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Key Points

•High mutational load
and variants in cancer
genes predicts
nonoptimal treatment
outcome and are new
independent prognos-
tic markers of CML.

•Dysregulation of DNA
repair and the JAK-STAT
signaling pathways
relates to progression.

Chronicmyeloid leukemia (CML) is amyeloproliferativeneoplasmaccounting for;15% of all

leukemia. Progress of the disease from an indolent chronic phase to the more aggressive

accelerated phase or blast phase (BP) occurs in a minority of cases and is associated with an

accumulation of somatic mutations. We performed genetic profiling of 85 samples and

transcriptome profiling of 12 samples from 59 CML patients. We identified recurrent

somatic mutations in ABL1 (37%), ASXL1 (26%), RUNX1 (16%), and BCOR (16%) in the BP and

observed that mutation signatures in the BP resembled those of acute myeloid leukemia

(AML). We found that mutation load differed between the indolent and aggressive phases

and that nonoptimal responders hadmore nonsilent mutations than did optimal responders

at the time of diagnosis, as well as in follow-up. Using RNA sequencing, we identified other

than BCR-ABL1 cancer-associated hybrid genes in 6 of the 7 BP samples. Uncovered

expression alterations were in turn associatedwithmechanisms and pathways that could be

targeted in CML management and by which somatic alterations may emerge in CML. Last,

we showed the value of genetic data in CMLmanagement in a personalizedmedicine setting.

Introduction

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder characterized by
a reciprocal translocation between the long arms of chromosomes 9 and 22 that generates a hybrid
gene between breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog 1
(ABL1).1 The disease occurs with an incidence rate of ;0.9 to 1.1 cases per 100 000 population
per year and is more common in adulthood.2,3 Its frontline treatment is tyrosine kinase inhibitor (TKI)
therapy. This treatment targets the BCR-ABL1 fusion protein and has enabled almost normal life
expectancy for CML patients.3-5 Regardless of the emergence of second- and third-generation TKIs with
more rapid and deeper response, up to 2% to 3% of patients are unresponsive to TKI treatment and
progress to the accelerated phase (AP) and/or blastic phase (BP), with a dismal survival of 7 to 11
months.6,7

Studies have linked unfavorable outcomes in CML with increased genetic instability.8-10 Genetic
examinations of AP and/or BP samples have identified recurrent point mutations within the ABL1 kinase
domain and in RUNX1,11-13 IKZF1,11,14 TP53,15 and ASXL1.15,16 More recently, specific mutations,
especially in epigenetic modifiers, in chronic phase (CP) samples have been linked with an unfavorable
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TKI response.17-20 Mutations in cancer-associated genes at the
time of initial diagnosis and their acquisition during treatment are
also related to an unfavorable outocome.19 Nevertheless, knowl-
edge about the prognostic value of genomic data in CMLmanagement
is still in its infancy.

In this study, we used a combination of whole-exome sequencing
(WES) and targeted deep sequencing to characterize CML
mutations at diagnosis and in the follow-up/progression phases
and explored activation of cellular pathways in CML by using RNA
sequencing. We identified recurrent somatic mutations in ABL1,
ASXL1, RUNX1, and BCOR, especially in BP, and discovered
similarities in mutation signatures of AP/BP and acute myeloid
leukemia (AML) samples. We found that patients with unfavorable
treatment outcomes exhibited more nonsilent mutations of potential
relevance to CML at the time of diagnosis and acquired such
mutations during the treatment. Using RNA sequencing, we
identified new hybrid genes. Expression alterations were identified
in known cancer pathways and in DNA repair machinery components,
illustrating the value of RNA sequencing in finding treatment targets
and pathomechanisms. Here, we highlight the value of integrated
precision medicine strategy and describe the use of patient-specific
molecular data in CML management.

Materials and methods

Patients

A total of 59 patients and 5 unrelated age-matched controls were
included in the genomic screening experiment. A total of 12 patients
and 4 unrelated controls were included in the RNA-sequencing
experiment. All patients were recruited from Helsinki University
Hospital (HUH), Helsinki, Finland, and the National Cancer Institute,
Cairo University, Giza, Egypt. CML diagnosis and progression were
defined according to World Health Organization criteria for myeloid
neoplasms.21 All control samples were collected by HUH. All
subjects had given written informed consent in accordance with the
Declaration of Helsinki.

Primary cell isolation

Bone marrow mononuclear cells and peripheral blood mononuclear
cells (PMNCs) were isolated by Ficoll-Hypaque density gradient
centrifugation. CD341 cells and CD31 cells were purified with
human CD341 and CD31 cell isolation kits (Miltenyi Biotec, Bergisch
Gladbach, Germany). The purity of isolated cells was evaluated by
flow cytometry with CD34-fluorescien isothiocyanate and CD3-
allophycocyanin staining (BD Biosciences, San Jose, CA). The final
pools contained .90% purified cells.

WES and targeted sequencing

Genomic DNA was extracted from AP/BP samples with a high blast
count (median ;45%), control samples without CD341 enrich-
ment, and from CP samples with a low blast count (median ;3%)
after CD341 enrichment. Exome capture was performed with the
SureSelect XT Clinical Research Exome kit (Agilent, Santa Clara,
CA). Targeted sequencing capture was performed with the
SeqCap EZ Comprehensive Cancer Design (Roche NimbleGen,
Madison, WI), comprising 578 cancer-associated genes. Sequenc-
ing libraries were prepared and subjected to 2 3 100-bp paired-
end sequencing on HiSeq instruments (Illumina, San Diego, CA),

according to the manufacturer’s instructions. WES data from 11
AML cases have been described earlier.22

RNA sequencing

Total RNA was extracted from 2 AP/BP, all 5 CP, and all 4 control
samples after CD341 enrichment and, in the case of 5 AP/BP
samples, without CD341 enrichment. RNA-sequencing libraries
were produced by using a ribo-depletion–based approach and
sequenced on Illumina instruments with paired-end 2 3 100-bp
reads, and possible confounding factors were adjusted in statistical
testing, as described in the supplemental Methods.

Drug-sensitivity and -resistance testing

The oncology compound library consisted of 125 approved
anticancer drugs and 127 investigational and preclinical com-
pounds (supplemental Data set 12). The experiment was performed
as previously described22 and as indicated in the supplemental
Methods.

Analysis of genomic and transcriptomic data

Details of bioinformatics analysis are available in the supplemental
Methods.

Validation of hybrid genes

Hybrid genes were validated with single-step RT-PCR, fluores-
cence in situ hybridization (FISH), and/or karyotyping, as described
in the supplemental Methods.

Statistical analysis

Two-tailed Student t test, Mann-Whitney U test, Fisher’s exact test,
x2 test, Spearman correlation test, Pearson correlation test, and
Fisher’s exact test with simulated P value on 1e107 replicates
were computed using GraphPad Prism 7 software or R 3.5.0. The
statistical significance of the difference in microbial counts per
million (CPM) mapped reads was examined using the 2-tailed
Student t test with unequal variance in Microsoft Excel.

Results

Patient characteristics

Samples from a total of 59 CML patients with a median age of
50 years (range, 24-78) were included in the genomic profiling
(Table 1; supplemental Data set 1). These were from 16 patients
with samples from AP/BP, 40 patients with samples from CP, and 3
patients with samples from both. The CP patients had median Sokal
and Hasford scores of 0.89 (0.51-3.45) and 891 (100-2384),
respectively. Twenty CP patients achieved major molecular re-
mission (MMR) by 12 months (classified as optimal responders) and
13 after 12 months (classified as suboptimal responders); 7
patients failed to achieve MMR at any time and/or progressed to
AP/BP (classified as poor responders). The median time to MMR
was 12 (range, 3-70) months. Five unrelated age-matched subjects
served as controls. In addition to genomic screens, samples from 7
AP/BP cases, 5 CP cases, and 4 unrelated healthy controls were
analyzed by RNA sequencing. Nine of the CP cases underwent
genomic screening, as well. For the remaining 3 CML cases, no
patient demographic information was available.
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Somatic mutations in CML samples

We analyzed 125 samples from 59 CML patients and 4 unrelated
healthy individuals (supplemental Figure 1) by using WES (mean,
893; supplemental Figures 2 and 3) or targeted sequencing (mean,
1873; supplemental Figures 2 and 3). These included 40
diagnostic CP samples taken at the time of the initial presentation,
with a low median blast count (;3%), 19 diagnostic AP/BP
samples with a high median blast count (;45%) from 16 patients
with only AP/BP samples and from 3 patients with CP and AP/
BP samples. CP samples were enriched for malignant cells to
make them more comparable with AP/BP samples and to detect
variants in clones of low abundance. In addition, 1 or more follow-
up samples from 28 cases (median, 6 months; range, 3-30),
sorted T-cell or remission PMNC samples from 24 cases, and
PMNC samples from 5 controls were analyzed. Matched skin
samples were available for all WES samples and served as
controls.

We identified 501 somatic mutations in 456 genes among the
genomic samples (supplemental Data set 2). These included
418 single-nucleotide variants (SNVs; Figure 1B) and 83 frame-
shifting (Figure 1C) variants. The mean SNV burden was 0.16 and
0.43 per million base pairs (mbp) among WES and targeted
sequencing samples, respectively. The SNV burden was higher in
AP/BP samples (0.22 6 0.13 for WES and 0.95 6 0.72 for
targeted) than in CP samples (0.126 0.05 and 0.246 0.47; Figure
2A-B). Similarly, CP cases that did not achieve optimal response
(0.14 6 0.07 and 0.63 6 0.79) had a higher SNV burden when
compared with cases achieving MMR (0.10 6 0.03 and 0.19 6
0.43; supplemental Figure 4A-B). Notably, the SNV burden did not
correlate with other clinical criteria (Figure 2C-F; supplemental
Figure 5). By conducting a mutation signature analysis of variants
pooled over subgroups, we observed a marked amount of DNA
mismatch and double-strand repair signature type variants in CML
samples (Figure 2G; supplemental Figure 6). The age-related
signature 1 and double-strand repair signature 3 accounted for
most of the variants in AP/BP. In general, mutation signatures of AP/
BP were more similar to those found in AML (r 5 0.90) than in CP
(r 5 0.24; Figure 2H; supplemental Data set 3). Within the CP
subsets, patients responding poorly had proportionally more
variants assigned to signatures 1, 7, and 9 than did the optimal or
suboptimal responders, who showed dominance of mismatch repair
signatures 6 and 15.

Viral pathogen screening

Reactivation of viruses is a known complication of TKI treatment,
and viral infections have been associated with TKI use.23-25

Therefore, we performed mapping of sequence reads to viral
genomes. This analysis revealed an average viral load of 0.36
CPM across our samples. Elevated amounts of viral reads
(CPM $ 1.5) were seen in 2 AP/BP samples from 1 individual
(Figure 1D; supplemental Figures 7 and 8). However, no
significant difference (P . .50) was seen in viral loads between
follow-up and diagnostic CP samples (supplemental Data set 4).
Statistically significant differences were also not found between
tumor control and follow-up samples (P. .20) or between tumor
control and diagnostic samples (P . .40). Thus, in the present
study, we did not find genomic evidence of enrichment of viral
genome material in the samples of CML patients treated with TKI
therapy.

Relevant variants in diagnostic samples

We identified 57 potentially relevant variants across the 59
diagnostic samples through the selection of nonsilent variants (ie,
nonsynonymous SNVs and frameshifting insertions and deletions)
that were linked with cancer or occurred in genes mutated in 2 or
more patients (Figure 3; all 279 nonsilent variants are listed in
supplemental Data set 5). The majority occurred in AP/BP samples
(frequency, 37). At least 1 variant was identified in 85% of AP/BP
samples (Figure 4), and they had a mean of 1.9 potentially relevant
nonsilent variants. Among the most recurrently mutated genes in
AP/BP samples (n 5 19) were ABL1 (n 5 7), ASXL1 (n 5 5),
RUNX1 (n5 3), and BCOR (n5 3). Two patients had mutations in
the JAK3 (p.R870Q and p.A966T) gene and 2 in the BRD3
(p.P24fs) gene. We also detected variants in DNA repair
components, such as MSH6 (p.E226fs) and PAPD7 (p.K528fs).
Regarding CP, a lower number of mutations was found (frequency,
20). CP cases carried a mean of 0.47 variants, and only 35% of
cases had potentially relevant nonsilent mutations. In optimal respond-
ers (20%) mutations were rare, whereas in suboptimal (31%) and poor
(71%) responders they were more common (Figure 4). The few genes
recurrently mutated in CP cases (n 5 40) were ASXL1 (n 5 6),
PRKDC (n 5 2), and KIAA1549 (n 5 2). We also detected more
mutations in epigenetic modifier genes in poor (n 5 3 of 7) and
suboptimal (n 5 3 of 13) responders than in optimal CP responders
(n 5 3 of 20; supplemental Figure 9), albeit without statistical
significance (P. .20). Interestingly, thesemutations were also enriched
in AP/BP samples (n5 10 of 19; P# .05). In addition, mutations were
seen in the protein tyrosine phosphatase receptor (PTPR) genes
PTPRD and PTPRJ. Additional mutations were also discovered in
isolated cases in PTPRF and PTPRS (supplemental Data set 5).

Relevant variants in longitudinal samples

Weanalyzed longitudinal samples taken at a median of 6 months off the
diagnosis from 5 patients with poor (median interval of 6 months), 11
with suboptimal (median interval of 6 months), and 12 with optimal
(median interval of 4.5 months) responses. This analysis gained insights
into the clonal dynamics and identified the loss of 5, acquisition of 15,
and presence of 10 truncal nonsilent variants of potential relevance to
CML between follow-up and diagnostic samples (Figure 5; supple-
mental Figure 10). Corresponding numbers for all nonsilent mutations
were 57, 130, and 20, respectively (supplemental Data set 6). The
presence of truncal variants (ie, shared by all clones) or acquisition of
new potentially relevant variants was nominal among poor responders,
as exemplified by truncal mutations in RUNX1 (p.R162K) andMECOM
(p.A200G) and acquisition of mutations in KDM6A (p.R1163P) and
RERE (p.S1434F). In contrast, truncal or new potentially relevant
mutations were identified only in 4 suboptimal and 3 optimal responders
(Figure 5; supplemental Figure 10). Further evaluation of variant allele
frequency data revealed the presence of preleukemic mutations
(variants with a stable frequency at diagnosis and follow-up and
coupled withBCR1-ABL1 decline) and clonal evolution in Philadelphia-
negative clone (variants acquired despite BCR-ABL1 clearance). Such
variants resided mainly in epigenetic modifier genes (TET2 and
DNMT3A) and were associated with mixed responses.

Transcriptional analysis of CML samples

Seven AP/BP, 5 CP, and 4 healthy control subjects had RNA
sequencing performed and were assessed for hybrid transcripts
and gene deregulation events (Figure 6). These analyses defined
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P210 BCR-ABL1 hybrid in 7 AP/BP and in 3 CP samples. In
addition, we found 8 other hybrids in AP/BP samples, but none in
CP samples. These included 3 known leukemia-associated hybrid
genes, CBFB-MYH11, RUNX1-DYRK1A, and TMEM236-MRC1
(detected in 2 cases), and 5 putative hybrid genes. All known hybrid
genes were validated in relevant samples by at least 1 method
(Figure 6A; supplemental Data set 7).

An expression analysis between the AP/BP or CP group and
the control group revealed 1237 differentially expressed genes

(Figure 6B; supplemental Data set 8). Genes called as differentially
expressed (Q # .05) in both disease phases included known CML
markers, such as DPP4 (CD26) and RXFP1, as well as other
cancer-related genes, such as CD69, ST18, IL2RA, MLLT4, and
MUC4. Genes implicated in important cancer signaling (JAK/STAT
and TNF-signaling pathways), immune checkpoints, and inflamma-
tion pathways were also found to be altered. Moreover, analyses
revealed expression changes that were disease-phase specific
(Figure 6B-C; supplemental Figure 11). Deregulation of MRC1,
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IL21R, and HGF genes was identified only in AP/BP vs control
samples and deregulation ofGLI2,GAS2, IRF8, and PIEZO2 in CP
vs control samples. Activation of the KRAS pathway was specific for

AP/BP and activation of the CXCR4 pathway for CP. Pathway
enrichment analysis also revealed expression alterations between
CP and AB/BP in the IL-2/STAT5 and IL-6/JAK/STAT3 pathways
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Diagnostic samples from patients #22, #33, #41, #42 and follow-up sample from patient #42 were excluded from the analysis.
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(Figure 6C; supplemental Data set 9). Pairwise comparison
between CML phases, however, uncovered only a handful of genes
between CP and AB/BP (n 5 21). The few genes that reached
statistical significance in all comparisons included IL2RA (CD25)
and chimerin-1 (CHN1; supplemental Data set 8).

A precision medicine approach to CML management

An integrative personalized approach was applied to a 35-year-old
man with lymphoid CML failing to respond to TKI treatment (Patient
#4; Figure 7A). The patient achieved partial remission (blast count,
5%), but eventually relapsed (blast count, 85%). WES and RNA-
sequencing analysis of initial samples revealed somatic mutations
in ABL1 (p.T315I) and RUNX1 (p.R177Q; Figure 7B) and
deregulation of several RUNX1 targeting pathways, such as
coagulation, complement, and hematopoietic stem cell pathways
(supplemental Figure 12A; supplemental Data sets 10 and 11).
Using drug-sensitivity profiling, ponatinib was found to be the
effective BCR-ABL1 TKI. Other effective drugs included glucocor-
ticoids and mTOR, VEGFR, and MEK inhibitors (supplemental
Figure 12B-C; supplemental Data set 12). Building on these results,
the VEGFR-selective TKI inhibitor axitinib was administered26 at
first, and it induced clearance of blast cells. The treatment was
changed to ponatinib followed by another course of axitinib. At
relapse, drug-sensitivity profiling was repeated. WES revealed
disappearance of the original clone and emergence of a clone with
a mutation in EZH2 (p.A687V). We also observed upregulation
of genes implicated in IL-8- and CXCR1-mediated signaling and
in fatty acid metabolism. In agreement, drug-sensitivity profiling
showed increased sensitivity to PF-3845, a fatty acid amide
hydrolase inhibitor (supplemental Figure 12B-C). Because of the

lack of effective drugs for the found clone, the patient was treated
with allogeneic hematopoietic stem cell transplantation (allo-
HSCT).

The same approach was also applied in a 49-year old male patient
who presented with myeloid BP CML (Patient #5; Figure 7C). WES
of the initial sample revealed variants in IL1R1 (p.G420V) and
DOT1L (p.R347H). The patient achieved a partial response to
dasatinib treatment, but eventually relapsed after 4 months. At
relapse, WES revealed acquisition of somatic mutations in ABL1
(p.T315I), MSH6 (p.E226fs), and SETD1B (p.K1717X) genes
(Figure 7D). RNA sequencing revealed acquisition of a hybrid gene
CBFB-MYH11 confirmed by FISH and inv(16) in karyotyping. In
addition, eosinophilic markers, including EPX and PRG2 genes and
genes from CBFB-MYH11-related pathways, were upregulated.
Drug-sensitivity testing revealed that ponatinib was the only active
BCR-ABL1 TKI at relapse, in addition to the VEGFR and mTOR
inhibitors (supplemental Figure 13). Axitinib was administered for 3
months, together with short CVAD cycles and bosutinib to inhibit
the wild-type BCR-ABL1. Treatment induced rapid clearance of
blasts, and the patient proceeded to allo-HSCT.

Discussion

In the present study, we characterized genetic factors underlying
CML. We compared samples from indolent CP and aggressive
AP/BP stages and from patients with various responses to TKI. Our
results showed that AP/BP samples shared genetic characteristics
similar to those of AML samples and that cancer-relevant nonsilent
variants at diagnosis were associated with treatment outcome. We
also found that AP/BP and CP patients with poor response had
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more truncal and newly acquired variants of relevance to CML than
the other patients. Using RNA sequencing, we identified hybrid
genes and detected expression perturbations in cancer markers
and pathways.

Somatic mutations at diagnosis are associated with treatment
outcome in CML.17-19,27 In our study, we found 65% of CP and
95% of AB/BP cases to harbor at least 1 somatic mutation. The
fraction of CP patients carrying a mutation was higher than that
reported previously in studies using a panel of 92 genes19 (37%) or
WES13 (50%). Regarding nonsilent variants, 35% of CP cases and
85% of AP/BP cases had at least 1 mutation of relevance to CML.
Interestingly, the amount of these variants was associated with the
outcome, and they were enriched in patients with a poor response
in comparison with cases with optimal or suboptimal outcome. SNV
burden information also supported the link between the number of
variants and treatment outcome. Compared with solid tumors and
lymphomas,28,29 the SNV burden in our cohort rate was low. However,
AP/BP samples had significantly higher SNV burden than did CP
samples. Within the CP subset, patients with a poor response showed
a tendency toward higher SNV burden than the others. Notably, SNV
burden was independent of other prognostic parameters.

Mutational signature profiles were constructed by pooling SNVs
across sample sets. These analyses revealed the presence of
variants from cancer aging-related signature (signature 1) as well as
DNA double-strand break repair (signature 3), and mismatch repair
(signatures 6 and 15) signatures in diagnostic AP/BP and CP
samples in an agreement with the known role of BCR-ABL1 to
induce DNA damage and inhibiting DNA repair.30,31 In general,
mutation signatures in AP/BP and AML were similar. This may be
related to variants in DNA repair and spliceosomes genes,
commonly mutated in AML32-34 and in our AP/BP and CP patients
with poor or suboptimal response. Within the CP subset, signatures

7 and 9 were enriched in poor and suboptimal responders. Of
these, signature 9 has been related to acute lymphoblastic leukemia
(ALL)35 and AP/BP patients with RUNX1 mutations.36 It is also
related to mutations caused by polymerase h. The UV-related
signature 7 has been described in pediatric B-ALL.37 CP patients
with optimal response showed dominance of mismatch-repair
signatures.

Our analyses identified several genes recurrently mutated in CML.
In addition to ABL1 mutations, recurrently mutated genes in AP/BP
included RUNX1, ASXL1, and BCOR in corroboration with
previous results.11-13,38 A novel gene recurrently mutated in AP/BP
was BRD3, which belongs to bromodomain and extraterminal
family with a role in AML.39 Interestingly, the particular variant
(p.P24fs) is supported by several observations in a cancer
knowledge base (Catalog of Somatic Mutations in Cancer
#COSM21288).40 Other cancer drivers with mutations, although
in solitary cases, in AP/BP cases were RERE41 and SETD2.42 As
in previous reports,13,19 mutations in leukemia driver genes were
scarce in CP. Those patients that carried such mutations typically
responded unfavorably. For example, a patient with RUNX1
p.R177K at diagnosis progressed into BP at 7 months.43 We also
detected variants in epigenetic modifiers. Notably, ASXL1 variants
were found in 5 AP/BP and 6 CP cases. The high-mutation
frequency of ASXL1 has been described previously.17,18,44-46

Mutations in other epigenetic modifiers were also found and
associated with unfavorable outcome, as recently reported.19,47,48

AP/BP and CP cases with unfavorable response also harbored
mutations in PTPR genes, which are tumor suppressors49 and
negative regulators of JAK/STAT signaling.50 They have been
reported to be downregulated in CML patients.51 We speculate
that loss of PTPR could result in activation of JAK/STAT signaling
and be associated with TKI resistance.
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We also explored mutational dynamics of CP under TKI treatment.
In general, our findings supported association between clone dy-
namics and TKI response.19 They showed that CP patients with
unfavorable outcome had more truncal variants and/or acquired more
variants during the treatment than optimal responders. Our analysis
also indicated that variants were seldom lost during follow-up.

A hybrid gene analysis highlighted that hybrids other than BCR-
ABL1 were frequent in AP/BP, but not in CP. This was in support with
a finding suggesting a role for hybrid genes in CML progression.13

Among the hybrid genes that we identified were known leukemia-
associated hybrids such as CBFB-MYH11, which is associated
with the AML subtype M4Eo, and indicates aggressive outcome in
AP/BP,52 and RUNX1-DYRK1A, which has been linked with ALL
pathogenesis.53 Other potentially oncogenic hybrids included
DSCC1-TAF2 identified in breast cancer and RSL24D1-RAB27A
detected in lung adenocarcinoma.54 The TMEM236-MRC1 hybrid
was found in 2 cases, being the only recurrent hybrid other than
BCR-ABL1. Interestingly, both of its partners (TMEM236 and MRC1;
Q# .05) were among the top altered genes in the expression analysis.
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Transcriptional changes taking place at CML were identified by
means of differential gene expression analysis, accounting for
confounding factors. These analyses revealed deregulation of
genes reported to be altered in previous CML investigations, such
as RXFP1,43 PIEZO2,55 and CD26,56 and in leukemia studies,
such as CD69,57 ST18,58 and MUC4.59 Expression analysis also
suggested that DNA damage could be related to the down-
regulation of DNA-repair machinery genes and that dysregulation
events in genes, including DNMT1,60 SEPP1,61 NEIL1,62 and
WT1,63,64 may have contributed to the high occurrence of DNA
damage-associated variants in our cohort. In addition, several
immune checkpoint genes were found to be deregulated, suggest-
ing an explanation for how CML cells evade immune-cell clearance.
Our data also highlighted progression-associated events, such as
expression alterations in HGF43 and CD2656 between AP/BP and
CP. The pathway-enrichment analysis between AP/BP and CP in
turn highlighted the IL-2-induced JAK-STAT signaling pathway
along with the KRAS- and IL-6-induced JAK-STAT signaling
pathways, providing support for the role of IL-2-induced JAK-STAT
signaling in CML progression56 and indicating that the JAK-STAT
signaling pathways could be targets of CML treatment. However, it
must be emphasized that the small sample size and variations in
the cell fractions studied (supplemental Figure 12) were limitations
and that a larger study is needed to clarify the findings.

An integrative approach of WES, RNA sequencing, and ex vivo
drug-sensitivity profiling was applied to 2 independent BP cases at
diagnosis and relapse. In the first case, this approach identified
RUNX1 (p.R177Q) and ABL1 (p.T315I) mutations and pinpointed
ponatinib and drugs previously related to RUNX1 mutations and

RUNX1-RUNX1T1 hybrids in AML, including glucocorticoid,65,66

mTOR,65 and VEGFR67 inhibitors. Evidence of translational
capability was provided by the success of axitinib in inducing partial
remission. At relapse, replacement of the original clone with an
EZH2 mutation clone resulted in downregulation of EZH2/PRC2
complex target genes68,69 and loss of activity of the administered
drugs. The patient was successfully treated at relapse with allo-
HSCT. In the second case, the integrative approach was applied
to a relapsed patient with ABL1 (p.T315), MSH6 (p.E226fs), and
SETD1B (p.K1717X) mutations. The patient underwent drug-
sensitivity and -resistance testing–based axitinib treatment and
successfully translated into remission.

In conclusion, our study provides insights into CML pathogenesis.
We showed that AP/BC and CP samples differed in their mutation
load and variant signatures and that the frequency of variants was
linked with unfavorable treatment outcomes. Transcriptome pro-
filing identified new hybrid genes and revealed that a notable portion
of transcriptome changes are shared between the AP/BP and CP
phases. From a clinical prospective, our results suggest that clone
architecture and mutations in cancer genes at diagnosis are genetic
biomarkers that should be considered when tailoring precision
medicine strategies for CML management and stratifying patients.
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