cells were isolated and stained with
a monoclonal antibody against human CD19-phycoerytherin (PE)
clone J3119 (Beckman Coulter), and flow cytometry analysis was
performed.

The Institutional Animal Care and Use Committee approved and
supervised all animal studies. The mice were cared for in accordance
with the guidelines set forth by the American Association for Accred-
itation of Laboratory Animal Care and the Guide for the Care and
Use of Laboratory Animals issued by the US Public Health Service.

Statistical analysis

Unless specified otherwise, all data are expressed as the mean 6

SD of results from at least 3 independent experiments. Two-sided
Student t tests were used to test the relationships between group
means. Survival analysis, Student t tests, and analyses of variance
were calculated with GraphPad Prism software. P-values indicate
the probability that the difference in the means was due to chance.
Other statistical analyses were performed in R software. P , .05
denoted statistically significant results.

Results

In vitro characterization of WT and

mutant-BTK–expressing cells

We transduced MEC-1 cells to generate cell lines that stably over-
expressed GFP, BTKWT, and the 2 BTK variants BTKC481S and
BTKC481R. Overexpression of WT or mutant BTK resulted in increased
signaling, as evidenced by levels of induced p-BTK, p-PLCg2, and
phospho-extracellular signal-regulated kinase (p-ERK; Figure 1A).
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Figure 1. In vitro characterization of MEC-1 cells overexpressing WT and mutant BTK. GFP-labeled MEC-1 cell lines stably overexpressing mutant BTK (BTKC481S

or BTKC481R) and BTKWT were generated by using standard lentiviral transduction methods. Cells were sorted to enrich the transduced GFP1 cell populations in each cell

line. For all experiments, a population of cells .75% GFP1 was used. (A) Phosphorylated (Y223) and total BTK proteins were overexpressed in transduced cells. p-PLCg2

(Tyr1217) and p-ERK (Thr202/Tyr204) levels were also increased in all BTK-overexpressing cells. Vinculin was the loading control. (B) IgM stimulation in transduced MEC-1

cells. Cells (5 3105 per milliliter) were seeded in flasks, with or without IgM (20 mg/mL) and incubated at 37�C for 15 minutes. Protein extracts were subjected to immuno-

blot assays to determine the levels of pBTK (Y223), BTK, pERK (Thr202/Tyr204), and ERK. Vinculin was the loading control. (C) Exponentially growing GFP1 cells were

seeded in flasks and incubated with ibrutinib (0.01, 0.1, and 1 mM) for 3 hours. Protein extracts were subjected to immunoblot assays to determine the levels of pBTK

(Y223), BTK, pERK (Thr202/Tyr204), and ERK. Vinculin was the loading control. (D) Validation of cell surface markers. Cells were stained with anti-CD19-PECy7 and anti-

CD23-PE monoclonal antibodies and analyzed with a flow cytometer. Flow cytometry dot plots showing GFP1 cells (left) and CD191CD231 cells (right) after gating on the

GFP1 cell population.
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Phospho- and total-BTK levels increased in cells that overex-
pressed BTKWT and BTKC481R, whereas p-ERK levels increased
in all BTK-overexpressing cells upon IgM stimulation (Figure 1B).
Ibrutinib treatment dramatically decreased the p-BTK and pERK
levels in BTKWT cells. In BTKC481S, pBTK levels did not change
at lower concentrations (0.01 and 0.1 mM); however, the levels
decreased at the highest concentration (1 mM). In addition, pERK
levels did not change in BTKC481S and slightly decreased (10%
to 15% inhibition) in BTKC481R upon incubation with ibrutinib for
3 hours (Figure 1C).

CLL is defined as the expansion of monoclonal, mature
CD51CD231 B cells in the peripheral blood, secondary lymphoid
tissues, and bone marrow,26 and CLL cells typically coexpress
CD19, CD5, and CD23. We determined that .90% of the cells in
each of our cell lines showed GFP, CD19, and CD23 positivity (Fig-
ure 1D). Because all transduced cell lines coexpressed GFP, we
were able to enrich the transfected population by using flow cytom-
etry to sort GFP1 cells. Representative images captured by fluores-
cence microscopy also confirmed that GFP was expressed in all of
the generated cell lines (Figure 1E).

The growth rates of the MEC-1 cell lines with WT and mutant
BTK were similar; however, cells harboring BTKC481R showed
slower proliferation rates, which was significantly different from
the empty vector (EV), BTKWT, and BTKC481S cell lines (Figure
1F). Furthermore, we did not observe any distinct distributions of
populations in cell cycle profiles, and the differences between
group means among the cell lines were not statistically signifi-
cant (Figure 1G). The percentages of cells in each cell cycle
phase are presented in supplemental Table 2. Overall, these
data demonstrate that all generated cell lines are CD191 and
CD231, coexpress GFP, overexpress BTK, and have active BCR
signaling and similar cell cycle profiles.

Transcriptomic profiling of WT and

mutant-BTK-expressing cells

To identify potential molecular subtypes and associated pathway
features in these cell lines, we performed RNA sequencing

(RNAseq)–based transcriptomic profiling. The differentially
expressed genes (DEGs) showed significant (greater than twofold)
changes in transcriptional expression (q , .05). Principal compo-
nent analysis showed a clear separation between BTKEV cells and
the cell lines overexpressing BTK (BTKWT, BTKC481S, and
BTKC481R; supplemental Figure 1). Overexpression of WT BTK led
to 166 upregulated and 69 downregulated DEGs in BTKWT cells,
compared with BTKEV cells (supplemental Figure 2A). The compari-
son of all BTK-overexpressing cell lines with BTKEV revealed 80
upregulated and 15 downregulated DEGs in common (supplemen-
tal Figure 2B-C). The overexpression of WT BTK (BTKWT vs BTKEV)
led to DEGs that were involved in various signaling pathways, such
as those for axonal guidance, G-protein–coupled receptor, ephrin
receptor, cyclic adenosine 59-monophosphate–mediated, paxillin,
and CXCR4 signaling (supplemental Figure 3A). Among the DEGs
identified, there were 19 transcription factors (AFF3, ETS1, FHL5,
FOXO3, GLIS3, HLX, ID1, KLF9, KLF11, LEF1, LMO4, NFATC1,
SIX4, TBX15, VDR, ZEB2, ZPF30, ZNF114, and ZNF532). The top
3 canonical pathways that were associated with these transcription
factors were the epithelial-mesenchymal–transition pathway (ETS1,
LEF1, and ZEB2), senescence pathway (ETS1, FOXO3, NFATC1),
and interleukin-7 (IL-7) signaling pathway (FOXO3, NFATC1). In
addition, there were 11 transmembrane receptors, 13 transporter
proteins, 9 G-protein–coupled receptors, and 7 cytokines altered in
BTKWT compared with BTKEV cells.

Next, we compared BTKWT cells with mutant-BTK–expressing
cells, as these 3 cell lines overexpress BTK. There were 22 upre-
gulated and 23 downregulated transcripts in BTKC481S cells
compared with BTKWT cells (Figure 2A-B). In contrast, the com-
parison of BTKWT and BTKC481R cells identified only 8 upregu-
lated and 7 downregulated transcripts, indicating the similarity of
these 2 cell lines at the transcriptomic level (Figure 2C-D). There
were 2 DEGs (FYB and PKIB) that were upregulated and 3
(COL5A3, ABCC12, and NBEA) that were downregulated in
both BTKC481S and BTKC481R cells compared with BTKWT cells.
A comparison of the 2 resistant variants (BTKC481S vs BTKC481R)
showed 46 upregulated and 20 downregulated DEGs
(Figure 2E-F). The top canonical pathways that were identified in
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Figure 1. (continued) (E) GFP expression in transduced cell lines. GFP-expressing cells were visualized by fluorescence microscopy, and representative fluorescent photo-

micrographs were captured and scanned. Original magnification 340. (F) The growth rates of MEC-1 cells transduced with an EV and MEC-1 cells overexpressing BTKWT,

BTKC481S, and BTKC481R. For each cell line, 1 3 105 cells per milliliter were seeded in flasks and counted every day for 10 days with a Coulter counter (n 5 3 per group).

(G) Cell cycle analyses of each cell line (n 5 3 per group). Exponentially growing cells were fixed in 70% ethanol, stained with propidium iodide, and analyzed with flow

cytometry. Data are from a representative experiment.

24 AUGUST 2021 • VOLUME 5, NUMBER 16 CELL AND MOUSE MODELS OF IBRUTINIB-RESISTANT CLL 3137

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/5/16/3134/1818507/advancesadv2020003821.pdf by guest on 27 M

ay 2024



these comparisons are provided in supplemental Figure 3. These
data demonstrate that all of the generated cell lines presented
distinct molecular profiles at the transcript level; however the
BTK overexpression rather than BTK mutations had a profound
effect on the MEC-1 cell biology.

Functional protein profiling for WT and

mutant-BTK–overexpressing MEC-1 cells

We first compared RPPA data (426 proteins) in all BTK-
overexpressing cell lines (BTKWT, BTKC481S, and BTKC481R) to data
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BTKC481R (F).
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from the BTKEV cell line. Fold changes of the linear expression val-
ues were used to generate the representative heat map in Figure
3A (cutoff fold changes, .1.2 or ,0.8). The canonical pathways
associated with each comparison are provided in supplemental
Figure 4.

Seven proteins (COL6A1, FOXO3, HES1, PAR, PDCD1, STAT3,
and RPS6_pS240/244) showed changes in all 3 cell lines (BTKWT,
BTKC481S, and BTKC481R) relative to the BTKEV cell line (Figure
3B). Among these targets, we were able to validate PDCD1 (PD-1)
and Gab2 (Figure 3C). In addition, our immunoblot results showed
that p-Pyk2 (Y402), Lyn, and glycogen synthase levels were higher
in all BTK-overexpressing cell lines than in parental MEC-1 cells and
BTKEV cells.

Next, we compared the BTK-overexpressing cell lines. The top 10
canonical pathways associated with these comparisons were identi-
fied with Ingenuity Pathway Analysis and analyzed using the log2
ratios (Figure 3D). The comparison of the BTKWT and BTKC481S

cells identified the top 3 canonical pathways as those for IL-15 pro-
duction (IGF1R, INSR, PTK2, and Syk), BCR signaling (Gab2,
PTK2, PTK2B, PTPRC, and Syk), and ERK/MAPK signaling
(DUSP4, EIF4EBP1, PAK1, PTK2, and PTK2B). The top 10 canoni-
cal pathways in BTKWT relative to BTKC481R cells include chemo-
kine signaling (MAPK14, PRKCA, PTK2, and PTK2B), BCR
signaling (Gab2, MAPK14, PTK2, and PTK2B) and ERK/MAPK sig-
naling (DUSP4, PRKCA, PTK2, and PTK2B). When we compared
the 2 cell lines expressing the variants BTKC481S and BTKC481R, the
top 3 canonical pathways were those for CD28 signaling in
T-helper cells (CSK, PAK1, PIK3CA, CD45, and Syk), PI3K/AKT
signaling (FOXO3, Gab2, GYS1, MCL1, and PIK3CA), and IL-3
signaling (Gab2, PAK1, PIK3CA, and PRKCA).

To integrate protein and messenger RNA (mRNA) data, we com-
pared those 2 parameters and identified 7 targets (SMAD1,
FOXO3, CCNE1, INSR, HES1, CD38, and PHGDH) that were
significantly correlated in all of the cell lines compared (supple-
mental Figure 5). Taken together, these data demonstrate that all of
the generated cell lines presented distinct molecular profiles at the
transcript and protein levels.

Establishment of and tumor development in

xenograft mouse models harboring BTKWT, as well

as BTKC481S and BTKC481R mutants

For the in vivo studies, we used transduced MEC-1 cell lines to
establish a xenograft mouse model engrafted into Rag22/2gc

2/2

mice. This model mimics aggressive CLL.25 After injection with one
of the transduced MEC-1 cell lines, mice were monitored daily for
development and progression of leukemia. We detected a loss of
body weight in all groups �2 weeks after cell inoculation. After a
month, all mice had developed CLL-like disease with systemic
involvement (engraftment efficiency, 100%). Individual mice were
euthanized when they became moribund and on the advice of our
Veterinary Medicine Core service. At this time, the body weight,
spleen, liver, peripheral blood and left femur of each mouse were
collected. There were no statistically significant differences in body
weight among the groups (Figure 4A). We observed splenomegaly,
an increased number of localizations in the spleens and livers
(macroscopic image shown later in Figure 7), and macroscopically
evident areas of necrosis. BTKC481R group had the lowest spleen/
body weight ratio, but there were no statistically significant

differences in liver weights (P , .05; Figure 4B-C). The duration of
overall survival was slightly shorter in mice that were injected with
MEC-1 cells harboring mutant BTK (log-rank test; P 5 .0001;
Figure 4D).

Localization of GFP
1
WT and

mutant-BTK–expressing cells in mice

Flow cytometric studies confirmed leukemic expansion of CD191

GFP1 cells in the spleen (Figure 5A), bone marrow (Figure 5B),
and peripheral blood (data not shown). Because we had observed
that GFP1 cells could lose GFP expression in vitro over time, we
assessed the levels of CD191 cells in the spleen and bone marrow
samples to identify the leukemic B-cell populations. We found
substantial accumulations of CD191 cells in the spleens of all of
the mice (Figure 5C); there were no significant differences among
the 3 subtypes. However, in the bone marrow analysis, the per-
centage of mutant BTK cells was greater than that of the BTKWT

cells; the greatest localization in all groups was of BTKC481S cells
(Figure 5D). Infiltration of MEC-1 cells was observed in the spleen,
liver, and bone (Figure 6) of all groups overexpressing BTK. Data
from the morphologic diagnosis of organs and a summary of the
mean scores for each evaluation are provided in supplemental
Table 3.

Histopathology of lymphoid and nonlymphoid

tissues in the xenograft system

Compared with the mice in the no-disease group, the remaining
3 groups showed similar spleen sizes at the end point of the study
(Figure 7). Fluorescence microscopy showed that there were exten-
sive accumulations of GFP1 MEC-1 cells in the spleens of the mice
from the 3 BTK-overexpressing groups, and a higher number of nod-
ules was also observed in those mice (supplemental Figure 6A-B).
The cells from the spleens of all groups showed homogenous
immunoreactivity for both human CD19 and human CD20, indi-
cating the presence of transplanted MEC-1 cells, given that
Rag22/2gc

2/2 mice lack B cells. In addition, all evaluated
spleens contained Ki671 cells, suggesting high MEC-1 cell pro-
liferation rates in all groups.

In contrast to the splenic tissues, the liver tissues in all groups
showed localized expression of CD191 and CD201 MEC-1 cells
(Figure 7). Likewise, these cells were equally proliferative, as indi-
cated by their degree of Ki67 positivity. Similar observations were
made in the bone marrow (Figure 7). To assess Ki67 positivity quan-
titatively, all of the liver slides were scanned with a digital scanner.
The livers from all groups, except the no-disease group, showed
�70% Ki67 positivity. There was no statistically significant differ-

ence among the groups overexpressing WT or mutant BTK (supple-
mental Figure 7). In addition, the splenic and liver tissues (n 5 3
per group) were stained with p-S6 antibody, and the staining inten-
sity was quantified. The intensity of p-S6 was slightly higher in the
splenic tissues from the groups with mutant BTK than in the BTKWT

group (supplemental Figure 8A), whereas it was similar in the liver
tissues from all groups (supplemental Figure 8B).

Discussion

Point mutations in BTK at C481 prevent drug binding, which leads
to ibrutinib-resistant clones. The absence of in vitro and in vivo mod-
els harboring these clones has left unanswered questions about the
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Figure 3. Functional protein profiling of WT and mutant-BTK–overexpressing MEC-1 cells. Protein was extracted in biological triplicates from exponentially growing

MEC-1 cells with either WT or mutant BTK and subjected to RPPA assays that included 426 antibodies. (A) Representative heat map of proteins with increased and

decreased expression in each cell line (n 5 3 per cell line). All BTK-overexpressing cell lines (BTKWT, BTKC481S, and BTKC481R) were compared with the BTKEV cell line.

The fold changes of mean linear values were used to generate the heat map (fold change, $1.2 or #0.8). The color key indicates the fold change. (B) The number of

increased (red) and decreased (blue) phosphorylated and total proteins in each transduced cell line compared with the cell line with the empty vector. (C) Validation of

RPPA data for some proteins by immunoblot analysis. Protein extracts were subjected to immunoblot assays. To cover all of these proteins, 5 separate immunoblots were

prepared, with actin used as the loading control for each. (D) The top 10 canonical pathways identified with Ingenuity Pathway Analysis and associated with the indicated

BTKs.
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biology of ibrutinib resistance and patients’ responses to new
agents that are effective against these resistant clones. Accordingly,
in this study, we established in vitro and in vivo CLL models that
harbor either overexpressed WT BTK or BTK point mutations
(C481S or C481R) that mimic those observed in patients with
ibrutinib-resistant CLL.

The impact of BTK mutation on leukemic cell proliferation was not
previously known. In our study, several indicators suggested that the
rate of proliferation did not differ in cells harboring either mutant or
WT BTK. The growth rate and doubling time of these cells were
similar in culture, although BTKC481R cells grew slightly more slowly.
The cell cycle profiles were comparable. The proliferative index,
determined by the level of the Ki671 cell count, further demon-
strated that, in the liver, the in vivo proliferation of all 4 BTK sub-
types was similar. Collectively, these data suggest that
overexpression of WT BTK or mutant BTKC481S/C481R does not
result in the increased proliferation of cells.

Mouse models are powerful tools for investigating the biology of
and therapeutic responses to novel agents. The most remarkable

characteristic of CLL murine models is the penetrance of the CLL
phenotype. Em-TCL1 was the first transgenic mouse model of CLL-
like disease,27,28 and it has the highest penetrance ( �100%) of all
murine CLL models29 and has been used to test numerous novel
therapeutic strategies.30 In a recent study, researchers generated a
double-transgenic mouse model (Em-TCL1xMyc) to study therapeu-
tic strategies in concurrent CLL and B-cell lymphoma.31 However,
the Em-TCL1 model typically requires 6 months for the appearance
of circulating tumor cells.29 In contrast, xenotransplantation of MEC-
1 cells provides a more immediate preclinical tool. Our mouse
model developed disease in 1 month with 100% engraftment effi-
ciency, which would allow for the efficacy of inhibitors to be deter-
mined in a 30-day period. Further, the use of engineered MEC-1
cell lines enabled us to have not only an in vivo model that mimics
ibrutinib-resistant CLL but also isogenic cell lines for in vitro use.

CLL cells in humans reside in the bone marrow, lymph nodes, and
peripheral blood,4 whereas in mice they are primarily in the spleen.
The spleen size and density changed dramatically in the diseased
compared with the disease-free animals; however, spleen size was
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Figure 4. Comparison of in vivo parameters and tumor development in WT and mutant-BTK–expressing MEC-1 cells. MEC-1 cells harboring WT or mutant

BTK were injected into 8-week-old Rag22/2gc
2/2 female mice (n 5 10 per group), and the animals were monitored for body weight and development and progression of

leukemia. At the end point of the study, the spleens, livers, and femurs were collected and macroscopically evaluated. (A) Body weight of mice (n 5 10 per group) in each

cohort. (B) Spleen/body weight ratios of mice in each cohort (n 5 8 BTKWT, n 5 9 BTKC481S, n 5 10 BTKC481R; �P , .05). (C) Liver/body weight ratios of mice in each

cohort (n 5 8 BTKWT, n 5 9 BTKC481S, n 5 10 BTKC481R). Groups were compared by fitting a linear mixed-effect model for analysis of variance. (D) Kaplan-Meier curves

depict the overall survival of mice in each group (n 5 10 per group; mutant vs WT, log-rank test; P 5 .0001).
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similar among the BTKWT, BTKC481R, and BTKC481S mice. The
spleen/body weight ratio in the BTKC481R mice was significantly
lower than that in the BTKWT mice; this result may be attributable to
the slightly lower proliferation rate of BTKC481R cells compared with

BTKWT cells. In the spleens, the number of CD191 cells per
100000 cells was similar in all groups, whereas in the bone mar-
row, there were significantly more CD191 cells in the mutant
groups than in the BTKWT group, and this factor may be
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contributory to the early demise of mice with mutant-BTK–harboring
MEC-1 cells. There are 2 possible reasons for increased CD191

cells: either the cells harboring mutant BTK proliferated more in the
bone marrow or these cells interacted better with the microenviron-
ment and remained in the bone marrow for a longer time. Our in vitro
data on the proliferation rates of the cell lines do not support the
first possibility. Thus, further studies are needed to explain the inter-
action between the BTK mutant cells and the microenvironment
in vivo.

A significant benefit of studying the resistant clones in vitro was the
ability to explore the molecular signatures associated with overex-
pression of this enzyme as well as the mutational status of the
kinase. First, our focus was on the targets that were altered by BTK
overexpression, regardless of BTK mutation status. It was clear from
the omics data that mere overexpression of the enzyme resulted in
profound changes in DEGs. Some of these changes could be
explored further with respect to development of resistance. For
instance, Gab2 increased in all BTK-overexpressing cell lines
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Figure 7. Immunohistochemical analyses of spleen, liver, and bone tissues after the establishment of disease from MEC-1 cells with WT or mutant BTK.

Representative macroscopic images of spleens from each group are provided in the top row. Spleen, liver, and bone tissues were collected at the time of euthanasia. B-cell

marker expression (CD19 and CD20) and proliferation marker expression (Ki-67) are shown for the spleen, liver, and bone marrow from mice with no disease and from

BTKWT, BTKC481S, and BTKC481R mice.
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(BTKWT, BTKC481S, and BTKC481R) compared with BTKEV, per both
our RNAseq and RPPA data, and the protein levels were validated
by our immunoblot results. Acquired ibrutinib resistance from expo-
sure to escalating doses of the drug resulted in increased BTK and
Gab2 expression in the Namalwa B-cell lymphoma cell line.32 Gab2
expression has also been reported to be significantly higher in the
bone marrow of patients with chronic myeloid leukemia than in con-
trols.33 In addition, Kim and colleagues34 recently identified Gab2
as a previously unrecognized target that altered DNA methylation in
Korean patients with CLL.

Next, we compared mutant-BTK–expressing cells to BTKWT cells.
This comparison revealed 5 common DEGs (NBEA, COL5A3,
ABCC12, FYB, and PKIB) that were altered in mutant compared
with BTKWT cells. We also identified targets that were previously
reported to be associated with CLL or other hematologic malig-
nancies. For instance, EphA3, GNAQ, and GATA3 mRNA levels
were higher in BTKC481S than in BTKWT cells. Previously, an
aberrant EphA3 copy number was found to be associated with
multiple types of hematologic malignancies,35,36 and mRNA lev-
els correlated positively with the copy numbers.36 Recently,
driver mutations in GNAQ and GATA3 have been identified in a
patient with CLL.37-39 We observed that GATA3 transcript and
protein levels were higher in BTKC481S than in BTKWT cells; how-
ever, the levels in patients with CLL remain unknown, and the
clinical outcomes associated with the expression levels of these
targets should be studied.

In the integrative analyses of RNAseq and RPPA results, only 7
genes had adjusted P , .05 (SMAD1, FOXO3, CCNE1, INSR,
HES1, CD38, and PHGDH). It is important to underscore that there
are only 426 proteins in this RPPA panel. SMAD1 expression was
lower in all BTK-overexpressing cell lines at both the transcript and
protein levels. It has been shown that the TGF-b-SMAD pathway is
inactivated in CLL40 and has a role in follicular lymphoma.41 In addi-
tion, SMAD1 expression is aberrantly downregulated in .85% of
patients with diffuse large B-cell lymphoma and provides a prolifera-
tive advantage to B cells in vitro and in vivo.42

Our transcriptomic and proteomic data delineated molecular dif-
ferences between WT and BTK-mutant MEC-1 cells. Importantly,
between the 2 variants (C481S and C481R), we identified differ-
ential expression of both proteins and transcripts. Collectively,
our data confirm the distinct molecular signatures of these sub-
clones that may lead to context-specific resistance and further
the development of personalized medicine and potential combi-
nation strategies.

A limitation of our study is the lack of validation of our findings in
patients harboring BTK subclones. The primary reason for this is
that there are insufficient numbers of purified CLL cells from
patients with these mutations. Therefore, further evaluation with
clinical data are needed for a comprehensive characterization.
Nonetheless, our current work is of value because it established
in vitro and in vivo ibrutinib-resistant prototypes harboring the
most prominent BTK C481 mutations or overexpression of WT
BTK. Because the engraftment, expansion, and dissemination of
these BTK cells in lymphoid and nonlymphoid tissues mimics
human CLL, our models may be valuable preclinical tools for
understanding the pathophysiology of the disease and testing a
new generation of reversible BTK inhibitors that do not
require C481 binding. These new-generation BTK inhibitors

include Loxo-305,43,44 vecabrutinib,45-47 and ARQ 531,48 which
bind to an allosteric site of the kinase and inhibit BTK and
its downstream signaling. These agents are in early clinical devel-
opment for patients with relapsed/refractory CLL and mantle cell
lymphoma and are primarily intended for those in whom therapy
with irreversible BTK inhibitors has failed. Currently, we are test-
ing a reversible BTK inhibitor in this model system. In addition,
our in vitro and in vivo models may provide a tool for evaluating
combination strategies that could be tested and validated in cell
lines and animals before clinical use. Finally, our modified MEC-1
cell line and xenograft mouse models could be a context-specific
model system applicable to other C481 or PLCg2.
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