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Crosstalk between coagulation and innate immunity contributes to the progression

of many diseases, including infection and cardiovascular disease. Venous

thromboembolism (VTE), including pulmonary embolism and deep vein thrombosis

(DVT), is among the most common causes of cardiovascular death. Here, we show that

inflammasome activation and subsequent pyroptosis play an important role in the

development of venous thrombosis. Using a flow restriction–induced mouse venous

thrombosis model in the inferior vena cava (IVC), we show that deficiency of caspase-1,

but not caspase-11, protected against flow restriction–induced thrombosis. Interleukin-1b

expression increased in the IVC following ligation, indicating that inflammasome is acti-

vated during injury. Deficiency of gasdermin D (GSDMD), an essential mediator of pyrop-

tosis, protected against restriction-induced venous thrombosis. After induction of venous

thrombosis, fibrin was deposited in the veins of wild-type mice, as detected using immu-

noblotting with a monoclonal antibody that specifically recognizes mouse fibrin, but not

in the caspase-1–deficient or GSDMD-deficient mice. Depletion of macrophages by gado-

linium chloride or deficiency of tissue factor also protected against venous thrombosis.

Our data reveal that tissue factor released from pyroptotic monocytes and macrophages

following inflammasome activation triggers thrombosis.

Introduction

Venous thromboembolism (VTE) is a leading cause of cardiovascular death,1 affecting 300000 to
600000 individuals (1 to 2 per 1000) each year in the United States.2-4 The initiation of venous throm-
bus formation is a multifactorial process that involves a complex cascade of events. Endothelial activation
and recruitment of immune cells, including monocytes and neutrophil, are observed in deep vein throm-
bosis (DVT).5 It appears that crosstalk between monocytes, neutrophils, and platelets is responsible for
the initiation and amplification of DVT.5 Both platelets and endothelium play an important role in venous
thrombosis.5 Besides directly participating in thrombosis, platelets contribute to DVT through several
other mechanisms, including supporting coagulation, forming platelet-leukocyte aggregates, therebysup-
porting leukocyte recruitment, promoting neutrophil extracellular traps formation, etc.6

Venous thrombi are rich in fibrin and red blood cells.7 Hypercoagulable state is thought to be one of the
major risk factors for the formation of venous thrombi.8 Accordingly, tissue factor (TF) derived from
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Key Points

� Inflammasome
activation plays a key
role in venous
thrombosis.

� Tissue factor released
from pyroptotic
macrophages contrib-
utes to venous
thrombosis.
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myeloid leukocytes is a central initiator of DVT.5 It is known that
blood flow restriction or stasis, and subsequent local hypoxia, is a
major factor driving DVT.9-12 Hypoxia can induce expression of the
inflammasome NLRP3 and caspase-1.13 Importantly, expression of
caspase-1 is elevated in patients with VTE,13 suggesting a potential
role of the inflammasome in DVT. We recently showed that TF
released from monocytes and macrophages following inflamma-
some activation triggers coagulation during sepsis.14 In this study,
we used caspase-1–deficient mice to demonstrate that inflamma-
some activation plays an important role in the development of DVT.
Development of DVT was also inhibited by deficiency of gasdermin
D (GSDMD) and TF, and monocyte depletion. Our findings identify
a novel mechanism of DVT, which is through TF released from
pyroptotic monocytes and macrophages following inflammasome
activation.

Methods

Mice

Wild-type (WT) C57BL/6J, Casp12/2, Casp112/2, Gsdmd2/2,
B6.Cg-Tg(UBC-cre/ERT2)1Ejb/J Cre transgenic mice, TF floxed
mice, and WT littermates were housed in the University of Kentucky
Animal Care Facility,14 following institutional and National Institutes
of Health guidelines after approval by the Institutional Animal Care
and Use Committee. Male mice at 8 to 12 weeks were used in all
experiments. Inducible TF-deficient mice were generated by breed-
ing the B6.Cg-Tg(UBC-cre/ERT2)1Ejb/J Cre transgenic mice with
TF floxed mice. CreERT2-recombinase expression for removal of TF
was induced by intraperitoneal injections of tamoxifen (Sigma) at
100 mg/kg per day for 5 consecutive days at 4 to 5 weeks of age,
and subsequent experiments were carried out at 5 weeks postin-
duction. WT littermates were also treated with tamoxifen.

Induction of flow restriction model in mice

The model of DVT was induced using a stenosis model in inferior
vena cava (IVC). In brief, mice were anesthetized and placed in a
supine position. The abdomen was opened along the midline, and
the intestines were exteriorized gently. Warmed saline was applied
to intestine regularly during the surgery to prevent drying out. The
IVC was gently separated from aorta and then was ligated under
the left renal vein with a 7-0 polypropylene suture over a spacer
(30-gauge needle [0.3 mm 3 25 mm]). After that, the spacer was
removed to create a 90% stenosis without endothelial disruption.
All visible side branches were ligated completely. Finally, the intes-
tines were returned to the peritoneal cavity; the peritoneum was
closed with 6-0 suture, and the skin was closed with staples. After
48 hours, thrombi were harvested for measurement.

Fibrin extraction for immunoblotting analysis

Thrombi were homogenized in 10 volumes (mg:mL) of the tissue
protein extraction reagent (T-PER; Thermo, Cat. no. 78510) contain-
ing protease cocktail inhibitor (Sigma, Cat. no. P8340) and phenyl-
methylsulfonyl fluoride. After centrifugation at 10000g for 10
minutes, the supernatant was collected for b-actin detection. The
pellet was homogenized in 3 M urea and vortexed for 2 hours at
37�C. After centrifugation at 14000g for 15 minutes, the pellet was
resuspended in sodium dodecyl sulfate (SDS) buffer and vortexed
at 65�C for 30 minutes for fibrin detection.

Western blot

For detection of fibrin and interleukin (IL)-1b by western blot, tissue
homogenates were analyzed using SDS–polyacrylamide gel elec-
trophoresis on 4% to �15% gradient gels, immunoblotted using
antifibrin (59D8) antibody15 at 1 mg/mL or anti–IL-1b polyclonal
antibody (1 mg/mL, GeneTex, GTX74034). For detection of TF
by western blot, brain tissue homogenates were analyzed using
SDS–polyacrylamide gel electrophoresis on 4% to 15% gradient
gels, immunoblotted using anti-TF antibody at 0.5 mg/mL (Abcam,
ab189483).

Monocyte and macrophage depletion

Gadolinium (III) chloride (GdCl3) (Sigma, Cat. no. G7532) was
used to deplete peripheral monocytes.16,17 GdCl3 (45 mg/kg) was
administrated retroorbitally 24 hours before IVC ligation.

Statistical analysis

Nonparametric data (weight and length of thrombus) were analyzed
using the Mann-Whitney U test (2-sided). Parametric results (mono-
cytes depletion and neutrophil counts) were analyzed using 2-tailed
Student t test. DVT incidence was analyzed by x2 analysis. P , .05
was considered statistically significant. All statistical analyses were
conducted on biological replicates in GraphPad Prism 7.

Results and discussion

Deficiency of caspase-1 protects against venous

thrombosis following IVC ligation

To investigate the role of inflammasome activation in venous throm-
bosis development, we compared formation of venous thrombosis
between WT and caspase-1–deficient mice18 utilizing an IVC steno-
sis model to induce DVT. Forty-eight hours after IVC ligation, 75.0%
of the WT mice developed venous thrombosis (Figure 1A). In con-
trast, only 35.3% of the caspase-1–deficient mice developed venous
thrombosis. The weight and length of thrombi were also reduced in
the caspase-1–deficient mice (Figure 1B-D). Although activation of
the canonical pathway of inflammasome leads to caspase-1 cleav-
age and activation, activation of the noncanonical pathway of inflam-
masome results in cleavage and activation of caspase-11.19-21 To
determine whether the noncanonical inflammasome pathway is
involved in venous thrombosis, we examined venous thrombosis in
caspase-11–deficient mice. Although the incidence of thrombosis in
the caspase-11–deficient mice is slightly lower than in WT mice
(50.0% for caspase-11–deficient mice vs 64.3% for WT), the differ-
ence did not reach statistical significance (Figure 1E). Accordingly,
the weight and length of thrombi were not affected by caspase-11
deficiency (Figure 1F-G). Thus, the noncanonical inflammasome
pathway does not play a major role in venous thrombosis. In agree-
ment with the contribution of caspase-1 to venous thrombosis, IL-1b
was detected in the thrombi of WT mice and caspase-11–deficient
mice, but not in the caspase-1–deficient mice (Figure 1H).

Inflammasome activation enhances venous

thrombus formation through pyroptosis

Inflammasome activation leads to release of inflammatory cytokines
IL-1b and -18, as well as a GSDMD-mediated programmed necrotic
cell death, pyroptosis.18,22,23 To determine whether pyroptosis con-
tributes to the development of DVT, we examined flow restriction–
induced venous thrombosis in the GSDMD-deficient mice.24
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Of GSDMD-deficient mice, 30.0% produced thrombi, whereas
66.7% of the WT littermates developed thrombi (Figure 2A). Both
thrombus weight and length in the IVC following flow restriction
were reduced in the GSDMD-deficient mice (Figure 2B-D).
These data demonstrate that pyroptosis is required for flow
restriction–induced venous thrombosis. Platelets play a key role
in arterial thrombosis. To determine whether inflammasome activa-
tion may also contribute to arterial thrombosis, we observed the
effect of inflammasome and pyroptosis on platelet aggregation
and FeCl3-induced carotid artery thrombosis. Our data indicate
that FeCl3-induced carotid artery thrombosis was not affected by
deficiency of caspase-1 or GSDMD (supplemental Figure 1A).
Accordingly, platelet aggregation in response to thrombin or col-
lagen was not affected by deficiency of caspase-1 or GSDMD
(supplemental Figure 1B-C).

Inflammasome activation increases TF release in

venous thrombosis

A venous thrombus is rich in fibrin. By using western blot with a
monoclonal antibody specifically recognizing mouse fibrin,15 we

detected fibrin formation in the venous thrombus milieu of WT and
caspase-1 or GSDMD-deficient mice following IVC ligation.25 Our
data indicate that normalized fibrin concentration was less in throm-
bus tissues from the caspase-1– or GSDMD-deficient mice than
thrombus tissues from WT mice (Figure 2E). In contrast, deficiency
of caspase-11 had no impact on fibrin concentration in the throm-
bus tissues (Figure 2F). Previous studies have shown that TF
derived from myeloid leukocytes plays an important role in the devel-
opment of DVT.5 We hypothesized that TF released from pyroptotic
monocytes and macrophages may trigger venous thrombosis.
Indeed, flow restriction–induced venous thrombosis was markedly
inhibited in inducible whole-body TF-deficient mice (supplemental
Figure 2). Flow restriction–induced venous thrombosis was also
diminished in mice in which monocytes and macrophages were pre-
depleted by administration of GdCl3 (supplemental Figure 3; Figure
2G-I). Depletion of monocytes and macrophages by GdCl3 did not
affect neutrophil counts in peripheral blood and the function of neu-
trophil to form neutrophil extracellular traps (supplemental Figure 4).
These data demonstrate that TF from monocytes and macrophages
plays a key role in venous thrombosis.
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Figure 1. Inflammasome activation triggers venous thrombosis following IVC ligation. (A-D) WT (n 5 16) and caspase-1–deficient mice (n 5 17) were subjected

to IVC stenosis. Thrombus prevalence (A), thrombus weight (B), and thrombus length (C) were measured at 48 hours after the surgery. Representative images of thrombi

are shown in panel D. Lines in dot plots represent medians. ?P , .05; ??P , .01. The x2 method was used in panel A and Mann-Whitney U test was used in panels B and

C. (E-G) WT mice (n 5 14) and caspase-11–deficient mice (n 5 14) were subjected to IVC stenosis. Thrombus prevalence (E), thrombus weight (F), and thrombus length

(G) were measured at 48 hours after the surgery. (H) Western blot analysis of clots from WT, caspase-1– and caspase-11–deficient mice. IL-1b in the lysates of clots was

measured by immunoblot with an anti–IL-1b polyclonal antibody. NS, not significant .
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Our results demonstrate that TF released from pyroptotic macro-
phages plays an important role in venous thrombosis and thus
uncovers the mechanisms linking inflammation and thrombosis. Con-
sidering the risks of the anticoagulant treatment of venous thrombo-
sis, strategies specifically targeting inflammasome activation and
pyroptosis may lead to the development of novel therapeutics
against venous thrombosis.
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Figure 2. Pyroptosis of monocytes and macrophages is responsible for DVT. (A-D) WT (n 5 21) and GSDMD-deficient mice (n 5 20) were subjected to IVC steno-

sis. Thrombus prevalence (A), thrombus weight (B), and thrombus length (C) were measured at 48 hours after the surgery. Representative images of thrombi are shown in

panel D. Lines represent the medians. ?P , .05; ??P , .01. The x2 method was used in panel A, and Mann-Whitney U test was used in panels B and C. (E) Western blot

analysis of clots from WT, caspase-1, and GSDMD-deficient mice. Fibrin in the same amount of tissue lysates was detected by immunoblot with an antifibrin monoclonal anti-

body (59D8). (F) Fibrin in the same amount of proteins of the tissue lysates from WT and caspase-11–deficient mice was detected by immunoblot with an antifibrin mono-

clonal antibody (59D8). (G-I) Effect of monocyte depletion on venous thrombosis. C57BL/6J mice administered with GdCl3 (n 5 13) or buffer (n 5 17) were subjected to

IVC stenosis. Thrombus prevalence (G), thrombus weight (H), and thrombus length (I) were measured at 48 hours after the surgery. Lines represent the medians. ?P , .05.

The x2 method was used in panel G, and Mann-Whitney U test was used in panels H and I. Ctrl, control.
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