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Key Points

•Common progenitor
cells exist in clonally
related concomitant
chronic lymphocytic
leukemia and acute
myeloid leukemias.

•CLL cells dedifferenti-
ated to clonally related
myeloid cells post-
transplantation.

Introduction

B-cell plasticity was recognized clinically and experimentally decades ago.1,2 B-cell neoplasms (eg,
chronic lymphocytic leukemia [CLL] and follicular lymphoma) occasionally “transdifferentiate” into
clonally related histiocytic sarcoma (a myeloid neoplasm) or acute myeloid leukemia (AML).3-7

These patients often present with advanced disease and have a poor prognosis related to
difficulties in making a definitive diagnosis and lack of standard treatment.4,6,8-10 Mechanistically,
it has been shown that overexpression of CEBPa and/or deletion of PAX5 can induce B-cell
transdifferentiation into myeloid cells.1,11-13 However, the clinical significance of these experimental
manipulations is unclear. We recently demonstrated that coactivation of NF-kB and Notch signaling
in committed B cells primes them to convert to the myeloid lineage through dedifferentiation after
exposure to a permissive microenvironment.14 However, the clinical relevance of our findings and
the processes involved in the conversion of human B-cell leukemia to myeloid disorders need to be
explored further.

Methods

Flow cytometry

Thawed CLL (n 5 4; 3 from peripheral blood and 1 from bone marrow) or CLL/AML (n 5 2; case 1 is
from peripheral blood; case 2 is from bone marrow) mononuclear cells were washed with ice-cold FACS
buffer (phosphate buffered saline with 2% fetal bovine serum) and stained for 20 to 30 minutes at 4°C in
FACS buffer containing antibodies against human CD45, CD34, CD19, CD20, CD5, CD11b, CD33,
and CD3 (all from BD Biosciences). CLL and/or AML cells were sorted with a FACSAria II (BD
Biosciences) and used for sequencing, polymerase chain reaction (PCR) analysis, and/or trans-
plantation. For posttransplantation donor cell (from peripheral blood and bone marrow) analysis and
sorting, mouse CD45.1 antibody was added to the above antibody combination. Data were analyzed and
prepared using FlowJo software (Becton Dickinson).

Next-generation sequencing

Genomic DNA was extracted using a PureGene kit (Qiagen). For fractions with ,20 ng of genomic
DNA, whole genome amplification was performed (REPLI-g Minikit; Qiagen). A custom PCR-based
panel of 30 genes [ASXL1, BRAF,CBL,CEBPA, DNMT3A, EZH2, FLT3,GATA2,HRAS, IDH1, IDH2,
JAK2, KIT, KRAS, KMT2A (MLL), NF1, NPM1, NRAS, PHF6, PTEN, PTPN11, RUNX1, SETBP1,
SF3B1, SRSF2, TET2, TP53, U2AF1, WT1, and ZRSR2], designed with AmpliSeq Designer (Ion-
Torrent; ThermoFisher) in 2 primer pools, was used for library preparation using an Ion AmpliSeq library
kit and a 10-ng template of DNA per primer pool. This generates 458 amplicons per library. Library
quality was assessed by measuring concentrations using a fluorometer (Qubit 2.0 fluorometer;
ThermoFisher) to determine an optimal range of 100 to 3000 ng/mL. Amplicon libraries were prepared
for sequencing using an Ion 520 or Ion 530 Ion Chef Kit (ThermoFisher), which includes the reagents
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and materials to prepare template-positive Ion Sphere Particles
on the Ion Chef instrument and to load Ion 520 or Ion 530
semiconductor chips for sequencing by synthesis on the Ion S5 XL
sequencer. Sequence data were processed and mapped to human
genome reference GRCh37/hg19, and variant calls were made
using Ion Torrent Suite (TS version 5.2) software and further
analyzed using a laboratory-developed pipeline.

Statistical analysis

The Student t test was used for all statistical analyses, and
significance was set at P , .05. Data are mean 6 standard error
of the mean.

Results and discussion

Concurrent B and myeloid leukemias share

common progenitors

We obtained limited deidentified material from 2 patients with
a history of CLL who later developed concurrent CLL and AML.
Detailed immunophenotyping did not show expression of the B-cell
markers CD19 and CD20 in AML components in either case
(supplemental Figure 1A-B). The AML blasts were CD331CD342

(AML) in the first case (supplemental Figure 1C). Interestingly,
a small proportion (2.3%) of leukemia cells expressed B and
myeloid markers (CD191CD331, transitional) compared with CLL
cells (CD191CD332) (supplemental Figure 1C). We favor that
these cells represent a transition from B to myeloid leukemia, given
the fact that the patient had a long history of CLL before the
development of AML and the presence of immunoglobulin heavy
chain (IgH) gene rearrangement (Figure 1E). We sorted different
cell populations using fluorescence-activated cell sorting (FACS),
extracted genomic DNA, and performed targeted next-generation
sequencing (NGS) (Figure 1A). CBL mutations with variable variant
allele frequencies (VAFs) were detected in lymphoid and myeloid
leukemia populations (Figure 1A), indicating that they share
a common progenitor. In addition, NPM1 and TET2 mutations were
only detected in the transitional population (CD191CD331) and
AML cells (CD192CD342CD331), suggesting that NPM1 and
TET2 are possibly involved in myeloid clonal expansion. Interest-
ingly, these mutations were not present in the residual CD341

progenitor cells (Figure 1A). Limited quantitative PCR analysis
showed decreased expression of the B-cell transcription factor
PAX5, BACH2 (lymphoma and myeloid gene suppressor), NF-kB2
and RELB (NF-kB components), and NOTCH1 receptor, as well
as upregulation of the myeloid transcription factors CEBPa and
PU.1 during conversion of CLL cells to transitional and AML cells
(supplemental Figure 1D), consistent with the gene-expression
changes that we observed in mouse studies.14 AML blasts in
the second case were CD192CD341CD381 (supplemental
Figure 2A). Targeted NGS using FACS-sorted different cell
populations with high purity (supplemental Figure 2B) detected
shared NRAS, NF1, U2AF1, and TET2 somatic mutations in CLL
cells (CD191CD342), AML cells (CD192CD341CD381), and
residual CD341 progenitor cells (CD192CD341CD382)
(Figure 1B), further demonstrating the existence of a common
progenitor. Given that the same mutations with high VAFs were
detected in lymphoid and myeloid leukemias in both cases, it is
unlikely that the high VAF of lymphoid leukemia cells was due to
a small amount of contaminated AML cells. We noted the report
that patient CLL cells are difficult to purify and, even with .99%

purity, IgH gene rearrangement could be detected in non-CLL
cells.15 However, the published data may be reasonably interpreted
differently from the angle that the IgH gene rearrangement in non-
CLL cells might reflect the in vivo evidence of B-myeloid conversion.

To further validate the targeted NGS results and seek more insights
into the clonal relationships between different subpopulations in
each sample, we performed whole-exome sequencing (WES) using
the same genomic DNAs used for targeted NGS. The mutations
detected by targeted NGS in both cases were confirmed by WES
(supplemental Figure 2C-D). In the first case, there were 16 somatic
mutations shared by CLL, transitional, and AML cells, suggesting
the existence of common progenitors among different subpopulations.
In addition, more shared mutations (120) were identified between
transitional and AML cells than between CLL and transitional cells
(19), suggesting that the 120 shared mutations (eg, NPM1, TET2,
ASXL1, PIM1, and ATM) might be involved in lineage conversion
and clonal expansion (Figure 1C; supplemental Table 1). In the
second case, there were more shared somatic mutations (250; eg,
ATM, ASXL1, WNK1, NRAS, NF1, U2AF1, TET2, and BACH2)
among CLL, AML, and progenitor cells (Figure 1D; supplemental
Table 1), further suggesting the existence of common progenitors.
Note that ATM is frequently mutated in CLL and is also maintained
in AML. In addition, BACH2 plays a critical role in B-myeloid
conversion, as shown in our previous studies, and is a shared
mutation in the second case, even though we do not know the
function of this mutation. In contrast to a transitional stage with
a gradual increase in the mutation numbers observed in the first
case, the CLL to AML conversion seems more direct, given the
large number of shared mutations observed in the second case. The
unique mutations detected in the CD341 progenitor cells in both
cases do not seem to be directly involved in the development of CLL
and AML. Details of the mutated genes in each subpopulation are
listed in supplemental Table 1. How these mutations contribute to
CLL to AML conversion and expansion is unclear and needs to be
investigated further. Interestingly, clonality analysis of both cases
demonstrated that the same IgH gene rearrangement was detected
in CLL and AML cells but not in the residual progenitor cells (Figure
1E-F; data not shown), strongly supporting B-myeloid conversion in
these 2 cases. We validated the above clonality results by regular
genomic PCR in combination with gene-expression analysis using
the available genomic DNA and messenger RNA from the first case.
Our results clearly demonstrated that the expression of CD19 and
CD11b messenger RNA was limited in the sorted CLL and AML
cells, respectively, whereas IgH gene recombination was detected
in CLL and AML cells, providing further evidence that AML cells
were unlikely contaminated by CLL cells (supplemental Figure 2E).
It is intriguing that, among the shared mutations in both cases, many
are not traditional CLL driver mutations, with the exception of ATM
(eg, TET2, NF1, NRAS, U2AF1, ASXL1, and CBL mutations, which
are rarely detected in CLL).16-19 In contrast, these mutations are
more commonly detected in age-related clonal hematopoiesis and
myeloid leukemia,20-22 suggesting that there is a specific subgroup
of CLL with myeloid-biased somatic mutation that gives them the
potential to convert to myeloid leukemia.

CLL cells convert to myeloid lineage in vivo

The above results are consistent with the reported CLL “trans-
differentiation” to clonally related AML or histiocytic sarcoma.
To directly test whether human CLL has the ability to convert to
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myeloid lineage, we sorted CLL cells from CLL patient peripheral
blood samples and transplanted them into busulfan-conditioned
NSGS mice. The sorting purity reached 99%, and the transplanted
cells [CD191CD51CD20(subset)1] had a typical CLL immunophe-
notype (supplemental Figure 3A-B). In our pilot experiments, we
were unable to detect donor cells in the peripheral blood of all 9
recipient mice at 10 days posttransplantation (4 million cells per
recipient; data not shown), but we could detect small numbers of
donor cells 4 to 5 days posttransplantation. However, the numbers
of B cells detectable among donor cells were decreased, and the
majority of transplanted CLL cells (CD191CD51CD32CD342

CD332) converted to CD192CD11b2 immature cells or CD192

CD11b1 myeloid cells. Intriguingly, we detected CD341 donor
cells among CD192CD11b2 immature cells in some recipient mice
(Figure 2A-B; supplemental Figure 3C), indicating that CLL cells
transiently dedifferentiated into an immature population. Interest-
ingly, IgH gene rearrangement analysis detected the same IgH
rearrangement in the pretransplanted CLL cells (CD451CD191

CD20dim) and posttransplanted donor-derived immature cells
(CD451CD192CD11b2) and myeloid cells (CD451CD192

CD11b1) (Figure 2C). These data clearly demonstrate that CLL

cells can convert to myeloid lineage in vivo through dedifferentia-
tion. However, these converted myeloid cells could not survive
longer and expand in the recipient mice, because no chimerism was
detected 10 days posttransplantation. A more efficient xenograft
model is needed to further improve the engraftment efficacy and
monitor the fate of these converted myeloid cells.

We recently reported that B cells with coactivation of NF-kB and
Notch have increased potential to convert to myeloid lineage.14 To
determine whether there is a subpopulation of CLL cells with higher
NF-kB/Notch activity, we reanalyzed our published single-cell RNA-
seq data, which include 384 single CLL cells from 4 patients.17 To
achieve robust analysis, we filtered out genes with ,4 reads and
present in,5 cells. This resulted in 314 single cells for downstream
analysis. We first used genes related to both pathways to perform
consensus clustering by the SC3 pipeline. To find the optimal
number of clusters (k-means), we evaluated 2 to 15 clusters
by silhouette and consensus matrix and chose 12 clusters to
proceed with marker gene analysis (Figure 2D). Interestingly, within
these clusters, we found 1 small cluster of CLL cells (15 cells) with
increased expression of NOTCH1/2 and MAP3K14/NIK and
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Figure 1. The existence of B and myeloid common progenitors in clonally related CLL and AML. Somatic mutations and VAFs detected in different FACS-sorted cell

fractions from the first (A) and second (B) concurrent CLL/AML case. These mutations were confirmed by WES. (C-D) Somatic mutations in the different sorted sub-

populations detected by WES. Venn diagrams showing the numbers and percentages of somatic mutations in the first (C) and second (D) cases, respectively. The mutated

genes are listed in supplemental Table 1. (E-F) BIOMED-2 genomic PCR for detection of IgH gene rearrangements in different FACS-sorted subpopulations. The range of

product sizes in normal polyclonal background are labeled. The detection of positive peaks was expected between the regions of 310 to 360 bp and 250 to 295 bp.

Note that the same IgH gene rearrangements were detected in transitional (CD191CD331) and AML (CD192CD331CD342) leukemia cells in the first case (E) and in CLL

(CD191CD342) and AML (CD192CD341CD381) cells in the second case (F). No amplification was detected in other fractions shown in panels A and B because of the

limited amount or the quality of genomic DNA.

22 DECEMBER 2020 x VOLUME 4, NUMBER 24 B-MYELOID CONVERSION IN VIVO 6171

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/4/24/6169/1794686/advancesadv2020002726.pdf by guest on 07 M

ay 2024



decreased expression of BACH2 (Figure 2D), indicating that both
pathways were activated in these cells. Because of the limited
number of cells that possess these features and the low coverage
of genes in the existing data set, we were unable to identify the
gene-expression signature of these cells. In addition, we do not
know whether they are associated with specific somatic mutations
and whether this subpopulation can convert more efficiently to
myeloid lineage because we did not have the means to identify and
isolate them. It should be noted that the gene-expression analyses
using sorted bulk CLL cells did not show significant differences in
the expression of BACH2, RELB, NF-kB2, and NOTCH1 between

CLL cells from patients with or without concurrent AML (supple-
mental Figure 3D), suggesting that future studies using combined
transcriptomic and gene mutation analysis at the single-cell level are
required to further characterize this subpopulation and determine
whether they have greater potential to convert to the myeloid
lineage. Although our somatic mutational analyses clearly demon-
strate the existence of common lymphoid and myeloid leukemia
progenitors and are consistent with some previous studies,23,24 we
recognize that not all reported cases show a clonal relationship by
targeted gene sequencing between concurrent or sequentially
developed lymphoid and myeloid tumors.25 However, analysis of
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Figure 2. CLL cells convert to myeloid lineage in vivo. (A) Representative FACS plots of donor cells on day 4.5 posttransplantation (n 5 15). (B) Percentages of donor

peripheral blood engraftment and different subpopulations (n 5 15). Donor CLL cells are from 4 deidentified CLL patients. Each circle represents an individual mouse. (C)
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these types of cases using WES may be more informative, as
evidenced by the cases presented here.

In summary, our studies clearly show the existence of common
progenitor cells in at least some concurrent lymphoid/myeloid
neoplasms, as well as demonstrate for the first time that CLL cells
can dedifferentiate to myeloid cells. Knowledge gained from future
studies along this line will be highly relevant to understanding the
mechanisms of B-myeloid conversion and further malignant trans-
formation, which will provide more insights to prevent and target
these rare, but fatal, tumors. In addition, the knowledge obtained
will contribute to understanding of the pathogenesis of Hodgkin
lymphoma (expressing myeloid marker CD15 along with defective
B-cell programing), mixed phenotype acute leukemia, and therapy-
related myeloid neoplasms, for which lymphoma is the second
most common underlying disease. We hope that this report will
act as a springboard for future mechanistic studies of B-myeloid
conversion.
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