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Key Points

• Systemic immune mi-
croenvironment signa-
tures in CMML indicate
an altered T- and natu-
ral killer cell balance.

•CMML bone marrow
dendritic cell aggre-
gates associate with
disease progression
and systemic regulatory
T-cell phenotypic
switch.

Introduction

Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm with an
inflammatory mileu1 and a clinical association with autoimmune disorders/inflammatory syndromes,2-4

suggesting pervasive immune deregulation. Upregulation of specific immune checkpoints such as
programmed death ligand 1 in CD341 cells and programmed cell death protein 1 in stromal cells from
patients with CMML (and myelodysplastic syndromes/acute myeloid leukemia [AML]) has been shown
previously5; however, specific mechanisms of immune tolerance remain to be elucidated.

Numerous studies have reported the presence of plasmacytoid dendritic cell (DC; pDC) aggregates in
CMML bone marrow (BM),6,7 with a recent study concluding that these are clonal and associate with
RAS-pathway mutations.7 Previous studies using melanoma mouse models have established a role for
indoleamine 2,3-dioxygenase 1/2 (IDO1/2) in regulating pDC8-10 and myeloid DC (mDC) plasticity,11,12

inducing tolerogenic phenotypes in both contexts. IDO is an immune-checkpoint enzyme that induces
systemic immune tolerance through multiple mechanisms, including regulatory T-cell (Treg) expansion
and tryptophan catabolism.13,14 In AML and myelodysplastic syndromes, IDO expression has been
identified as an independent adverse prognostic factor,15-18 and shown to impair immune response by
Treg induction.19 In CMML, the role of IDO in DC (both CD1231 pDCs and CD11c1 mDCs) and T-cell
interactions, and systemic immune microenvironment remains to be defined.

Methods

CMML patient samples (BM tissue blocks, peripheral blood mononuclear cell [PBMC], and plasma) from
our clinically and molecularly annotated biobank were obtained after regulatory approval. Approval was
obtained through the Mayo Clinic Institutional Review Board.

Immunohistochemistry (IHC; hematoxylin and eosin, IDO, CD123, and CD11c), multiplex immunostain-
ing (IDO, CD123 and CD11c), liquid chromatography–mass spectrometry (LC-MS), time-of-flight mass
cytometry (CyTOF), cytokine profiling (Luminex array), and gene-expression analysis (bulk RNA
sequencing) were performed in-house. IHC slides were independently reviewed by 2 hematopathol-
ogists. Detailed protocols and methods are available in supplemental Methods.

Results and discussion

IDO1 DC aggregates in the BM microenvironment are associated with disease

progression in CMML

IHC with H&E and IDO stains were performed on BM biopsies of 103 CMML patients (80 at diagnosis).
At least 1 morphologically defined BM IDO1 DC aggregate (IDC; morphologically defined as a cluster of
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$10 cells with DC morphology, consensus agreement by 2
hematopathologists with 90% concordance) was identified in 34
patients (33%; 25% at diagnosis). IDO expression was validated
by 2 different commercially available antibodies (rabbit polyclonal
[Sigma-Aldrich] and rabbit monoclonal [Cell Signaling Technology];
details in supplemental Methods). DC-phenotypic characterization

was done by CD123 and CD11c staining (Figure 1A-D), with 18
patients (56%) being positive for both, 7 (22%) for CD123, and
5 (16%) for CD11c only (2 were negative for both, 2 were status
unknown), suggesting that IDO expression is not limited to the
previously described CD123-marked pDC aggregates in CMML.7

IDO expression in the DC vicinity was further confirmed by multiplex
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Figure 1. IDC populations are present in the CMML

BM microenvironment, associate with adverse

AML-free survival, and associate with metabolic

signatures of systemic IDO activity. (A) Hematoxylin-

and-eosin staining of an area of CMML BM with IDC. (B)

IDO staining. (C) CD123 staining. (D) CD11c staining.

(A-D) Original magnification 3600; scale bar, 100 mm.

(E) Multiplex immunostaining showing clustering of IDO

expression with CD123 and CD11c stains in a CMML BM,

confirming expression in a DC population. Original magni-

fication 320. (F) Kaplan-Meier estimate of AML-free sur-

vival (LFS) in CMML patients with IDC at any disease time

point (n 5 34) vs CMML patients without IDC (n 5 69;

median, 122 vs 107 months; *log-rank P 5 .04). Although

the median LFS is paradoxically higher in the IDC group

due to late events that make the group reach the median,

this is a statistical aberration. The survival curves clearly

separate early and stay separated for the majority of

follow-up (with the IDC group showing inferior survival;

lower curve in red). Consequently, the corresponding haz-

ard ratio from a Cox proportional hazard model is signifi-

cantly greater than 1.00 (hazard ratio, 2.3 [95% CI, 1, 5.4;

*P 5 .049], panel F, supplemental Table 1). (G-I) Similar

tryptophan (42.4 vs 43.6 mM; P 5 .9), higher kynurenine

(4.1 vs 1.8 mM; ***P 5 .0006), higher 3-hydroxykynurenine

(0.06 vs 0.01 mM; ****P , .0001) concentrations in CMML

patients (n 5 18) and normal controls (n 5 15), re-

spectively, as evaluated by LC-MS in plasma samples. (J)

Higher kynurenine concentration in diagnostic plasma sam-

ples (n 5 6) of CMML patients with vs without BM IDC

(4.7 vs 3 mM; *P 5 .049); data included for samples in

which IHC and LC-MS assessment was done at the same

time point. ns, not significant.
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Figure 2. Mass cytometry (CyTOF) analysis of PBMC samples from untreated patients with CMML and age-matched normal PBMC controls. (A) Heatmap of all

the markers used in the CyTOF panel (details in supplemental Table 3) and stratified by a representative sample in each group (normal control [NC], CMML without BM IDC

aggregates, and CMML with BM IDC). Expression is indicated as transformed ratio of means. (B) Tregs, calculated as median value of percentage (%) of parent cell type
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(IDO, CD123, and CD11c) staining in 2 biological replicates
(Figure 1E). Although there was variability both within each IDC in
a CMML BM and between each case, ;30% of CD1231 and
CD11c1 cells coexpressed IDO (as assessed by visual inspection).
This again suggests that IDO expression is not limited to pDCs.
To conclusively ascertain cell-type–specific IDO expression in
CMML, we developed an 8-color flow cytometry panel to isolate
DCs (panel details and gating strategy are available in supplemental
Figure 1 and supplemental Methods). Flow results from CMML (n5
2 biological replicates) peripheral blood confirmed IDO coexpres-
sion with CD451/CD32/CD192/CD562/CD142/CD162/HLA-DR1

DCs, predominantly on CD11c1/CD123dim mDCs rather than
CD11c2/CD1231 pDCs with interferon-g stimulation (supplemen-
tal Figure 2). However, expression was also seen on monocytes, but
not lymphocytes (similar results were seen with a normal sample;
supplemental Figure 2). Collectively, the IHC and flow cytometry
results establish that an IDO-expressing DC aggregate in CMML is
not solely populated by CD1231 pDCs, but likely also includes
other cell types such as mDCs, and CD1231/CD11c1 monocytes
(although other known IDO-expressing populations such as
myeloid-derived suppressor cells cannot be excluded) reflecting
complex intercellular interactions.

In patients without IDC at diagnosis (n5 60), 1 of 7 patients (14%)
who progressed after a hypomethylating agent, and 2 of 7 patients
(29%) who underwent AML transformation acquired IDC at
time of progression and AML transformation, respectively, indicat-
ing a potential association of BM IDC in CMML with disease
progression. This possibility is further strengthened by the
observation of a higher frequency of AML transformation (41%
vs 13%; **P 5 .002) and an adverse Kaplan-Meier estimate of
AML-free survival (hazard ratio, 2.3 [95% confidence interval
[CI], 1, 5.4] vs 0.4 [95% CI, 0.2, 0.9]; *P 5 .049; median, 122 vs
107 months; Figure 1F; supplemental Table 1) in CMML patients
with, vs without, BM IDC aggregates at any time point (although
the median AML-free survival is paradoxically higher in the IDC
group due to late events that make the group reach the median,
which is a statistical aberration; the survival curves clearly
separate early and stay separated for the majority of follow-up
with the IDC group, showing an inferior estimate of AML-free
survival [lower curve in red; Figure 1F]). Additionally, CMML
patients with and without IDC at any disease time point were
evenly matched for clinical, genetic, and prognostic character-
istics with only minimal differences as indicated in supplemen-
tal Table 1. Unlike in AML in which IDO expression is seen
in leukemic blasts,15-17 in CMML, IDO is expressed in DC
aggregates in the BM microenvironment and, similar to CD1231

infiltrating pDCs,7 are associated with an increased frequency of
AML transformation.

Metabolic signatures of systemic IDO activity are

evident in CMML

We then assessed for evidence of systemic IDO activity in CMML
by measuring tryptophan and its metabolites (kynurenine and
3-hydroxykynurenine). Through LC-MS, although median trypto-
phan concentrations (42.4 vs 43.6 mM; P5 .9; Figure 1G) were not
significantly different between CMML (n 5 18) and normal control
plasma samples (n5 15), kynurenine (4.1 vs 1.8 mM; ***P5 .0006;
Figure 1H), and 3-hydroxykynurenine (0.06 vs 0.01 mM; ****P ,
.0001; Figure 1I), concentrations were higher in CMML (supple-
mental Table 2). These findings suggest accentuated tryptophan
catabolism in CMML, a signature of systemic IDO activity.20

Furthermore, median kynurenine concentration was higher in
CMML patients with vs without BM IDC at diagnosis (4.7 vs
3 mM; *P 5 .049; Figure 1J), suggesting increased systemic IDO
activity in the former group.

CyTOF assessment highlights an altered T- and

NK-cell balance in CMML

To characterize the immune microenvironment in CMML, we
selected untreated (except hydroxyurea) CMML PBMC (n 5 10;
supplemental Table 1) samples and age-matched normal PBMC
controls (n 5 10, median age, 54 years [range, 50-65 years],
voluntary blood bank donors) and performed CyTOF analysis
(details in supplemental Methods). Quantitative comparisons
(percentage of parent cell type) indicated significant differences
between CMML and controls including decreased naive T cells (1.1
vs 12.3; *P5 .02), CD8 central memory cells (2 vs 8.5; **P5 .007),
type 1 helper T cells (Th1; median, 4.04 vs 27.2; **P 5 .003), Th1/
Th2 balance (ratio, 0.3 vs 9.6; **P 5 .003), CD4 terminal effector
cells (11.6 vs 38.7; *P 5 .02), and gd T cells (0.6 vs 1.6; **P 5
.006), with an expanded CD4 central memory (29.7 vs 13.4; **P 5
.004) and natural killer (NK)-cell population (2.6 vs 1.1; *P 5 .02)
(supplemental Table 2). Altered NK- and T-cell balance has been
shown in AML,21,22 and CML,23 suggesting similar patterns of
immune dysregulation in CMML.

IDO1 BM DC aggregates are associated with

expanded systemic Treg compartment in CMML

When untreated CMML patients with (n 5 5) and without BM IDC
(n 5 5) were compared, the former group showed a higher
percentage (of parent cell type) of Tregs (14.5% vs 3.6%; *P5 .03;
supplemental Table 3; Figure 2F-H). This suggests that IDC in
the CMML BM microenvironment is likely associated with Treg
differentiation in the systemic T-cell compartment. As shown in
the context of other maligancies,8 this is likely due to DC–T-cell
interactions driven by T-cell recruitment to these locations, as

Figure 2. (continued) (CD4 T), did not significantly (ns) differ between CMML cases and controls (8.5 vs 5.5; P 5 .4). (C-D) Significantly suppressed median percentage (%)

of parent cell aggregates of Th1 (median, 4.04 vs 27.2; **P 5 .003) and CD4 terminal effector (te) cells (11.6 vs 38.7; *P 5 .02). (E) An expanded NK (2.6 vs 1.1; *P 5 .02)

cell population in CMML vs normal controls. (F) Visualization of dimensionality reduction analysis plot with gates delineating CD41, CD81, CD11c1, CD141, and CD161

aggregates. (G) Expression of specific markers such as CD4, CD25, and CD127 (colors represent the median intensity of specified marker with red representing the brightest

intensity and blue indicating no or minimal intensity). This figure provides a visualization of an expanded Treg (CD41/CD251/CD127dim) population in a CMML patient with vs

without BM IDC. (H) Quantitative analysis confirming an expanded Treg (% parentCD4 T cell) population in untreated CMML patients with BM IDC (n 5 5) vs untreated

CMML patients without BM IDC (n 5 5; median, 14.5 vs 3.6; *P 5 .03). (I) GSEA showing significant enrichment of Treg-associated genes (normalized enrichment score

[NES] 5 3.97; ***P , .0001) through RNA-sequencing analysis of untreated PBMC samples derived from CMML patients (n 5 4, indicated in red) with vs without (n 5 4,

indicated in blue) BM IDC (samples collected at the same time point as IHC assessment).
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evidenced by cytokine profiling, which showed higher median levels
(picograms per milliliter) of known T-cell chemoattractants,24,25

RANTES (CCL5, 8650 vs 349.7; *P 5 .04) and macrophage
inflammatory protein-1b (MIP-1b; 28.7 vs 10.8; *P 5 .049), in
diagnostic plasma samples of CMML patients with vs without
BM IDO1 DC aggregates (supplemental Table 4). Furthermore,
kynurenine levels showed a significant strong positive correlation
with the percentage of Treg populations (Spearman r 5 0.9; *P 5
.04; supplemental Figure 3) in diagnostic samples (plasma and
PBMC, respectively, n5 5) collected at the same time point. Due to
constraints of limited sample size in the above-mentioned analyses,
additional validation was conducted using an alternative method-
ology: gene-set enrichment analysis (GSEA) was performed in
a subset of PBMC RNA obtained from untreated patients at the
same time as their BM IHC assessments. GSEA results confirmed
Treg-associated gene upregulation (normalized enrichment score 5
3.97; ***P , .0001) in untreated CMML patients with vs without
BM IDC (n 5 4 each; Figure 2I).

In summary, our constellation of IHC, flow cytometry, LC-MS,
CyTOF, cytokine profiling, and gene-set enrichment analysis results
provide evidence of systemic immune dysregulation in CMML, and
highlight the association of BM IDC aggregates with a T-cell
compartment shift toward a Treg phenotype. Future research is
needed to clarify the genetic/epigenetic events responsible for
CMML IDC formation to pinpoint the biology of DC–T-cell
interactions, recapitulate the findings in in vivo models, and
explore therapeutic vulnerabilities with IDO and/or CD123-
directed therapies.
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