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Activation of blood coagulation and endothelial inflammation are hallmarks of

respiratory infections with RNA viruses that contribute significantly to the morbidity and

mortality of patients with severe disease. We investigated how signaling by coagulation

proteases affects the quality and extent of the response to the TLR3-ligand poly(I:C) in

human endothelial cells. Genome-wide RNA profiling documented additive and synergistic

effects of thrombin and poly(I:C) on the expression level of many genes. The most signifi-

cantly active genes exhibiting synergistic induction by costimulation with thrombin and

poly(I:C) included the key mediators of 2 critical biological mechanisms known to promote

endothelial thromboinflammatory functions: the initiation of blood coagulation by tissue

factor and the control of leukocyte trafficking by the endothelial-leukocyte adhesion recep-

tors E-selectin (gene symbol, SELE) and VCAM1, and the cytokines and chemokines CXCL8,

IL-6, CXCL2, and CCL20. Mechanistic studies have indicated that synergistic costimulation

with thrombin and poly(I:C) requires proteolytic activation of protease-activated receptor

1 (PAR1) by thrombin and transactivation of PAR2 by the PAR1-tethered ligand. Accord-

ingly, a small-molecule PAR2 inhibitor suppressed poly(I:C)/thrombin–induced leukocyte-

endothelial adhesion, cytokine production, and endothelial tissue factor expression. In

summary, this study describes a positive feedback mechanism by which thrombin sustains

and amplifies the prothrombotic and proinflammatory function of endothelial cells

exposed to the viral RNA analogue, poly(I:C) via activation of PAR1/2.

Introduction

Activation of blood coagulation is invariably linked to the innate immune response to infection by viral and
bacterial pathogens, secondary to augmented expression of the initiator of the extrinsic pathway of blood
coagulation, tissue factor (TF; gene symbol, F3) on innate immune cells and vascular endothelial cells
(ECs).1-3 Aberrant coagulation activation and thrombosis have been recognized as a contributing factor in
the pathology of respiratory tract infections with influenza A viruses, Middle East respiratory syndrome, and
severe acute respiratory syndrome coronavirus (SARS-CoV1 and -2).4-6 The thrombotic coagulopathy
affecting the pulmonary circulation and secondary organs such as the liver and kidneys of patients with
COVID-19,7-14 together with early clinical observations indicating a potential benefit of anticoagulant
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Key Points

� Thrombin and the viral
RNA analogue
poly(I:C) cooperatively
amplify endothelial
prothrombotic and
proinflammatory
function.

� Inhibition of PAR2
reduces the
expression of tissue
factor and leukocyte
recruitment by
endothelial cells.
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interventions,15-17 suggest that dysregulated coagulation contributes
significantly to the morbidity and mortality of patients with severe
disease.

The extent of coagulopathy triggered by single-stranded RNA
viruses has led to suggestions that the acute thrombotic pathology
associated with respiratory tract infection may in part be caused by
excessive EC injury and inflammatory activation.18-21 This state of
endothelial activation comprises wide-ranging adaptations that sup-
port a localized immune response by facilitating leukocyte trafficking
across the blood-tissue barrier, controlling blood supply to sites of
infections, regulating blood pressure, and promoting the localized
activation of platelets and the blood coagulation mechanism. Dysre-
gulation of these responses caused by excessive, sustained elabora-
tion of proinflammatory mediators and cytokines, as it occurs in
systemic inflammatory response syndrome and severe sepsis, has
been linked to life-threatening failure to sustain adequate blood
pressure, microvascular thrombosis, and, in the most severe cases,
to disseminated intravascular coagulation and multiorgan failure.

The TF/FVIIa complex–initiated activation of the coagulation pro-
teases factor VII and X and the ensuing downstream generation of
thrombin not only trigger the procoagulant state associated with
infection, but in addition may modulate cellular functions via
G-protein–coupled protease-activated receptors (PARs) 1, 2, and 4
(reviewed in Posma et al22 and Samad and Ruf 23). Experimental
evidence indicates that thrombin signaling via PARs alters the func-
tion of human ECs in a manner similar to inflammatory cytokines,
including increased leukocyte trafficking, permeability, vasomotor
tone, angiogenesis, and TF expression.24-27

The role of direct endothelial infection by viral pathogens remains to
be fully explored. For example, ECs express the primary receptor for
SARS-Cov1/2 and angiotensin-converting enzyme 2, and elevated
endothelial angiotensin-converting enzyme 2 is associated with the
cardiovascular risk factors predictive of increased morbidity.28,29

SARS-CoV-2 RNA has been detected in the peripheral blood of
some patients with severe disease30 and the virus infects ECs in
vitro31 and in vivo.18,32 A significant role for ECs as the source of
procoagulant activity and cytokine production induced by viral infec-
tion is further suggested by the observation that the viral RNA ana-
logue polyinosinic:polycytidylic acid (poly[I:C]) induces both
cytokine production and TF-procoagulant activity via Toll-like recep-
tor 3 (TLR3) in human umbilical vein ECs (HUVECs). In contrast,
poly(I:C) induced the release of cytokines, but not TF expression in
human peripheral blood-derived monocytes.33

In the current work, we investigated how signaling by TF and acti-
vated coagulation proteases affects the EC response to the viral
RNA analogue and TLR3-ligand poly(I:C).

Materials and methods

Cell culture

EA.hy926 cells (CRL-2922; ATCC)were cultured in Dulbecco’smod-
ified Eagle’s medium with 20 mM HEPES, 4 mM glutamine, 1 mM
sodium pyruvate, 0.75 g/L sodium bicarbonate, 100 U/mL penicillin,
100 mg/mL streptomycin, and 10% fetal bovine serum. Pooled
HUVECs (cat. no. C2517A; Lonza, Walkersville, MD) were cultured
in endothelial basal medium (cat. no. CC-3162; Lonza), containing 1
mg/mL hydrocortisone, 10 ng/mL epidermal growth factor, 10 ng/mL

basic fibroblast growth factor, and 5% (v/v) fetal calf serum. THP-1
cells (TIB-202; ATCC) were cultured in RPMI 1640 (Life Technolo-
gies, Grand Island, NY) supplemented with 10% fetal bovine serum,
10 mM HEPES, 0.1 mM minimum essential medium nonessential
amino acids, 1 mM sodium pyruvate, and 100 nMpenicillin/streptomy-
cin (Life Technologies), in 5%CO2 at 37�C.

TF activity

Total and cell surface TF activity were measured by 1-stage clotting
assays and 2-stage fXa generation assays, respectively, as
described,33 with the anti-TF antibody HTF-134 (10 mg/mL). Clotting
times were converted into procoagulant activity from a standard
curve generated with human TF (Innovin; Dade Behring, Germany).
The PAR1 and PAR2 cleavage-blocking antibodies ATAP2 (10 mg/
mL), WEDE15 (10 mg/mL), SAM-11 (10 mg/mL), vorapaxar (1 mg/
mL), and GB83 (25 mM) were added 1 hour before poly(I:C) and/or
thrombin.

Quantitative reverse transcription–real-time PCR

Total RNA was extracted with TRIzol (Life Technologies, Carlsbad,
CA) and transcribed into cDNA using the QuantiTect Reverse tran-
scription kit (Qiagen), and transcript levels were quantified by Taq-
Man PCR assays with commercially available primer sets (Applied
Biosystems), by the DDCt method, with glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as a normalizing control.35

RNA sequencing

cDNA libraries were prepared from poly(A)-selected RNA (NEBNext
Poly[A] messenger RNA [mRNA] magnetic isolation kit) with the
NEBNext Ultra RNA Library Prep Kit (cat. no. E7530; NEB) and
sequenced with the Illumina NextSeq 500 system (75 cycles).
Sequence data were demultiplexed by using bcl2fastq v2.20.0.422
and aligned and quantitated with ARMOR pipeline v1.2.236 with
Ensemble Human genome GRCh38 release 93 as the reference.
Expression quantifications were imported into R v3.5.3 and summa-
rized at the gene level by using tximport v1.10.0. All samples were
normalized, and gene expression was compared between condi-
tions with Wald tests in DESeq2 v1.22.1. P-values were corrected
for multiple tests by the Benjamini-Hochberg method. Log-fold
changes were shrunk by using the normal method in DESeq2.
Genes with an adjusted P , .05 (P adj.) were considered to be sig-
nificantly differentially expressed. Differentially expressed genes
were annotated using the Gene Ontology database (https://biit.cs.
ut.ee/gprofiler) to examine the biological functions and pathways of
the genes.

Western blot analysis

ECs were lysed in RIPA buffer (Invitrogen, Rockford, IL), subjected
to electrophoresis on 10% sodium dodecyl sulfate-polyacrylamide
gels (Mini-PROTEAN TGX; Bio-Rad) under reducing conditions,
and transferred to 0.2-mm PVDF membranes on a Trans-blot
TURBO transfer system (Bio-Rad). Membranes were probed with
mouse anti-human TF (clone, VIC7; Sekisui Diagnostics, Darm-
stadt, Germany) and mouse anti-human b-tubulin (clone, BT7R;
Invitrogen) primary antibodies, followed by horseradish peroxidase
(HRP)-conjugated secondary antibodies, and imaged on an Amer-
sham Imager 680 (General Electric). Band density was quantified
with ImageJ software (National Institutes of Health, http://rsb.info.
nih.gov/ij/).
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Immunofluorescence microscopy

Cells were cultured on coverslips, fixed for 1 hour at 4�C in
phosphate-buffered saline (PBS)-4% paraformaldehyde, permeabi-
lized with 0.1% Triton X-100 in PBS for 5 minutes when indi-
cated, blocked with 2% bovine serum albumin-PBS for 1 hour,
incubated overnight at 4�C with mouse anti-human TF mAb
(clone VIC7; 1:1000) or isotype-control followed by FITC-

conjugated anti-mouse IgG for 60 minutes, mounted in 49,6-diami-
dino-2-phenylindole medium (ProLong Gold antifade reagent;
Invitrogen), and imaged on a Nikon Eclipse Ti2 inverted micro-
scope at 360 original magnification. Images of nonpermeabilized
cells were acquired on a FV1000-MPE Laser Scanning Confocal
and Multiphoton Microscope (Olympus) at 3100 original
magnification.
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Figure 1. Transcriptional profiling of HUVEC responses to poly(I:C) and thrombin. (A) The Venn diagram shows the number of treatment-regulated genes in

HUVECs in response to a 3-hour exposure to thrombin (5 nM), poly(I:C) (12.5 mg/mL), or both. Venn sections are labeled (A) to (G), with the number of upregulated (red

font) and downregulated (black font) differentially expressed genes (.1.5-fold change, Padj. # .05, measured with DESeq2 v1.22.1) indicated in each section. (B) Heat

maps show the log2-fold differences in the abundance of all transcripts in sections E and F, and the most highly regulated transcripts in Venn sections G and C.
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Generation of Thbd-deficient EA.hy926 cells

Guide RNA sequences targeting the 5'- and 3'-UTRs of the thrombo-
modulin (Thbd) gene (5'-UTR target: 5'-GCAGGCGCCGGG-
GAAAGCGC-3'; 3'-untranslated region (UTR) target: 5'-
TGAATTTGGATATCTCGCAG-3') were cloned into the Cas9 expres-
sion plasmid pX459.V2 (cat. no. 62988; Addgene), and the recombi-
nant plasmids were cotransfected into EA.hy926 cells by nucleofection
(Cell Line Optimization 4D-Nucleofector X Kit; Lonza). After expansion,
Thbd-deficient cells were enriched by fluorescence-activated cell sort-
ing with phycoerythrin (PE)-conjugated anti-Thbd antibodies (CD141/
BDCA-3-PE, cat. no. 130-090-514;Miltenyi Biotec), as a pooled popu-
lation or by sorting single Thbd2 cells into 96 wells, followed by expan-
sion and validation of Thbd negativity by flow cytometry and PCR
amplification/sequencing of the modified Thbd locus (“single-cell
clone”).

Flow cytometry

Single-cell suspensions prepared with cell dissociation buffer (Gibco)
were incubated with PE-conjugated mouse anti-human E-selectin,
APC-conjugated mouse anti-human VCAM1, or nonimmune isotype
controls (cat. no. 322605; CD62E-PE; cat. no. 305809; CD106-APC,
BioLegend; mouse IgG2a and IgG1; cat. no MA5-14453 and 6-4724-
82; eBioscience) and analyzed on aBDAccuri C6 flow cytometer.

EC-leukocyte adhesion assay

HUVECs cultured in 12-well dishes were treated for 6 hours with
poly(I:C) and/or thrombin and washed with PBS, and THP-1 cells
labeled with rhodamine B isothiocyanate-dextran (Signa Aldrich)
were added. After 1 hour, unbound cells were removed by 3 PBS
washes, and bound cells were counted under a fluorescence micro-
scope (Olympus BX-51). Vorapaxar (1 mg/mL) or GB83 (25 mM)
was added 1 hour before the THP-1 cells, and VCAM1 and
E-selectin–blocking antibodies (10 mg/mL) were added 30 minutes
before the THP-1 cells.

Statistical analysis

Statistical analysis was performed with Prism 8 software (GraphPad)
by 1-way analysis of variance (ANOVA) for multiple groups and the
Bonferroni multiple-comparisons test or Student t test for 2 groups.

Results

Genome-wide transcriptome effects of

costimulation with thrombin and poly(I:C)

Triplicate cultures of HUVECs were treated for 3 hours with
poly(I:C) and/or thrombin and subjected to transcriptional profiling.

Table 1 Transcripts upregulated or downregulated $2.5-fold by costimulation with poly(I:C) and thrombin, relative to poly(I:C) alone

Gene Poly(I:C) 1 thrombin vs control Poly(I:C) vs control Thrombin vs control Poly(I:C) 1 thrombin vs poly(I:C) Poly(I:C) 1 thrombin vs thrombin

SELE 13.12 3.85 4.14 3.41 3.17

VCAM1 9.72 2.79 3.09 3.48 3.15

CXCL8 6.66 1.88 3.4 3.54 1.96

F3 6.47 21.33 2.36 8.59 2.74

CXCL2 5.46 1.86 1.91 2.94 2.86

NR4A1 4.32 21.52 4.42 6.53 0.98

CXCL3 4.22 1.22 2.24 3.46 1.88

IL6 3.14 1.12 1.8 2.8 1.74

MUC16 3.03 21.2 21.28 3.64 3.88

C11orf96 3.01 21.18 1.62 3.54 1.86

CCL20 3.01 1.01 2.02 3 1.49

PTGS2 2.85 21.02 2.43 2.9 1.17

HLX 2.83 21.06 3.23 3 0.88

NR4A2 2.78 21.45 2.17 4.02 1.28

FST 2.68 21.16 2.92 3.1 0.92

PMCH 2.64 21.54 3 4.06 0.88

RCAN1 2.57 21.11 2.08 2.85 1.24

ADGB 2.46 21.22 21.08 3.01 2.66

BCL2A1 2.42 21.39 1.59 3.37 1.52

UBE3D 2.38 21.12 21.25 2.68 2.98

DKK2 2.31 21.56 2.06 3.61 1.12

CD1E 2.1 21.22 21.22 2.57 2.56

LBH 1.8 21.43 2.59 2.56 0.69

IL11 1.74 21.47 2.28 2.56 0.76

CYSLTR2 21.96 1.31 21.39 22.58 1.41

TRIL 22.94 21.14 21.96 22.58 1.50

All genes were differentially expressed with an P adj. # .05, measured with DESeq2 v1.22.1.
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Similar to that described earlier,33,37-39 poly(I:C)-induced transcrip-
tome changes (66 genes significantly upregulated and 14 downre-
gulated (up/down) .1.5-fold vs unstimulated cells; Padj , .05)
included increased transcript levels for receptors and chemokines
controlling leukocyte migration and adhesion, interferon-responsive
transcripts, and genes associated with inflammatory endothelial acti-
vation (Figure 1; supplemental File 1). In line with independent stud-
ies,40,41 thrombin likewise induced a proinflammatory gene
signature (143 up and 69 down .1.5-fold vs unstimulated cells;
Padj , .05) that partially overlapped with the response to poly(I:C)
(Figure 1; Venn section F). Genes within this overlapping subset
regulate critical aspects of leukocyte trafficking (such as VCAM1,
E-selectin [gene symbol: SELE], ICAM1, and CXCL1 and 8) and
endothelial function in conditions of inflammatory stress (such as
JUNB, NFKB2, RELB, CD69, and SOD2; Figure 1; supplemental
File 1). Approximately half of the gene responses in costimulated
cells were dominated by either thrombin or poly(I:C) (Figure 1; Venn
sections E and G). For example, the expression of core interferon-
responsive genes (such as APOL2; RIPK2; OASL; IFI44; IFIT family
members 1, 2, and 3; and IRF1) was strongly induced by poly(I:C),
but not by thrombin, and was sustained in costimulated cells at
approximately the same level as in cells treated with poly(I:C) alone.
Likewise, a large number of genes regulated by costimulation were
selectively sensitive to thrombin, with little or no contribution of
poly(I:C).

Notably, a large number of genes were significantly upregulated and
downregulated only in costimulated cells (Figure 1; Venn section C).
This pool included many genes with validated functions in ECs, such
as ACHE, CEBPD, GDF6, C2CD4B, ADORA2B, and NEDD4,42–47

or with candidate functions established in non-EC types, such as
CARD8, GBP2, REL, UGT8, and POU2AF1 (for a full list, see supple-
mental File 1). The results of an analysis of expression data for genes
in Venn section F with Ingenuity Pathway Analysis tools and gene
annotations of biological functions and pathways curated in the NCBI
GeneOntology databasewas consistent with a general transcriptional
activation and a predominant effect on inflammatory responses (sup-
plemental File 2; pathway analysis). The bias toward inflammatory
endothelial activation was more pronounced in upregulated genes,
whereas database-curated candidate endothelial functions associated
with downregulated genes included angiogenesis, vasculogenesis,
and vascular integrity.

Importantly, genes affected most by costimulation (fold up/down
change in costimulated cells vs poly[I:C] alone, ,2.5; Table 1)
included TF (F3), cyclooxygenase 2 (PTGS2, alias COX2),
E-selectin, VCAM1, interleukin-8 (CXCL-8), interleukin-6, chemokine
(C-X-C motif) ligands-2/3 (CXCL2/3), C-C motif chemokine ligand-
20 (CCL20), and the transcription factors NRA4A1 and 2 (alias
NURR77/TR3 and NURR1), which are known to regulate critical
endothelial functions in thrombus resolution,48 interactions with
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Figure 2. PAR1 and PAR2 activation augments poly(I:C)-induced expression of TF and CXCL8 mRNA. HUVECs and EA.hy926 cells were stimulated with

poly(I:C) (12.5 mg/mL) and PAR-specific agonist peptides (150 mM; PAR-1, SFLLRN-NH2 and TFLLRN-NH2; PAR-2, SLIGKV-NH2; PAR-3, TFRGAP-NH2; and PAR-4,
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dard deviation of the target gene/GAPDH ratio relative to the control. ����P , .0001 by ANOVA followed by a multiple-comparison test. ns, not significant.
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leukocytes,49 proliferation,50 microvascular barrier maintenance,51

and the inflammatory response to TNFa.52

Overall, these analyses documented that costimulation with throm-
bin quantitatively and qualitatively altered the mRNA profile of ECs
exposed to poly(I:C) and that biological mechanisms regulated most
significantly at the mRNA level by costimulation included the initia-
tion of blood coagulation and the control of leukocyte trafficking.

PAR1 or PAR2 activation amplifies poly(I:C)-induced

TF and CXCL8 mRNA

EA.hy926 cells and HUVECs were treated with a combination of
poly(I:C) and agonists for PAR1 (TFLLRN-NH2), PAR1/2 (SFLLRN-
NH2), PAR2 (SLIGKV-NH2), PAR3 (TFRGAP-NH2), or PAR4
(GYPGV-NH2). In both cell types, poly(I:C) increased TF and
CXCL8 mRNA abundance. Agonist peptides for PAR1 and PAR2,
but not for PAR3 or PAR4, elicited a 4- to 10-fold increase in TF

and CXCL8 mRNA in the absence of poly(I:C) and significantly aug-
mented the poly(I:C) response (Figure 2).

Thrombin amplifies poly(I:C)-induced TF and CXCL8

mRNA expression

HUVEC and EA.hy926 TF cell-surface activity was significantly
increased after poly(I:C) stimulation (Figure 3A). Factors VIIa and fXa,
the binary TF-fVIIa complex, and the ternary TF-fVIIa-Xa signaling com-
plex had no effect on TF or CXCL8 mRNA in poly(I:C)-treated or
unchallenged EA.hy926 cells (Figure 3B). In contrast, thrombin mark-
edly amplified the poly(I:C)-induced increase of TF cell-surface activity
over a dose range from 0.5 to 10 nM (Figure 3C).

EA.hy926 cells expressed higher TLR3, but lower Par1 mRNA lev-
els than HUVECs (Figure 3D). Treatment with thrombin and/or
poly(I:C) moderately reduced the expression of TLR3, Par1, and
Par2 in HUVECs, whereas EC TLR3 was increased approximately
twofold in EA.hy926 cells by poly(I:C) alone, but not by cotreatment

Figure 3. Role of thrombin and coagulation factors VII andX in the augmentation of poly(I:C)-induced responses EC. (A) HUVECs and EA.hy926 cells were

stimulated with poly(I:C) (12.5mg/mL) for 6 hours and the functionally active cell-surface TF was determined by FXa generation assays (n5 4-8). (B) EA.hy926 cells were stimu-

lated with poly(I:C) (12.5 mg/mL) and candidate physiological PAR2 agonists, such as fXa (100 nM), fVIIa (FVIIa-100 nM), fVIIa plus fX (fVIIa, 500 pM; fX, 150 nM; enabling ternary

TF-VIIa-Xa complex formation), or thrombin (5 nM) for 3 hours. Relative TF and CXCL8mRNA abundance was determined by RT-PCR (n5 5-12 per condition). (C) EA.hy926 cells

were pretreated with poly(I:C) (12.5mg/mL) and thrombin (0.5-10 nM) for 6 hours, and the functionally active cell-surface TF was determined by an fXa-generation assay (n5 4).

(D) Baseline abundance of TLR3, PAR1, and PAR2mRNA relative to GAPDHmRNA in EA.hy926 cells and HUVECs. Target gene/GAPDH ratios in EA.hy926 cells were arbitrarily

set to 1. (E) Changes in the abundance of PAR1, PAR2, and TLR3mRNA relative to GAPDHmRNA in response to thrombin and/or poly(I:C) (n5 6) in EA.hy926 andHUVECs stim-

ulated for 3 hours with poly(I:C) (12.5mg/mL) and/or thrombin (5 nM). Baseline levels were arbitrarily set to 1. (F) TF and CXCL8mRNA abundance in HUVECs and EA.hy926 cells

treated for 3 hours with poly(I:C) (12.5mg/mL) and/or thrombin (5 nM; n5 6/condition). All data represent the mean6 standard deviation of the indicated number of replicates and

were generated in at least 2 biological replicates. The statistical significance of the differences between 2 groups was analyzed by Student t test. A comparison of more than 2

groups was conducted by ANOVA followed by a multiple-comparison test. �P, .05; ��P, .01; ���P, .001; ����P, .0001. ns, nonsignificant.
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Figure 4. Thrombin augments poly(I:C)-induced TF and CXCL8 mRNA induction by activating PAR1/2 heterodimers. (A) Cell surface Thbd expression level in

pool-sorted and single-cell clone Thbd-deficient EA.hy926 cells by flow cytometry. Shaded, nonimmune isotype control; black, parent (Thbd-expressing) cells; and red, Thbd-

deficient cells. The numbers in the plots indicate the percentage of estimated maximum contamination, with cells expressing Thbd from 1 residual allele. (B) TM-deficient, pool-

sorted cells and single-cell clones were stimulated with poly(I:C) (12.5 mg/mL) and thrombin (5 nM) for 3 hours. TF and CXCL8 mRNA abundance relative to GAPDH was

measured by RT-PCR (n 5 3-6; in duplicate). (C) EA.hy926 cells were pretreated with PAR1 (WEDE15, 10 mg/mL; ATAP2 10 mg/mL) and/or PAR2 (SAM-11, 10 mg/mL)
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Figure 5. Thrombin-PAR1/2 signaling amplifies cell surface-associated TF procoagulant activity in poly(I:C)-treated cells. (A) EA.hy926 cells were stimulated with

poly(I:C) (12.5mg/mL) and PAR1-selective (SFLLR) or PAR2-selective agonist peptides (150 mM) for 4 hours, and TF and THBD antigen were detected by immunofluorescence in

permeabilized cells. Original magnification,340; bar represents 10mm; nuclear counterstain with 496-diamidino-2-phenylindole (n5 3). (B) EA.hy926 cells were stimulated with

poly(I:C) (12.5mg/ml) and PAR1 and PAR2 activation peptides for 6 hours in triplicate, and the protein levels of TF and b-tubulin were determined by western blot analysis with the

respective antibodies. Data shown in the bar graph represent the mean6 standard deviation of the ratio of TF to b-tubulin, determined by quantitative densitometry of western blots

(n5 3) . (C) Cell lysates were prepared from EA.hy926 cells stimulated with poly(I:C) (12.5mg/mL) and PAR1- and PAR2-activation peptides (150mM) for 6 hours. TF procoagu-

lant activity (PCA) was measured in the presence or absence of anti-TF antibody (HTF-1; 10 mg/mL) or IgG control (IgG2a; 10mg/mL) by a 1-stage clotting assay and converted

into picograms TF per milligrams protein from a standard curve generated with recombinant TF (Innovin; n5 3). (D) Cell-surface TF activity on intact cells was determined by an fXa

generation assay (n5 5-6). (E) EA.hy926 cells were stimulated for 6 hours with poly(I:C) and/or thrombin, and TF procoagulant activity was measured by a 1-stage clotting assay

and converted into PCA via a standard curve generated with recombinant TF (Innovin; n5 3). (F) Immunofluorescence detection of cell-surface TF and Thbd antigen on EA.hy926

cells stimulated for 4 hours with poly(I:C) and/or thrombin (original magnification,3100; bar represents 10mm; n5 3). (G) EA.hy926 cells were pretreated for 45 minutes with

inhibitors of PAR1 (vorapaxar, 1 mM) and/or PAR2 (GB83, 25mM) followed by stimulation with poly(I:C) and/or thrombin for 6 hours. Cell-surface TF activity was determined by fXa

generation (n5 8). (H) EA.hy926 cells were pretreated for 45 minutes with PAR-specific inhibitors (vorapaxar, 1 mM;GB83, 25mM) followed by stimulation with poly(I:C) and/or

thrombin for 6 hours. Abundance of TF and b-tubulin in whole-cell lysates were determined by western blot analysis (n5 3). (I) EA.hy926 cells were pretreated (45minutes) with

cleavage-blocking antibodies for PAR1 (WEDE15, 10mg/mL; ATAP2, 10mg/mL) and/or PAR2 (SAM-11, 10mg/mL), or isotype-matched nonimmune IgG controls followed by

Figure 4. (continued) cleavage-blocking antibodies, followed by treatment with poly(I:C) (12.5 mg/mL) and/or thrombin (5 nM) for 3 hours. TF and CXCL8 mRNA abun-

dance relative to GAPDH was measured by RT-PCR (n 5 3-12; in duplicate). (D) EA.hy926 cells were pretreated with PAR-specific inhibitors (PAR1, vorapaxar, 1 mM;

PAR2, GB83, 25 mM) followed by stimulation with poly(I:C) (12.5 mg/mL) and PAR1/2 agonist peptides. TF and CXCL8 mRNA abundance relative to GAPDH mRNA was

measured by RT-PCR (n 5 3-9; in duplicate). Data are expressed as the mean 6 standard deviation. The statistical significance of differences between groups was analyzed

by ANOVA followed by the multiple-comparison test. �P , .05; ��P , .01; ���P , .001; ����P , .0001. ns, nonsignificant.
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with both agonists (Figure 3E). Correspondingly, HUVECs and
EA.hy926 cells exhibited increased sensitivity to stimulation with
thrombin or poly(I:C), respectively (Figure 3F).

Thrombin amplifies the poly(I:C) response via Par1-

Par2 heterodimers

Thrombin activates Par1 via cleavage at Arg41, which may lead to
nonproteolytic transactivation of Par2.53 Alternatively, thrombin
bound to Thbd may directly cleave and activate Par2 at Arg36.54 To
address the latter mechanism, we generated Thbd-deficient
EA.hy926 cells via CRISPR/Cas9-mediated gene editing (Figure

4A). Thrombin augmented the abundance of TF- and CXCL8-
mRNA in poly(I:C)-treated, Thbd-deficient cells to an extent similar
to that in Thbd-expressing wild-type cells (Figure 4B), arguing
against a significant role of direct Par2 cleavage by the thrombin-
Thbd complex.

Antibodies ATAP2 and WEDE15, which block Arg41 cleavage and
thrombin binding to PAR1,55,56 prevented thrombin-mediated aug-
mentation of poly(I:C)-induced TF mRNA abundance. In contrast,
the PAR2 cleavage-blocking antibody SAM-11 had no effect (Figure
4C). The PAR2 antagonist GB83 abrogated the increase in TF- and
CXCL8 mRNA (Figure 4D), but did not inhibit the mobilization of
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Figure 6. Leukocyte-endothelial interactions. (A) HUVECs were treated with poly(I:C) (12.5 mg/mL) and thrombin (5 nM) for 3 hours, and the abundance of E-selectin

and VCAM-1 mRNA relative to GAPDH was measured by quantitative RT-PCR. (B) Representative scatterplots depicting cell surface expression of VCAM-1 and E-selection

determined by flow cytometry in HUVECs treated for 4 hours with poly(I:C) and/or thrombin. (C-D) Representative micrographs of static adhesion assay of rhodamine

B-labeled THP-1 cells to HUVECs treated with poly(I:C) and/or thrombin, vorapaxar, GB83, or anti-E-selectin– and anti-VCAM1 blocking antibodies (10 mg/mL) and respec-

tive nonimmune IgG controls (10 mg/mL). Original magnification, 320. Brightness adjusted to 75% with Powerpoint picture correction. Bars represent 200 mm. (D) The

mean 6 standard deviation of adherent THP-1 cells per visual field from 2 independent experiments (n $ 9 for control, thrombin, poly(I:C); n $ 6 for anti-VCAM-1/E-selec-

tin). �P , .05; ��P , .01; ���P , .001; ����P , .0001 by ANOVA, followed by multiple comparison test.
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intracellular Ca11 by thrombin or the PAR1-selective agonist pep-
tide TFLLRN-NH2, indicating that the inhibitory effect of GB83 is
unlikely to involve off-target effects on PAR1 (supplemental Figure
1). In contrast, the PAR1 antagonist vorapaxar had no effect on the
response to the PAR2 agonist peptide (Figure 4D), which suggests
that thrombin augmented TF and CXCL8 mRNA abundance in
poly(I:C)-stimulated cells by cleaving PAR1 at Arg41 and most likely
by nonproteolytic transactivation of PAR2 by the PAR1-tethered
ligand.

Thrombin amplifies poly(I:C)-induced endothelial TF

procoagulant function

Immunohistological detection with anti-TF antibodies in permeabi-
lized, poly(I:C)-treated EA.hy926 cells revealed robust augmentation
of TF antigen levels by Par1 and Par2 agonist peptides (Figure 5A)
that was corroborated by western blot analysis of whole-cell lysates
(Figure 5B), procoagulant activity in whole-cell extracts (Figure 5C),
and measurement of cell surface–associated TF activity (Figure 5D).
Akin to data obtained with agonist peptides, thrombin-induced TF

antigen correlated with functional TF activity in whole-cell lysates
(Figure 5E), with immunostaining of cell surface-associated TF in
nonpermeabilized cells (Figure 5F), and with cell
surface–associated TF activity, as measured by a 2-stage factor Xa
generation assay (Figure 5G). As for TF mRNA, augmentation of
whole-cell TF antigen (Figure 5H) and cell surface TF activity (Figure
5I) were sensitive to pharmacologic inhibition of both Par1 and
Par2. Likewise, antibodies blocking cleavage of Par1 (ATAP2/
WEDE15), but not Par2 (SAM-11), suppressed cell surface TF
activity by thrombin/poly(I:C) costimulation (Figure 5I). The amplifica-
tion of functional TF activity in costimulated cells therefore appeared
to be regulated predominantly at the level of TF gene transcription
and/or mRNA stability.

Endothelial-leukocyte adhesion in costimulated

cells requires PAR1 and PAR2

Replicating earlier findings,57,58 independent verification of the gene
expression data by quantitative RT-PCR confirmed that thrombin
and poly(I:C) each increased VCAM1 and E-selectin mRNA
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abundance and exerted a synergistic effect when given together
(Figure 6A). Poly(I:C) and thrombin individually induced VCAM1 sur-
face expression in 13% to 17% of cells (Figure 6B). Thrombin eli-
cited coexpression of VCAM1 and E-selectin in �5.7% of cells
after 4 hours of stimulation. Costimulation with poly(I:C) and throm-
bin elicited coexpression of VCAM1 and E-selectin on �20% of all
cells, reflecting a �13-fold increase compared with cells stimulated
with poly(I:C) alone (Figure 6B). Adhesion of THP-1 cells to HUVEC
monolayers was significantly increased by poly(I:C) (�8-fold) and
further enhanced by costimulation with thrombin (�15-fold) relative
to untreated cells (Figure 6C-D). Pharmacologic inhibition of PAR1
or PAR2 with vorapaxar and GB83, respectively, suppressed THP-
1 adhesion similar to the effect of VCAM1- or E-selectin–blocking
antibodies (Figure 6C-D).

Discussion

In the current work, we investigated how2 signals associatedwith viral
infections (ie, the viral RNA analogue poly[I:C]) and enhanced genera-
tion of signaling-competent blood coagulation proteases interact to
alter the function of vascular ECs. Interrogation of the HUVEC tran-
scriptome by RNA profiling showed that costimulation with thrombin
and poly(I:C) induced a state of inflammatory endothelial activation dis-
tinct from that elicited by either signal alone. This response reflected in
part the cooperative effects of the individual agonists (34 down, 112
up; Figure 1; Venn diagram, E-G), but also included a large number of
transcripts that were significantly regulated only in costimulated cells
(120 down; 127 up; Venn diagram C). Pathway analysis of gene
expression data indicated that the response of genes selectively upre-
gulated in costimulated cells predominantly reflected transcriptional
activation via NF-kB complexes, whereas the subset of transcripts
selectively downregulated by co stimulationmay have a stronger effect
on themaintenance of vascular integrity.

Although the inflammatory effect of thrombin signaling in ECs is well
documented,24,59-62 only a small fraction of transcripts (17 of 292;
Figure 1, Venn section F vs sum of sections A,B,D,E,F,G) was upre-
gulated individually by both thrombin or poly(I:C) under our experi-
mental conditions. Yet, genes within this group exhibited overall the
most robust, cooperative response to costimulation (Table 1) and
included endothelial adhesion receptors and cytokines central to the
regulation of leukocyte accumulation at sites of infection (E-selectin/
SELE, VCAM1, CXCL8, IL-6, CXCL2, and CCL20). Similarly,
whereas poly(I:C) alone, compared with thrombin, had only a mod-
est effect on TF mRNA, it conveyed a very marked synergistic effect
on TF mRNA abundance in costimulated cells. A key observation
from the analyses was therefore that the coincident activation of
TLR3 by poly(I:C) and of PAR1 and 2 by thrombin selectively eli-
cited a synergistic activation of the 2 critical biological mechanisms
promoting endothelial thromboinflammatory functions: the initiation
of blood coagulation and the control of leukocyte trafficking.

The correlations between mRNA abundance, protein antigen levels,
and surface expression, as well as functional activity for TF and the
adhesion receptors VCAM1 and E-selectin, indicate that the proin-
flammatory and procoagulant effects of poly(I:C)/thrombin costimula-
tion are regulated predominantly at the level of gene transcription
and/or mRNA stability. However, thrombin or poly(I:C) each
enhanced the abundance of VCAM1 and E-selectin mRNA, but only
VCAM1 antigen expression was induced on the cell surface by
either ligand alone. In contrast, costimulation with poly(I:C) and

thrombin led to significant coexpression of both receptors, which is
likely to be necessary for efficient leukocyte tethering.63

To gain a mechanistic understanding of the relative contributions of
direct thrombin signaling and secondary TF-dependent signaling,
we showed that the effect of thrombin could be replicated only by
synthetic tethered ligands derived from PAR1 and PAR2, but not
from PAR3 or PAR4. Of note, PAR2-selective agonists consistently
yielded a more robust response than PAR1- or PAR1/2-elective
agonists, indicating the dominant role of PAR2 activation. We inves-
tigated 3 established paradigms of PAR2 activation: (1) activation
of PAR1/2 by fXa, the TF-VIIa complex, or the Tf-VIIa-Xa com-
plex22,23; (2) direct activation of PAR2 by thrombin or the thrombin-
Thbd complex54,64; and (3) transactivation of PAR2 by thrombin-
cleaved PAR1.53 Although fXa has been reported to induce TF
activity in HUVECs,65 we ruled out a significant role of a
TF-dependent mechanism, direct signaling by factors Xa and VIIa
generated as a consequence of TF-mediated coagulation initiation,
and direct activation of PAR2 by thrombin-Thbd complexes. Instead,
our observations indicate that thrombin is the principal physiologic
protease triggering thromboinflammatory feedback amplification via
proteolytic cleavage of PAR1, and potentially, transactivation of
PAR2 by the PAR1-tethered ligand. Given that PAR2 inhibition
completely blocked the effects of a PAR1 agonist, we suspect that
the relevant thrombin target is indeed a physical PAR1/2 hetero-
dimer, in which PAR1 inhibition with vorapaxar is still compatible
with the agonist-induced transition of PAR2 into a signaling-
competent conformation. Independent earlier studies showed that
induction of decay-accelerating factor by thrombin likewise pro-
ceeds through activation of PAR1/2 heterodimers.66 Notably, in this
study PAR1 activation was coupled to PKC-a, whereas PAR2 sig-
naling required PKC-«. Our own experimental approaches were not
informative as to whether the cooperativity between PAR1 and
PAR2 reflects intracellular integration of distinct signaling cascades
initiated via each receptor or is caused by a specific signaling plat-
form composed of physical PAR1/2 heterodimers. A further limita-
tion in the interpretation of data from cross-inhibition experiments
with PAR1/2 agonists and GB83 is the known cross-reactivity of
the PAR1 agonist SFLLRN-NH2 with PAR2 and the albeit limited
potential for PAR1 inhibition by the PAR2-selective inhibitor
GB83.67 Our findings also suggest that selective, physiologically
relevant agonists of PAR2 may elicit, or propagate a similar modula-
tion of the poly(I:C) response, as shown herein for thrombin. For
example, in the presence of fVII and fX, the initial poly(I:C)-induced
increase in TF expression could lead to direct PAR2 activation by
the TF-fVIIa and/or TF-fVIIa-Xa complexes, or indirectly via transacti-
vation of promatriptase by the ternary TF-fVIIa-fXa complex and
ensuing PAR2 activation by matriptase.68

A seminal report on the importance of PAR1/2 heterodimers in
mouse models of endotoxemia and sterile inflammation described
the disease stage–dependent opposing effects of PAR1 activation
over the course of sepsis, with PAR1 activation being detrimental in
the early stages, but protective in the later stages.69 In that study,
results of in vitro experiments on human ECs suggested that the
switch from detrimental to protective PAR1 effects requires PAR2
and involves the lipopolysaccharide (LPS)-induced recruitment of
intracellular PAR2 into cell surface–associated PAR1/2 hetero-
dimers. The study did not ascertain that the in vivo protective effects
of PAR1/2 agonism were indeed dependent on endothelial PAR2
expression and used different inflammatory stimuli (LPS) and
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readouts of endothelial function (barrier integrity) than our current
work. Nevertheless, these observations raise new questions of to
what extent the apparent role of PAR1/2 heterodimers may depend
on the species investigated, the specific nature of the inflammatory/
infectious challenge (LPS-TLR4 vs poly[I:C]-TLR3), the effects on
non-EC types, and the specific biased or unbiased mechanisms of
action of PAR1/2 agonists.

The concept that inflammatory mediators alter the response capacity
of ECs to thrombin has been demonstrated earlier,70 Preincubation of
HUVECs with TNFa and LPS significantly inhibited, rather than ampli-
fied, thrombin-mediated induction of VCAM1, ICAM, TF, and
E-selectin. This result strongly suggests that the endothelial thrombin
response may vary substantially, depending on the specific mediator
mix present in the blood of patients with a given disease.71,72 In addi-
tion, different types of ECs likely exhibit distinct cytokine responses in
vitro,72 aswell as organ-specific LPS responses in vivo.73

In summary, our findings expand the existing evidence that inflamma-
tory cytokines and danger signals other than poly(I:C), as shown
here, synergize with thrombin and other PAR agonists, such as
matrix metalloprotease 1 and pepducins, to modify and amplify
thromboinflammatory functions of the endothelium.59,69,74-77 The
amplification of TF procoagulant activity by thrombin in poly(I:C)-
treated cells implies that thrombin, whether initially generated as a
consequence of TF expression on inflammatory immune cells, such
as macrophages, or on infected endothelium itself, may sustain and
amplify its own formation by further enhancing TF expression on
endothelium. In essence, this mechanism therefore constitutes a
feedback amplification of thromboinflammatory functions of virus-
exposed endothelium. Mechanistically, the current work showed that
this thrombin-mediated feedback requires PAR1/2 heterodimers
and may be inhibited by PAR2 antagonists, providing an incentive
for further development and evaluation of monobivalent or heterobi-
valent antagonists of PAR1-PAR2 heterodimers78 as a potential
therapeutic to reduce endothelial dysfunction.
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