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Machine learning (ML) is rapidlyemerging in severalfieldsof cancer research.MLalgorithms

can deal with vast amounts ofmedical data and provide a better understanding ofmalignant

disease. Its ability to process information from different diagnostic modalities and functions

to predict prognosis and suggest therapeutic strategies indicates that ML is a promising tool

for the future management of hematologic malignancies; acute myeloid leukemia (AML) is

amodel disease of various recent studies. An integration of theseML techniques into various

applications in AML management can assure fast and accurate diagnosis as well as precise

risk stratification and optimal therapy. Nevertheless, these techniques come with various

pitfalls and need a strict regulatory framework to ensure safe use ofML. This comprehensive

reviewhighlights anddiscusses recent advances inML techniques in themanagement ofAML

as a model disease of hematologic neoplasms, enabling researchers and clinicians alike to

critically evaluate this upcoming, potentially practice-changing technology.

Introduction

Despite recent research efforts, acute myeloid leukemia (AML) still poses a challenge in diagnosis and
treatment alike, with curative options limited to a minority of cases.1 In the past, numerous preclinical and
clinical studies, often with multicenter cohorts of patients, have led to a better understanding of AML
pathogenesis and classification and, subsequently, to improved treatment options. The rise of genomics
has further improved our understanding of AML and resulted in novel modes of risk stratification2 that
were adopted in the European LeukemiaNet classification of AML.1

The first studies of ML techniques in the diagnosis of hematologic malignancies were conducted 2
decades ago. They started with the recognition of leukemic cells from blood samples,3,4 flow
cytometry,5,6 and the evaluation of genetic data,7,8 establishing the groundwork of ML methods in the
investigation of hematologic malignancies. However, computational power was limited, and an
integration of different diagnostic modalities on multidimensional data sets seemed out of immediate
reach. From the first theoretical introduction of an artificial neuron by McCulloch and Pitts in 1943,9 the
refinement of computational methods and ML approaches in the last decades, especially in neural
networks, has opened up a variety of integrative approaches in the field of hematology. The ever-growing
body of data from clinical studies, as well as new insights from preclinical models, poses a challenge for
researchers and clinicians alike to organize and interpret said data to improve patient care.

It has been shown that ML is well suited for dealing with large amounts of complex data and may prove to
be a powerful tool in understanding and overcoming disease.10-12 Classically, diagnostic tests and
patient data are interpreted by experienced clinicians who rely on years of medical education and
training. However, ML algorithms have recently been shown to be on par with experts in a variety of tasks,
from initial diagnosis, to prognosis estimation and prediction of treatment complications, to relapse
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monitoring in hematologic malignancies. However, many ML
approaches have still not found their way into everyday clinical
practice due to a variety of hurdles and pitfalls.

The current comprehensive review provides an overview of recent
studies of ML in AML diagnostics, prognostication, and treatment
allocation. It discusses current challenges and pitfalls to improve
studies of ML in AML and foster safe and informed clinical use of the
presented techniques in the future.

Diagnosis

Currently, the initial diagnosis of AML relies on 4 pillars: cytomorphol-
ogy, cytogenetics, molecular genetics, and immunophenotyping.1

Given the evolving treatment stratification based on cytogenetic
and molecular results, assigning patients to the best available
treatment option seems appropriate.13 Therefore, precise char-
acterization and classification of AML with high levels of accuracy
are crucial for adequate therapy. Although our understanding of
cancer in general has improved with the ever-increasing amount of
genetic and genomic data, we still struggle to implement these
large and complex data sets into clinical practice. ML approaches
have shown tremendous potential in the analysis of complex
genetic data.14

Analyzing .12000 samples from .100 different studies, Warnat-
Herresthal et al15 combined transcriptomic and genomic data with
ML to develop classifiers that accurately detect AML in a near-
automated and low-cost method. However, not every center
interested in research in the applications of ML in cancer has such
large data sets at hand. Fortunately, various freely accessible online
data sets are available for multiple research purposes; these include
the Leukemia Gene Atlas,16 Beat-AML,17 and The Cancer Genome
Atlas.18 They allow researchers all across the globe to evaluate
genetic risk profiles or identify novel genetic targets for individual-
ized cancer therapy with the aid of ML techniques.19 This option
could prove useful in the development of prospective basket trials of
specific cancer-type overlapping mutations identified by ML
algorithms. Support vector machines (SVMs), an ML technique
that delineates data points in a coordinate system by calculating
a hyperplane between distinct data sets, can be used for
classification of high-dimensional data sets.20 They can be applied
to classify subtypes in large genomic data sets once pre-processing
steps such as filtering for biomarker signatures or gene alterations
have been performed to organize multidimensional data sets; the
SVMs use these for classification, thereby revealing potential
targets for therapy,21,22 and detect leukemic stem cells by genetic
profiling.23

A well-known disease-causing mutation of the FMS-like tyrosine
kinase 3 (FLT3) occurs in almost one-third of AML cases, with
internal tandem duplication (ITD) representing the most common
FLT3 mutation.24 The combination of RNA-sequencing and
genotyping with ML can distinguish malignant cell types and
identify prototypic genetic lesions and an association of FLT3-ITD
with progenitor-like cells.25 SVM and random forest (RF), a combi-
nation of decision trees in which each tree depends on the values of
a random vector sampled independently and with the same
distribution for all trees in the forest,26 are able to identify feature
genes with the capacity to predict the mutation status of FLT3-
ITD.27

Deep neural networks (DNNs) can identify critical proteins
associated with FLT3-ITD.28 DNNs are a subset of ML that imitate
the neuronal structure of the brain by creating interconnected
artificial neural networks that can be applied for computer vision
purposes, especially object detection, image segmentation, and
classification.29 After adequate pre-processing of image data,
DNNs can be used in computer-aided diagnosis in cytomorphology.
Key steps in DNN-based assessment of bone marrow and peripheral
blood smears are cell segmentation, extraction, quantification of
cell-specific features, and subsequent cell classification.30

Especially in leukemia, precise recognition of white blood cells
with various segmentation techniques (filtering, enhancement,
edge detection, feature extraction, and classification)31 is crucial
for correctly distinguishing between leukemic and non-leukemic
cells.32-34 ML can use these techniques to analyze whole slides
with automated focusing.35 Classification of leukemia subtypes
(AML, acute lymphoblastic leukemia, chronic myeloid leukemia,
and chronic lymphocytic leukemia) can be achieved by a variety
of ML approaches such as DNN,36 SVM, and k-means-clustering
(an unsupervised ML technique in which similar data points are
grouped into k clusters according to their distance to a cluster
mean).37,38

Another essential part of the diagnostic process in AML is flow
cytometry,39 which can aid in the detection of relapse with a higher
sensitivity than cytomorphology alone.40 ML can be used to
precisely distinguish between samples from AML patients and
healthy individuals.41-43 Computer-driven analysis of flow cytometry
using clustering techniques (eg, FlowSOM) in combination with ML
techniques (eg, SVM and RF) increases diagnostic accuracy in
various hematologic malignancies44 and correctly classifies rare
cells.45 FlowSOM is based on self-organizing maps to analyze flow
or mass cytometry data, providing an overview of large sets of
markers,46 and it thereby aids in phenotyping leukemia and
assessing measurable residual disease (MRD).47 ML may thus
provide an automated classification of data generated by flow
cytometry and aid clinicians in their analysis and interpretation of the
data by providing them with various differential diagnoses and their
respective likelihood based on the given data. Hence, an integration
of all diagnostic modalities in the evaluation of AML by the
combination of different ML techniques seems feasible and
provides a fast, automated, data-driven overview of each individual
suspected case of AML for the medical professional to evaluate and
verify.

Treatment and prognosis

The European Leukemia Net 2017 risk stratification divides patients
with AML into favorable, intermediate, and adverse risk groups with
distinct therapeutic implications and outcomes.1 ML is advanta-
geous in the early detection of potentially high-risk leukemias based
on their individual genetic profile. Morita et al48 analyzed bone
marrow samples of 868 patients with myeloid leukemias (AML,
myelodysplastic syndrome [MDS], chronic myelomonocytic leuke-
mia, and myeloproliferative neoplasm) and generated an ML-based
model that accurately predicts clinical phenotype based on somatic
mutation data. Siddiqui et al49 proposed an ML model based on
clinical parameters known before treatment that predicts mortality
rates for patients undergoing chemotherapy, thereby enabling
clinicians to identify patients suitable for intensive induction
regimens. DNN approaches have been shown to accurately predict
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AML prognosis based on cytogenetics, mutational status, and
age.50 Gerstung et al51 have reported that large data sets
combining clinical and genomic data in the form of knowledge
banks can therefore be used to guide clinicians to precisely tailor
a treatment approach for the individual patient; this method
provides an accurate prediction of relapse, remission, and overall
survival.

ML may even yield higher levels of accuracy compared with current
standards. Fleming et al52 used RF and decision trees to predict
survival prognosis in .2000 cases of non-APL/AML and reported
a lower error rate for their model compared with the European
Leukemia Net 2017 score. Similarly, Shreve et al53 devised an ML
model based on clinical, cytogenetic, and mutational data to predict
personalized outcomes for the individual patient and reported
a significantly better performance than the European Leukemia Net
classification. Li et al54 developed an algorithm for automatic
classification of AML, MDS, and healthy samples based on .2000
patients limiting the number of flow cytometry markers while
maintaining high levels of accuracy.

ML can be used to develop novel prognostic indices or refine
the understanding of already established prognostic mutational
markers. NPM1 mutations are among the most commonly found
mutations in AML, representing a distinct entity in the World Health
Organization classification.55 Patkar et al56 identified genomic
aberrations in NPM1mut AML and developed a scoring system
classifying NPM1mut AML into 3 prognostic subgroups. Wagner
et al57 used an ML approach to associate a 3-gene expression
signature consisting of CALCRL, CD109, and LSP1 with overall
survival, resulting in a prognostic score that includes gene
expression levels and clinical data.

However, AML therapy remains challenging, and refractory disease
poses a substantial threat for patient outcome.58 ML can predict the
likelihood of complete response in pediatric AML patients who
received induction therapy based on gene expression patterns
obtained through RNA sequencing.59 Based on proteomics, ML
can divide patients with AML into different treatment response
groups, although combined use with clinical data may be
essential.60 MRD is an important marker for risk stratification and
decision-making concerning therapeutic adjustments.61,62 Mea-
surement of MRD can be improved by ML techniques such as
SVM,63-65 and the evaluation of MRD is of growing importance in
clinical decision-making in the management of AML. However, MRD
evaluation is not available at all sites because it requires a high level
of accuracy and technical expertise that can thus far only be
achieved by specially equipped laboratories. ML techniques help
implement MRD assessment in clinical practice by providing a highly
standardized and data-driven approach based on the evaluation of
large multicenter MRD data sets. Therefore, collaborative pro-
spective studies between experienced laboratories and hemato-
logic centers are needed to establish ML models that can
accurately assess MRD; the goal is to provide to the clinical
practice high-quality, standardized and automated MRD assess-
ment verified by field experts.

Recently, a variety of novel therapeutic agents have been approved
by both the US Food and Drug Administration and the European
Medicines Agency for frontline treatment of patients with AML;
long-term benefits remain uncertain, however, and study design as
well as eligibility criteria may be flawed.66-68 ML provides the means

to improve patient selection, recruitment, and monitoring in clinical
trials by assessing eligibility criteria, scanning electronic health
records for suitable patients, or predicting the likelihood of failure or
success in a trial.69 ML models have been established in drug
discovery and development, and DNNs especially show tremen-
dous potential in identifying biomarkers and druggable targets and
in the assessment of potential therapeutic molecules.70,71 The
National Cancer Institute and the Dialogue on Reverse Engineering
Assessment and Methods (DREAM) have launched challenges to
develop ML tools to discover novel treatment strategies and detect
drug-sensitive targets from genomic data.72 ML can use these large
genomic data sets to predict targets for therapeutic agents. Lee
et al73 identified SMARCA4 as a marker and driver of sensitivity to
the topoisomerase II inhibitors mitoxantrone and etoposide, showing
increased drug sensitivity both in ML models and in in vitro assays.
Chen et al74 used ML to assess potential STAT3 inhibitors in AML
and MDS. Janssen et al75 developed drug discovery maps based on
t-distributed stochastic neighbor embedding to predict novel
inhibitors of FLT3, and Cutler and Fridman76 generated an ML
model that predicts high sensitivity to FLX925, a small molecule
inhibitor of FLT3, in AML.

Despite the advent of targeted therapy, in the majority of AML
cases, a curative treatment approach is still often limited to
allogeneic stem cell transplantation, which harbors various risks.
These risks include high treatment toxicity, infectious complications,
graft-versus-host-disease (GVHD), transplant failure, and relapse.77

Evaluating suitable patients for transplantation and patients at risk
for complications is therefore crucial before starting conditioning
therapy. Shouval et al78 identified key variables to predict overall
survival 100 days after transplantation in an analysis of .25000
leukemia patients from the European Society for Blood and Marrow
Transplantation with various ML techniques; they validated the
scoring system in a prospective cohort study of 1848 patients from
the Italian national transplant network.79 The choice of conditioning
regimen and post-grafting immunosuppression may therefore be
guided by ML algorithms to design a personally tailored approach
for the individual patient based on large databases of specific
immunogenetic environments of patients undergoing allogeneic
hematopoietic stem cell transplantation.80 Relapse after trans-
plantation can be estimated by using alternating decision trees.81

ML can also be used to predict development of acute GVHD after
allogeneic transplantation82 and stratify outcomes in chronic
GVHD, revealing novel groups at risk based on clinical phenotypes
more accurately than current approaches based on cumulative
severity.83

Discussion

ML has already proven to be a versatile, precise, and robust tool in
the diagnostic and therapeutic evaluation of AML, with a variety of
challenges for future research as summarized in Table 1.

The efficiency of ML algorithms greatly depends on the quality and
quantity of data they are trained on, as well as the selected end
points and outcomes that researchers use. Therefore, large data
sets are needed to construct and train such models.84 With publicly
available data sets, researchers have access to large amounts of
training data for the development of ML tools, providing even small
centers with the opportunity to conduct research in ML. Neverthe-
less, it is questionable how well ML models developed on online
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data sets can perform in a regional setting. ML algorithms can
automatize narrow repetitive tasks and thereby aid clinicians in
accurately diagnosing AML as well as cutting time and effort in
diagnostic steps such as the assessment of genetic, mutational,
cytomorphologic, and flow cytometry data. The combination of
different diagnostic modalities is crucial for the correct diagnosis of
AML. An implementation of different ML techniques linking, for
example, the results of flow cytometry, cytomorphology, and
cytogenetics can provide clinicians with integrated ML tools to
evaluate each suspected case of AML faster and with higher
precision because adaptive ML tools are able to learn with every
new case they are trained on, thus improving accuracy.

Furthermore, ML algorithms will help to better understand the
complex interaction of distinct molecular subgroups in AML by
identifying specific markers delineating specific groups of patients.
These markers can also be evaluated in different hematologic entities
(eg, MDS), and discoveries of overlapping disease-driving genetic
alterations provide the opportunity for the development of pro-
spective basket trials to create a directed therapy against disease-
causing genes. Prognostic indices based on patient features derived
by ML promise an unbiased view of potential markers of risk and
adverse outcome and may refine current standards. Clinicians benefit
from such tools as they partially free them from handling large
amounts of data and equip them with methods to match individual
patients with an ideal treatment.12 ML therefore provides a powerful
tool in the advent of precisionmedicine by identifying disease-specific
genetic alterations and simultaneously recommending molecular
structures that may be used to target these mutations for the
individual patient. Once established, these algorithms could even
provide hematologic expertise to regions without immediate access
to large medical centers and help general practitioners to adequately
screen for patients in need of hematologic assessment or treatment.

Nevertheless, tight regulation and oversight are crucial for the
proper application of computer-aided diagnosis and treatment

allocation. A sophisticated structure of regulatory oversight, legal
frameworks, and monitoring systems, adaptive to the fast pace of
the current developments, is of the highest importance to ensure
safe development and use of ML in everyday hematologic practice.
The fast development of ML not only in the field of hematology but
overall medical practice shows that computer skills are essential in
medical training. We argue that basic knowledge of ML techniques,
especially their potential in diagnostics and therapeutics as well as
their limitations therein and potential for bias, is a key skill in medical
education preparing for current and future developments and
changes in practice. Future physicians should be taught to be
critical users of ML in their practice, understanding how different
models work, and what is in and out of reach of ML; this would
enable them to properly integrate these methods into their practice
and critically analyze and evaluate the data and recommendations
provided by these tools.

As promising as these first results of ML in hematology may be,
however, there is still a long road ahead. Clinicians and researchers
should be aware of common pitfalls in ML when designing new
studies.85 For instance, many techniques require splitting research
data into a training set and a testing set, and sometimes inadequate
splits or hidden trends in data sets can falsify results. Researchers
should also be wary for seemingly insignificant hidden variables that
can influence ML models (eg, the placing of the scale bar in
microscopic images). Furthermore, ML models can be overfit by
feeding them biased data or making them catch “noise” instead of
actual features, which results in a model that does suspiciously well
in training sets but often cannot generalize well in test sets.86 There
is no gold standard in model selection, and every ML set-up
depends on the use-case and research question at hand. It is also
important to report on negative results and difficulties, given the
variability of different ML set-ups, to work out collectively which
approaches are more promising in which specific use-case. Many
studies of ML in AML and cancer in general are still only
retrospective and the underlying code of the ML model is often

Table 1. Applications and challenges of ML in the management of AML

Application Cytomorphology/histology Immunophenotyping Clinical data

Cytogenetics/molecular

genetics

New therapies/prognostic

scores

Improvements
needed

Precision of image segmentation
(eg, detection of cell
boundaries)

MRD evaluation (eg, standardization
of cutoffs to form a decision
boundary)

Integration of different
high-dimensional data sets

Availability of data Prospective studies for
validation

Number values such as
laboratory results as well as
written text are better
evaluated by different ML
techniques (integrative
models needed)

Models trained on online data
(eg, Beat-AML or The
Cancer Genome Atlas) may
not be accurate on regional
data

Majority of ML studies are
only retrospective; models
have to be evaluated in
a prospective manner to
evaluate their translational
application in patient care

Feature extraction (eg, relation of
nucleus to cytoplasm)

Classification methods Standardization of clinical
reports

Pre-processing of
high-dimensional data

Which combination of different ML
techniques shows the most
accurate results?

Uniformity of clinical reports
(eg, with standardized
vocabulary) makes natural
language processing easier

Accurate filtering of
biosignatures is needed
before classification

Cell classification

Labeling by field experts needed

Outlook • Integrated workflow of various ML techniques to guide clinical decision-making

• Strict legal and regulatory framework to ensure patient safety

• Prospective clinical trials to verify robustness of ML models

• Physicians with basic knowledge in ML techniques to optimally implement ML into clinical practice
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not reported, and therefore reports are at risk of bias.87 Prospective
validation in a proof-of-concept fashion is needed. ML-derived
scoring systems, as well as individually tailored treatment
approaches, can be verified in prospective trials proving or
disproving the robustness of different models. Stand-alone ML
tools based only on retrospective data are insufficient for
widespread clinical use.

From a software point of view, prospective validation poses
a challenge, because the large variety of available ML technology
offers not only a vast amount of models to choose from but also
may lead to flaws in study design because the optimal model for
a distinct research question might not be chosen. At first, when
conducting ML-based research, it is usually unknown which
technology and parameterization lead to sufficient quality, especially
for smaller data sets.88 Therefore, software solutions should provide
an iterative workflow to improve in a step-wise manner the ML set-
up and integrate a broad spectrum of technology in a uniform way to
support technological variety and progress.89,90

As shown in Figure 1, an ML workflow consists of several data
preprocessing and postprocessing steps, as well as meta-mechanics
to optimize parameters and track objectives.91,92 To increase the

transparency of the approach and results, and to ensure re-
producibility as well as comparability, a more abstract technical
workflow description is required (eg, based on attribute grammars or
model-based development approaches). Finally, domain experts (ie,
physicians) need to have direct access to the ML workflow, as the
translation of medical requirements, knowledge, and objectives by
technicians implies obstacles and sources of errors. Hence, this
should be minimized by adaptive, context-sensitive, and customizable
user interfaces. Cooperation between study groups and a pooling of
data sets may yield even more robust results.

In conclusion, ML in AML introduces a variety of novel and deeper
insights in disease development and has the potential to significantly
improve prognostication, personalized treatment, and patient
surveillance. Close cooperation between computer scientists, data
scientists, software developers, basic medical researchers, and
physicians is imperative for sustained success and regulatory
oversight. Legal frameworks are needed for safe and standardized
development and use of ML tools for medical practice. The
awareness of potential pitfalls of ML techniques and the knowledge
gained from recent studies should lead to a more informed design
of ML research. The goal is to create integrative tools that can
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Figure 1. Overview of ML in the management of AML.
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analyze and interpret data from multidimensional diagnostic modal-
ities to further aid the clinician in everyday practice in diagnosis,
prognostication, and treatment allocation of patients with AML,
ultimately improving patient outcome.
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