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Key Points

• Lower gene richness
and a lower abundance
of Blautia and A muci-
niphila were associated
with subsequent
aGVHD.

•Myeloablative condi-
tioning was associated
with aGVHD as well as
a reduction in gene
richness and abun-
dance of Blautia and A
muciniphila.

Acute graft-versus-host disease (aGVHD) is a leading cause of transplantation-related

mortality after allogeneic hematopoietic stem cell transplantation (aHSCT). 16S ribosomal

RNA (16S rRNA) gene-based studies have reported that lower gut bacterial diversity and the

relative abundance of certain bacteria after aHSCT are associated with aGVHD. Using

shotgunmetagenomic sequencing and a large cohort, we aimed to confirm and extend these

observations. Adult aHSCT recipients with stool samples collected from day 230 to day 100

relative to aHSCTwere included. One sample was selected per patient per period (pre-aHSCT

(day 230 to day 0), early post-aHSCT (day 1 to day 28), and late post-aHSCT (day 29 to day

100)), resulting in 150 aHSCT recipients and 259 samples. Microbial and clinical factors were

tested for differences between time periods and an association with subsequent aGVHD.

Patients showed a decline in gut bacterial diversity posttransplant, with several patients

developing a dominance of Enterococcus. A total of 36 recipients developed aGVHD at

a median of 34 days (interquartile range, 26-50 days) post-aHSCT. Lower microbial gene

richness (P5 .02), a lower abundance of the genus Blautia (P5 .05), and a lower abundance

of Akkermansia muciniphila (P 5 .01) early post-aHSCT was observed in those who

developed aGVHD. Myeloablative conditioning was associated with aGVHD along with

a reduction in gene richness and abundance of Blautia and A muciniphila. These results

confirm low diversity and Blautia being associated with aGVHD. Crucially, we add that

pretransplant conditioning is associated with changes in gut microbiota. Investigations are

warranted to determine the interplay of gut microbiota and conditioning in the

development of aGVHD.

Introduction

Allogeneic hematopoietic stem cell transplantation (aHSCT) is one of the most intense forms of
immunotherapy and is performed in more than 25 000 patients annually.1 However, full use of
aHSCT is limited because of its life-threatening complications, including graft-versus-host disease
(GVHD).2 GVHD, including acute GVHD (aGVHD), is a leading cause of nonrelapse mortality in
aHSCT3,4 caused by allogeneic donor T cells attacking target organs of the host.5
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Clinical risk factors previously associated with the development of
aGVHD include graft source, the sex of the donor or recipient, HLA
mismatch, the relationship between donor and recipient, and high-
dose conditioning regimens.6,7 Yet these factors can only partially
explain the risk of aGVHD. Recent research has described an
extensive cross-talk between gut microbiota and the host immune
system, including the impact of gut microbiota on anticancer
immune responses and chemotherapy.8-11 Because aGVHD is an
immunologic disease with the gastrointestinal tract being one of its
main target organs, it is hypothesized that the gut microbiota may
also play an important role in the development of aGVHD.12

Previously, removal or partial removal of gut microbiota through gut
decontamination was considered to lower the risk of aGVHD.13,14

However, growing evidence has indicated the opposite,15-17 and
several studies show that a diverse gut flora may be beneficial to
recipients of aHSCT.12 Specifically, these studies indicate that
lower bacterial diversity within the first weeks after aHSCT
increases risk of aGVHD-related outcomes,18,19 including aGVHD-
related mortality,20,21 overall mortality,20-22 and disease relapse.23

However, despite accumulating evidence that supports associa-
tions between the gut microbiome and aHSCT outcomes, there are
still relatively few studies evaluating the influence of gut microbiota
in an aHSCT setting with aGVHD as their main outcome. Within
these studies, an analysis of the clinical risk factors associated with
aGVHD and the gut microbiome is also lacking. Furthermore,
studies with adult cohorts have exclusively used 16S ribosomal
RNA (16S rRNA) gene sequencing data that provides information
on variance within the 16S rRNA gene and often describes
bacterial taxonomy only at the genus level. In comparison, shotgun
metagenomic sequencing assesses all genes within a particular
sample (allowing for further analysis of these genes, including
assessment of potential metabolic pathways) and provides more
accurate species-level taxonomy.24 Therefore, by using shotgun
metagenomic sequencing, we aimed to characterize the dynamics
of the gut microbiota during aHSCT and explore the associations
between gut microbial and clinical factors and the development of
aGVHD in a large cohort of aHSCT recipients.

Methods

Patients and treatment regimens

Adults (age 18 years or older) who underwent a first aHSCT at the
Stem Cell Transplantation Unit, Department of Hematology,
Rigshospitalet, University of Copenhagen (Copenhagen, Denmark)
between 1 January 2016, and 1 October 2018, were prospectively
included. All patients gave written informed consent to the storage
and use of stool samples for research. The study was performed in
compliance with the Declaration of Helsinki and approved by the
Danish Ethics Committee of the Capital Region (Journal No. H-
16047481) as well as the Danish Data Protection Agency (RH-
2017-67, I-suite 05320).

All patients underwent either myeloablative or nonmyeloablative
conditioning before transplantation. The main myeloablative condi-
tioning regimens were fludarabine-treosulfan-, cyclophosphamide
with total body radiation (TBI) of 1200Gy, or cyclophosphamidewith TBI
(1200 Gy) and anti-thymocyte globulin (ATG). The main nonmyeloa-
blative conditioning regimen was TBI (#400Gy) and fludarabine. Gut
decontamination was not performed prior to a HSCT. Patients
received antibiotics when neutrophil counts were ,0.5 3 109/L prior

to aHSCT (myeloablative conditioning: ceftazidime 2 g IV 3 times
per day; nonmyeloablative conditioning: ciprofloxacin 500 mg orally
2 times per day) until neutrophil counts were.0.53 109/L. All patients
received sulfamethoxazole (400 mg) and trimethoprim (80 mg) orally
once per day from day 0 until the end of immunosuppressive treatment.
For additional information, see supplemental Methods and supple-
mental Table 1.

Data sources

Patient demographic, clinical, and paraclinical data were retrieved
from the Personalised Medicine for Infectious Complications in
Immune Deficiency (PERSIMUNE)25 data lake. The PERSIMUNE
data lake contains data from multiple electronic health data
repositories in Denmark. For additional information, see supple-
mental Methods.

Sample collection and preprocessing

Fecal samples were collected by the patient or nursing staff using
the OMNIgene.GUT (DNA Stabilized-frozen Inc., Ottawa, Ontario,
Canada) stabilization tube according to the manufacturer’s
instructions. Samples were frozen for a median of 6 days
(interquartile range, 3-8 days) after sampling. Of all the samples,
17 of 259 had a missing sampling date and they were given the
freezing date (ie, the date the sample was frozen) as a proxy sample
date. All samples were stored at 280°C until shipment for
sequencing. Samples underwent shotgun metagenomic sequenc-
ing on the Illumina Hi-Seq platform.

After sequencing, reads underwent preprocessing and quality
control steps, including trimming of reads, removal of reads with
,50 base pairs, and removal of all reads mapping to the human
genome (GRCh38). Samples with ,1 million reads remaining after
quality control steps were removed from further analysis. For
additional information, see supplemental Methods.

Microbial factors

Taxonomical annotation was assigned using MOCAT226 and the
National Center for Biotechnology Information database.27 Alpha
diversity was measured using the inverse Simpson index, based on
molecular operational taxonomic units from MOCAT2,26 and using
R (v3.5.0)28 phyloseq.29 Gene richness (the number of unique
genes) was calculated by mapping reads to the Integrated Gene
Catalogue30 using bowtie2.31 Individual gene abundance was
calculated using the mapping output. Metabolic richness (the
number of unique potential metabolic pathways) was calculated by
first using MOCAT226 functional profiling, evolutionary genealogy of
genes: Non-supervised Orthologous Groups (eggNOG),32 and
Kyoto Encyclopedia of Genes and Genomes (KEGG) ontology33-35

to assign KEGG ontology profiles. These profiles were then
assigned to gut metabolic module profiles using the Omixer-RPM
reference pathway mapper.36 Heatmap visualizations were con-
ducted using R (v3.5.0)28 ComplexHeatmap.37

Statistical analysis

Patients were included if they had at least 1 sample that passed
quality assessment and which was collected between day 230
and day 100. Samples were grouped into the following time
periods: pre-aHSCT (day 230 to day 0), early post-aHSCT (day 1
until and including day 28), and late post-aHSCT (day 29 until and
including day 100). One sample per patient per period was
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selected. For patients with multiple samples per period, the median
time of sampling in patients with 1 sample was calculated, and the
sample closest to this median time (15 days for early post-aHSCT
and 34 days for late -post-aHSCT) was selected.

First, descriptive analyses were performed to compare microbial
factors (diversity measures and taxonomical bacterial abundance) in
the 3 periods. Comparisons of diversity measures (alpha diversity,
gene richness, and metabolic richness) were performed using
Kruskal-Wallis and pairwise Wilcoxon tests without correction for
multiple testing. The abundance of bacterial genera and species
was then compared between periods by using a discovery (non-
hypothesis–driven) method. This discovery method consisted of the
mean-based DESeq238 R (v.3.5.0)28 and the median-based
Wilcoxon test (taking into account compositionality),39 with
a combined significance cutoff of a false discovery rate (FDR)
,0.1 and P # .05, respectively.

Hereafter, analyses of samples were conducted that examined
potential microbial risk factors for the development of aGVHD pre-
aHSCT and early post-aHSCT. We excluded samples collected
after aGVHD development and samples from late post-aHSCT
because they were biased toward those who had not developed
aGVHD. aGVHD was diagnosed and graded according to the
modified Glucksberg-Seattle criteria;40,41 cases were defined as
having grade 2 or greater aGVHD. There was complete ascertain-
ment regarding aGVHD diagnosis.

Microbial factors that were tested for an association with aGVHD
included diversity measures, individual gene abundance, and
metabolic modules and pathways. Metabolic pathways were tested
using Wilcoxon tests. There were 14 predefined bacteria based on
a priori research findings (supplemental Table 2), and they were
tested using Kruskal-Wallis tests without correcting for multiple
testing and univariable logistic regression. To discover potentially
new bacteria associated with aGVHD, the discovery method
was used.

Clinical variables that were tested for an association with the
development of aGVHD included conditioning regimen, donor sex,
recipient and donor age, Charlson comorbidity score, underlying
disease, year of aHSCT, relationship (related/unrelated) with the
donor, HLA match, graft source, cytomegalovirus risk, and TBI dose.
All clinical factors found to be significant (P , .1) in the univariable
analyses were tested in a multivariable model using logistic
regression analysis. Those that were significant (P, .05) remained
in the final clinical multivariable model.

Clinical variables found to be associated with aGVHD were tested
(using Kruskal-Wallis tests) for an association with significant
microbial factors (ie, if donor age and bacteria X were both
separately associated with aGVHD, we tested for a potential
association between donor age and bacteria X). Logistic regression
was used to combine significant clinical and microbial factors into
one combined multivariable model for risk of developing aGVHD.
For additional information, see supplemental Methods.

Results

Patient characteristics and samples

A total of 163 patients delivered 399 stool samples in conjunction
with their aHSCT between January 2016 and October 2018. After
quality assessment of samples, 150 patients had 259 samples

eligible for further analysis. Patients were heterogeneous (Table 1),
with acute leukemia being the most common underlying disease
(n 5 58) and the majority having undergone nonmyeloablative
conditioning (n 5 88).

There were 86 samples from the period pre-aHSCT, 112 from the
early post-aHSCT period, and 62 from the late post-aHSCT period.
There were 27 patients who had samples during all 3 periods and
82 patients who had samples during 2 of the 3 periods. For gene
richness analyses, the quality-control read number cutoff was more
stringent, resulting in 64 patients with samples pre-aHSCT, 67
patients with samples early post-aHSCT, and 33 with samples late
post-aHSCT. For an overview of samples, see supplemental
Figure 1. Patient characteristics were similar across sampling
periods (supplemental Table 3).

Dynamics of gut microbiota

There were significant differences in diversity of gut microbiota
among the 3 time periods relative to aHSCT (Kruskal-Wallis P, .01
for all diversity measures; alpha diversity, gene richness, and
metabolic richness). Diversity was lower in the early post-aHSCT
period (median inverse Simpson index, 2.34; median gene richness,
5.2 3 104; median metabolic richness, 82) compared with the pre-
aHSCT period (median inverse Simpson index, 5.13; median gene
richness, 1.6 3 105; median metabolic richness, 89). Diversity
increased in the late post-aHSCT period, but only metabolic
richness recovered to pre-aHSCT levels (Figure 1). When
assessing consecutive samples derived from the same patient
(n5 27), a similar pattern was observed (supplemental Figure 2).

In addition to diversity, there was also a shift in the specific microbial
composition between the pre-aHSCT and the post-aHSCT periods
(Figure 2). The bacterial genera Staphylococcus, Eggerthella,
Streptococcus, and Lactobacillus increased significantly in relative
abundance (1.2 to 5 log2 fold-change) from pre-aHSCT to early
post-aHSCT and pre-aHSCT to late post-aHSCT periods (DESeq2
FDR ,0.001, Wilcoxon P , .01 adjusted for compositionality).
Several patients also acquired bacterial dominance (.30% relative
abundance) of Enterococcus (n 5 41 of 112) or Streptococcus (n
5 10 of 112) early post-aHSCT, with the main driving species being
E faecium and S thermophilus. There were an additional 21
bacterial genera and 51 bacterial species with significant changes
in abundance between time periods (Figure 2).

Gut microbiotic diversity and aGVHD

Among the 150 patients included in our cohort, 36 developed
aGVHD with a median time to development of 34 days (interquartile
range, 26-50 days) post-aHSCT. Samples taken after aGVHD
diagnosis and late post-aHSCT samples were removed to avoid
biasing the results (see “Methods” and supplemental Figure 1).

No significant association was observed between diversity meas-
ures and aGVHD in samples from the pre-aHSCT period (Figure 3).
However, in the early post-aHSCT period, patients who later
developed aGVHD had a significantly lower gene richness
compared with those who did not develop aGVHD (median gene
richness, 2.1 3 104 vs 5.7 3 104, respectively; Kruskal-Wallis P 5
.02). There was also lower metabolic richness in those who
developed aGVHD, although this difference was not statistically
significant (median metabolic richness, 78 vs 83 in those who did
not develop aGVHD; Kruskal-Wallis P 5 .07). There was no

24 NOVEMBER 2020 x VOLUME 4, NUMBER 22 aGVHD GUT MICROBIOME AND CLINICAL FACTORS 5799

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/4/22/5797/1790801/advancesadv2020002677.pdf by guest on 08 June 2024



significant difference between aGVHD groups when using alpha
diversity as a diversity measure (Kruskal-Wallis P 5 .74; Figure 3).

In addition to gene richness, we assessed differences in the
abundance of individual genes pre-aHSCT and early post-aHSCT
with regard to aGVHD. A total of 1267 and 1289 genes were
present in significantly different amounts among those who
developed aGVHD vs those who did not develop aGVHD pre-
HSCT and early post-aHSCT, respectively (DESeq2, FDR, 0.05).
Of these genes, 24 overlapped between the 2 time periods, all
being significantly higher in abundance among those who did not
develop aGVHD (Figure 4A). Interestingly, 1 gene (O2.CD1-0-
PT_GL0039283) had a .3 log fold-change in both periods and is
known to function as a z toxin (PetZ), triggering bacterial autolysis in
pathological bacteria. We further assessed whether specific
metabolic pathways were expressed in significantly different
amounts with regard to aGVHD. However, none were significant
after multiple testing correction (Figure 4B).

Specific gut bacteria and aGVHD

When assessing potential differences in the abundance of certain
bacteria, we first assessed 14 predefined bacteria on the basis of
data from previous literature (supplemental Table 2) for associa-
tions with the development of aGVHD. No significant differences in
bacterial abundance among the predefined bacteria were observed
in those who developed vs those who did not develop aGVHD in
samples from the pre-aHSCT period. In the early post-aHSCT
period, 2 of the 14 predefined bacteria were significantly lower in
abundance in those who developed vs those who did not develop
aGVHD;Blautia (P5 .05) and Amuciniphila (P5 .008); Figure 5A-
B; supplemental Figure 3). Further logistic regression found that the
absence of Blautia (odds ratio [OR], 3.21; 95% confidence interval
[CI], 1.18-8.78) and Bacteroides (OR, 3.08; 95% CI, 1.03-9.20)
was associated with an increased odds of aGVHD, whereas E
faecium (OR, 0.27; 95% CI, 0.07-0.98) was associated with
a decreased OR. A muciniphila was not present in any of the
samples from patients who developed aGVHD; thus, logistic
regression was not performed.

By using our discovery method (including all bacterial genera and
species if present in$10% of samples with an abundance$0.01%;
see “Methods”), we found that no bacteria were associated with
aGVHD in the pre-aHSCT period. In the early post-aHSCT period,
the genera Blautia, Akkermansia, and Campylobacter, as well as the
specific species A muciniphila were all significantly associated with
aGVHD (DESeq2 FDR P , .01; Wilcoxon test adjusted for
compositionality P # .05; Figure 5C-D). For all bacteria passing 1
of these 2 criteria, see supplemental Figure 4.

Blautia and A muciniphila were the only 2 bacteria to be confirmed
in both the predefined and discovery analyses. In both analyses, a lower
abundance of these bacteria was associated with an increased risk of
developing aGVHD (Figure 5A-B). A muciniphila was significant at
both species and genus levels. The specific species found within the
Blautia genus wereB obeum, B hydrogenotropica, andB hansenii.Of
these, B hydrogenotropica was found only in those who did not
develop aGVHD (supplemental Figure 5).

Clinical factors and aGVHD

When assessing clinical factors associated with aGVHD, all
150 patients were included and 36 experienced aGVHD.

Table 1. Patient characteristics

Characteristic No. (%)

Total patients 150 (100)

Male sex 80 (53)

Male donor 96 (64)

Median age (IQR), y 57 (50-65)

Median donor age (IQR), y 28 (22-40)

Donor

Related 33 (22)

Unrelated 117 (78)

Graft source

Peripheral blood stem cell 131 (87)

Bone marrow 19 (13)

HLA match

MRD 10/10 allele matched 30 (20)

MUD 10/10 1 9/10 allele matched 98 (65)

MUD 1 antigen mismatch 19 (13)

Haploidentical 3 (2)

Underlying disease*

Acute leukemia 58 (39)

Other 92 (61)

Disease risk†

High 51 (34)

Low 99 (66)

Karnofsky score at aHSCT

,90 25 (17)

90-,100 72 (48)

100 51 (34)

NA 2 (1)

Conditioning regimen

Myeloablative 62 (41)

Nonmyeloablative 88 (59)

Radiation

None 38 (25)

#400 Gy 88 (59)

$1200 Gy 24 (16)

T-cell depletion

Yes 17 (11)

No 133 (89)

All data are no. (%) unless otherwise stated.
IQR, interquartile range; MRD, matched related donor; MUD, matched unrelated donor;

NA, not available.
*Underlying diseases include acute lymphoblastic leukemia (ALL), acute myeloblastic

leukemia, acute nonlymphocytic leukemia, acute myelomonocytic leukemia, acute monocytic
leukemia, and chronic ALL.
†Factors for high risk of disease include greater than first complete remission or primary

induction failure for acute leukemia, non-Hodgkin leukemia, Hodgkin l, chronic lymphocytic
leukemia, myelodysplastic syndrome (MDS) with refractory anemia and excess blasts,
prolymphocytic leukemia (PLL), and severe aplastic anemia. Factors for low risk of disease
include first complete remission of acute leukemia; biphenotypic, bilineage, or hybrid
leukemia; chronic myeloblastic leukemia; Diamond-Blackfan anemia; MDS (minus refractory
anemia with excess blasts); precursor T-cell lymphoblastic lymphoma; peripheral T-cell
lymphoma; splenic marginal zone B-cell lymphoma; PLL T-cell lymphoma, and PLL B-cell
lymphoma.
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Radiation dose, graft source, conditioning regimen, and donor
sex were significantly associated with aGVHD in univariable
analyses. Radiation and graft source were highly correlated
with conditioning regimen. Therefore, only donor sex and
conditioning regimen were included in the final multivariable
model, with female donor (OR, 2.21; 95% CI, 1.01-4.86) and
myeloablative conditioning (OR, 2.95; 95% CI, 1.35-6.47)
associated with an increased odds of aGVHD (Figure 6;

for univariable and multivariable analyses, see supplemental
Table 5).

Clinical and microbial aGVHD risk factors

Next, we assessed associations between the clinical risk factors
and the gut microbiome factors (gene richness and abundance of
Blautia and A muciniphila) significantly associated with aGVHD.
There were no significant (P , .05) differences between the use of
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Figure 1. Dynamics of gut diversity relative to aHSCT.

Diversity measures (the inverse Simpson index on a –log10
scale [A]), gene richness [B], and metabolic richness [C]) of

samples for each period (pre-aHSCT, early post-aHSCT,

and late post-aHSCT). Overall Kruskal-Wallis analysis was

performed on the 3 periods within each diversity measure;

thereafter, pairwise Wilcoxon tests were performed for dif-

ferences in diversity between each period (ie, pre-aHSCT

and early post-aHSCT; pre-aHSCT and late post-aHSCT;

and early post-aHSCT and late post-aHSCT). ymin lower

whisker is smallest observation greater than or equal to

lower hinge 2 1.5 * IQR; ymax upper whisker is largest ob-

servation less than or equal to upper hinge 1 1.5 * IQR.
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female vs male donors regarding microbial factors. However, we
found a significant difference in gene richness between condition-
ing groups, with those who underwent myeloablative conditioning
having a significantly lower gene richness compared with those who
underwent nonmyeloablative conditioning (Kruskal-Wallis P,.001;
Figure 7A).

In addition to gene richness, the abundance of Blautia and A
muciniphila were both significantly different between conditioning
groups, with lower abundance in the myeloablative group compared
with the nonmyeloablative group (Kruskal-Wallis P, .001 and P 5
.01, respectively; Figure 6B-C). There were no significant differ-
ences in the abundance of either bacterium between female and
male donors.

When both clinical and microbial risk factors were combined in
a multivariable model for aGVHD, the significance of gene richness

in Blautia and A muciniphila were lost. Because of a lack of power,
we were unable to perform a mediation analysis to assess the
potential mediation of microbial diversity from myeloablative
conditioning on the development of aGVHD.

Discussion

To our knowledge, this is the first study to use shotgun
metagenomic sequencing in a large cohort of adults undergoing
aHSCT. We found substantial changes in gut microbiota relative to
aHSCT, with relation to both gut microbial diversity and the
abundance of different bacteria, especially from pre-aHSCT to early
post-aHSCT periods. Furthermore, lower gene richness as well as
a lower abundance of Blautia and A muciniphila early post-aHSCT
were associated with the subsequent development of aGVHD.
These microbial risk factors were also strongly associated with
conditioning: those who underwent myeloablative conditioning had
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aHSCT). The bacterial genera and species shown are only those found to be significantly different in abundance between the pre-aHSCT and early post-aHSCT periods and/
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lower gene richness and lower abundance of Blautia and A
muciniphila.

Previous studies have described a decline in gut microbial diversity within
the early posttransplantation period, with an increase of, and in certain
patients a dominance of, Enterococcus,22,42-46 Streptococcus,22,43,44

Lactobacillus,22,44 or Staphylococcus44,47 (among others). We found
a similar pattern, but because of the depth of our data, we could also

observe that the driving species within these dominating genera
were E faecium, S thermophilus, L delbrieckii, and S epidermidis.
With our shotgun metagenomic data, we could also assess gene
richness (the number of unique genes) and the potential
metabolic richness (the number of metabolic pathways), data
which have not previously been investigated in aHSCT patients.
Here, we found that these diversity measures, similar to the 16S
rRNA gene-based diversity measures, decrease post-aHSCT.
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However, metabolic richness seems to recover after the first month
post-aHSCT.

When examining microbial factors associated with the development
of aGVHD, we found that early post-aHSCT (1-28 days) seems to
be a crucial period for gut microbiota in relation to later aGVHD
development. Earlier studies have described that lower diversity
within the first weeks after aHSCT or close to engraftment is
associated with aGVHD,18,47,48 aGVHD severity,19 and aGVHD-
related mortality.20 In our study, gene richness was the sole diversity
measure that was significantly associated with the development of
aGVHD. A decrease in gene richness could imply a general loss of
bacteria but may also describe a loss of complexity in the remaining
bacteria. When delving further into our gene analysis, we found that
1 gene, with the highest log2 fold-change across both pre-aHSCT
and early post-aHSCT periods, encodes a z toxin known to be used
by pathological bacteria for autolysis.49,50 This novel finding
requires validation in future cohorts.

In addition to lower diversity, a lower abundance of Blautia and A
muciniphila was also associated with the development of aGVHD
early post-aHSCT. Blautia has previously been associated with
aGVHD in only 1 other study18; however, there have been
associations with aGVHD severity19 and aGVHD-associated mortal-
ity.20 Here, we were able to confirm the association of Blautia with
later development of aGVHD. A muciniphila was also found to be
protective in our cohort. Previous literature has suggested an
opposite effect.51 However, this could be the result of methodologic
differences because the results from the aforementioned study were
based on murine models at the time of aGVHD. In addition, studies
focusing on other diseases have described a protective or anti-
inflammatory effect of A muciniphila.52,53

There have been several other bacteria found to be associated with
aGVHD in previous studies,18-20,42,54 although few have been
validated more than once. These inconsistent findings could be
a result of different taxonomy levels applied, unclear preprocessing
quality steps, inclusion of samples after the outcome in question,
and/or undefined statistical or bioinformatic methods. Finally, given
the number of bacteria assessed and the small sample sizes used in
microbiome studies, there is a substantial risk of false positives.

To overcome these issues, we have used samples only from before
aGVHD diagnosis and in an early period posttransplant. Further-
more, we have chosen to first validate potential bacteria on the
basis of previous studies. Then, we used a discovery method to
assess bacteria at genera and species levels by combining 2 types
of testing to provide the first shotgun-based associations with
a clearly defined phenotype. Blautia and A muciniphila were found
to be consistently associated with aGVHD in both hypothesis-
based and discovery methods, leading us to believe that these
findings are robust. This does not exclude that the genus
Campylobacter found solely through our discovery method nor E
faecium from our hypothesis-based testing may be involved in the
development of, or associated with, aGVHD. However, these
bacteria need to be validated in independent cohorts.

Among the clinically significant factors associated with aGVHD
from our study, conditioning was also significantly associated with
microbial factors, and patients undergoing the more intensive
myeloablative treatment developed significantly lower diversity and
lower abundance of Blautia and A muciniphila, the 3 microbial
factors associated with aGVHD. Associations between condition-
ing and the microbiome in the literature are inconsistent, with
conflicting data on microbiome diversity and conditioning
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intensity.18,44 This could reflect the variation in conditioning types
and regimens between centers. At our center, we use a low-dose
truly nonmyeloablative regimen and an intensive myeloablative
regimen; therefore, there may be larger differences in treatment
intensity between myeloablative and nonmyeloablative conditioning
regimens at our center compared with others. Myeloablative and
nonmyeloablative conditioning regimens also receive different
prophylactic antibiotics and could potentially receive different
amounts of broad-spectrum antibiotics. Unfortunately, we did not
have access to the exact dose and type of antibiotics administered
in our cohort. Different antibiotic usage could be a confounding
factor for microbial differences between groups. However, regard-
less of the cause, the results presented in this article show that
conditioning affects the gut microbiome post-aHSCT, including the
specific microbiome factors that are associated with aGVHD (gene
richness, Blautia, and A muciniphila).

What is not clear from our results is whether myeloablative
conditioning modulates risk of aGVHD through alteration of the
microbiome or whether the changes in the microbiome are merely
bystander affects. However, it is not inconceivable that a lower gene

richness would promote a more inflammatory enterotype conducive
to aGVHD. Although it is difficult to pinpoint what a healthy
microbiome is, previous studies have shown that less rich micro-
biome profiles are associated with increased inflammation55,56 and
that a general loss of diversity can negatively affect immunity.57,58

Therefore, in our cohort, the less rich microbiome observed after the
intense myeloablative conditioning could be driving a pro-
inflammatory environment, increasing risk of aGVHD through either
bacterial or metabolite translocation or cross talk between bacteria
in the gut and the gut mucosal immune cells. Blautia is known to be
involved in butyrate production,59 which is important for inducing
regulatory T cells,60 reducing inflammatory responses,61 and aiding
the gut barrier through being an important energy source for
enterocytes.62 Therefore, a decrease of Blautia could lead to
a more inflammatory gut with less healthy enterocytes and thereby
an increased risk of aGVHD.

Limitations of this study include the collection of samples from
a single center. However, our clinical practices are generally
comparable to others, and we have a large cohort with complete
ascertainment of aGVHD. Because this is the first study among
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Figure 5. Bacterial species and genera associated with subsequent development of aGVHD. (A-B) The relative abundance (% on a –log10 scale) of the significant

predefined bacteria, Blautia and A muciniphila, respectively, among those who do not develop aGVHD vs those who do develop aGVHD early post-aHSCT. (C-D) Our
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adult aHSCT recipients that uses shotgun metagenomic sequenc-
ing, we are also limited in comparison to other studies. However, we
have used a conservative statistical approach and have been clear
when describing discovery- or hypothesis-driven results, and
therefore we believe our findings are robust.

In conclusion, we found that microbiome factors, including lower
gene richness and lower abundance of the bacteria Blautia and
A muciniphila were associated with a higher risk of aGVHD in

a large aHSCT cohort by using shotgun metagenomic sequenc-
ing. We also observed that these same microbial factors were
associated with more intense conditioning, highlighting the
susceptibility of the gut microbiome to changes induced by
aHSCT–associated treatments. However, further studies are
required to determine whether the associations between
microbial factors and aGVHD are being mediated through
conditioning or whether these changes are directly involved in
the pathogenesis of aGVHD.
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