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Key Points

•Comprehensive pro-
teomics resource com-
paring the noncellular
compartment of AML
and healthy human BM,
paired with RNA-
sequencing.

• Proteomic analysis
(.1300 targets)
showed that 168 extra-
cellular proteins signifi-
cantly differed in BM
between AML and
healthy donors.

Acutemyeloid leukemia (AML) is a genetically heterogeneous disease that is characterized by

abnormal clonal proliferation of myeloid progenitor cells found predominantly within the

bone marrow (BM) and blood. Recent studies suggest that genetic and phenotypic

alterations in the BM microenvironment support leukemogenesis and allow leukemic

cells to survive and evade chemotherapy-induced death. However, despite substantial

evidence indicating the role of tumor–host interactions in AML pathogenesis, little is

known about the complex microenvironment of the BM. To address this, we performed

novel proteomic profiling of the noncellular compartment of the BM microenvironment

in patients with AML (n5 10) and age- and sex-matched healthy control subjects (n 5 10)

using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan).

We show that proteomic assessment of blood or RNA-sequencing of BM are suboptimal

alternate screening strategies to determine the true proteomic composition of the

extracellular soluble compartment of AML patient BM. Proteomic analysis revealed that

168 proteins significantly differed in abundance, with 91 upregulated and 77

downregulated in leukemic BM. A highly connected signaling network of cytokines and

chemokines, including IL-8, was found to be the most prominent proteomic signature

associated with AML in the BM microenvironment. We report the first description of

significantly elevated levels of the myelosuppressive chemokine CCL23 (myeloid

progenitor inhibitory factor-1) in both AML and myelodysplastic syndrome patients and

perform functional experiments supportive of a role in the suppression of normal

hematopoiesis. This unique paired RNA-sequencing and proteomics data set provides

innovative mechanistic insights into AML and healthy aging and should serve as a useful

public resource.

Introduction

Acute myeloid leukemia (AML) is a complex oligoclonal and genetically heterogeneous disease
characterized by the abnormal proliferation of immature myeloid cells. This accumulation of leukemic
blasts within the bone marrow (BM) and peripheral blood (PB) is often accompanied by the failure of
normal hematopoiesis.1,2 Although a morphologic complete remission is achieved in most patients after
standard intensive chemotherapy, approximately two-thirds of the patients remain at risk of relapse due
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to the persistence of low-level residual disease.3,4 The BM
microenvironment is presumed to contribute to leukemic relapse,
as the interaction of residual leukemic stem cells with stromal
components of the BM niche favors their survival and mediates their
resistance to chemotherapy.5-11 However, despite the key role of
BM microenvironment during the initiation, progression, and
treatment response of AML, the detailed nature and dynamics of
niche–leukemic cell interactions that permit leukemia growth are
not well understood. Moreover, it remains poorly defined how the
composition and architecture of the leukemic niche differ from
those of its normal counterpart.

The BM microenvironment is composed of endosteal and vascular
niches housing many cellular and noncellular components that
collectively participate in regulation, self-renewal, proliferation, and
differentiation of normal hematopoietic stem cells (HSCs).12,13

HSCs are preferentially localized in endosteal zones in close
proximity to the vascular niche, where they interact with mesen-
chymal stem/stromal cells (MSCs), sinusoidal endothelial cells,
perivascular cells, osteoblasts, osteoclasts, macrophages, adipo-
cytes, autonomic neurons, extracellular vesicles, extracellular matrix
components, including collagen, fibronectin, laminin networks, and
a variety of adhesion factors, growth factors, and cytokines/
chemokines.14 The crosstalk between leukemic blasts and niche
cells through the release of soluble niche factors, including
cytokines and growth factors, induces a remodeling of the BM
niche that contributes to AML progression.15-17 Recent studies
have shown that: (1) AML cells induce osteogenic but inhibit
adipogenic differentiation of MSCs through secreted bone
morphogenetic protein (BMP)–mediated signaling6; (2) AML-
secreted exosomes transform the BMniche into amicroenvironment
that favors leukemia growth while suppressing normal hematopoi-
esis7; (3) the pro-inflammatory cytokine interleukin-1 (IL-1) can
promote the expansion of AML progenitor cells from patients with
AML and in vivo disease progression through aberrant activation of
the IL-1/p38MAPK pathway18; (4) AML cells in the endosteal BM
region release cytokines that lead to remodeling of vasculature with
a reduced ability to support normal hematopoiesis19; and (5) FoxO1
synergizes with activated b-catenin to stimulate the expression of
Jagged1 in osteoblasts. This action triggers aberrant Notch
signaling in HSCs and induces their leukemogenic transformation,
ultimately leading to the development of AML.10,20

Despite this growing interest in the concept of the tumor
microenvironment in AML pathobiology, it has not yet been fully
described how the noncellular soluble compartment of the BM
niche in patients with AML differs from healthy marrow in terms of its
proteomic composition. A recent report detailed the proteomic
profile of 151 proteins in BM-derived MSCs from a cohort of
patients with AML and healthy control subjects by reverse phase
protein array; the study revealed 4 major signatures of MSCs in
patients with AML, with varying biological properties and clinical
implications.21 However, deeper characterization should allow
a more granular understanding of the differences in the BM
microenvironment in AML compared with healthy aging.

Here, we provide the first quantitative large-scale proteomic
analysis of the noncellular soluble compartment of the BM
microenvironment in patients with AML compared with healthy
control subjects using the SOMAscan assay. This assay is a highly
multiplexed and high-throughput affinity proteomics platform based

on the ability of modified aptamers (modified small single-stranded
oligonucleotides) to bind .1300 target proteins with high specificity
and affinity at slow dissociation rates.22-29 We supplemented this
data set with proteomic analysis of PB serum and RNA-sequencing
of BM aspirate cells to allow comparison between compartments
and detection methodology. This work provides mechanistic
insights into the AML BM microenvironment that should serve as
a useful comprehensive benchmarking resource for subsequent
investigations.

Methods

Clinical samples

Blood and BM aspirate samples were collected after receipt of
written informed consent on National Heart, Lung and Blood Institute
institutional review board–approved protocols (NCT00071045,
NCT00442195, and NCT00217594). For RNA-sequencing and
proteomics, samples were collected during 2017 from 10
patients with relapsed/refractory AML (NCT02996474) and 10
age- and sex-matched healthy control subjects. For validation of
SOMAscan findings, sera were collected from a large combined
cohort of 24 patients with relapsed/refractory AML and 20 age-
matched healthy control subjects, including all subjects de-
scribed earlier and 9 patients with myelodysplastic syndrome
(MDS).

Serum samples were collected by drawing PB into serum separator
tubes (BD Biosciences), incubation at ambient temperature for at
least 30 minutes, and then centrifugation at 1000g for 10 minutes.
For BM plasma samples, fresh BM aspirates were diluted 1:1 with
phosphate-buffered saline, 8 mL of which was delivered into cell
preparation tubes (BD Biosciences), centrifuged at 1500g for
20 minutes, and the resulting supernatant collected. The BM
plasma and PB serum samples were immediately aliquoted and
stored at 280°C. For RNA-sequencing, BM aspirate was collected
in PAXgene BM RNA tubes (Qiagen, Germantown, MD) and stored
at -80°C for subsequent RNA extraction.

SOMAscan assay

Proteomic analysis of 1305 target proteins was performed by using
a 1.3k assay on a SOMAscan hybridization microarray platform
(SomaLogic, Inc., Boulder, CO)30 in 96-well plates on a Freedom
Evo 200 High Throughput System (Tecan Group Ltd., Männedorf,
Switzerland). Samples were diluted to 3 concentrations (40%, 1%,
and 0.005%) to maximize the dynamic range. Calibrators, buffer
only, and quality control (QC) samples were randomly assigned to
the plate design. SOMAmer reagents were hybridized on micro-
array slides and abundance quantified in relative fluorescence units.
Raw data were corrected by using hybridization control normaliza-
tion and median signal normalization procedures.31

RNA-sequencing

RNA was isolated from PAXgene BM RNA tubes using the
PAXgene BM RNA kit (PreAnalytiX GmbH, Hombrechtikon,
Switzerland). RNA quantity was measured by using a Qubit 2.0
Fluorometer (Thermo Fisher Scientific, Waltham, MA), and RNA
quality was assessed by using the TapeStation system (Agilent
Technologies, Santa Clara, CA). All samples had RNA Integrity
Numbers of seven or higher. Libraries were prepared by using the
TruSeq Stranded Total RNA Sample Preparation Kit (Illumina Inc.,
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San Diego, CA) with 1 mg of total RNA input, and paired-end 75 bp
sequencing was performed on a HiSeq 3000 (Illumina). Data sets
have been deposited in the National Center for Biotechnology
Information’s Gene Expression Omnibus (GSE138702).

Luminex assay

The Luminex Performance Human XL Cytokine Discovery Panel
was used to independently verify the levels of IL-8 (CXCL8) (R&D
Systems, Minneapolis, MN). Samples were run in duplicate in one
batch, along with blanks, standards, and high and low concentration
controls. Fluorescent values beyond the range of the standards
were extrapolated (unless the fluorescence intensity was below that
of the blanks). Average value of duplicates was used for data
analysis.

Enzyme-linked immunosorbent assay

Validation of CKb8 levels used DuoSet sandwich enzyme-linked
immunosorbent assay (ELISA) human myeloid progenitor inhibitory
factor (MPIF-1) kits (R&D Systems) and a Synergy LX multimode
reader (BioTek Instruments Inc., Winooski, VT) with wavelength
correction. A standard curve was calculated with a 4-PL regression
model using Gen5 software (BioTek Instruments Inc.).

Clonogenic assay of human CD341 progenitors

Human BM CD341 cells from a healthy control were washed in
X-VIVO 15 serum-free hematopoietic cell medium (Lonza, Walkers-
ville, MD). The cells were then suspended (500 cells/mL) in
MethoCult semisolid medium (STEMCELL Technologies, Cam-
bridge, MA) supplemented with a cocktail of cytokines (human stem
cell factor, human IL-3, human IL-6, human erythropoietin, human
granulocyte colony-stimulating factor, and human granulocyte-
macrophage colony-stimulating factor), plated with recombinant
human MPIF-1 isoforms, CKb8 and CKb8-1 (R&D Systems), at
increasing concentrations (0, 0.5, 5, and 50 ng/mL). Colonies were
allowed to grow by incubating the dishes at 37°C in a humidified
atmosphere containing 5% carbon dioxide. Resulting colonies were
scored under an inverted microscope after 13 days.

Data analysis

Normalized SOMAscan data were analyzed by using a web-based
tool (https://foocheung.shinyapps.io/adat_v02/).32 Differential ex-
pression of analyzed targets was assessed by using the unpaired
Mann-Whitney U test with a false discovery rate (FDR) cutoff of 0.
05. Prism version 8.0.2 software (GraphPad Software, La Jolla, CA)
was used to perform statistical analyses. The Mann-Whitney U test
was used to determine statistically significant differences between
groups for IL-8 and MPIF-1 isoform levels. Spearman’s correlation
was performed to identify the degree of correlation for analyte levels
determined by different assay types (SOMAscan vs Luminex). Two-
tailed Student unpaired t tests were used to determine statistical
significance of the effect of recombinant human CKb8 and CKb8-1
on colony formation by CD341 cells.

For RNA-sequencing analysis, reads were aligned to human
genome assembly GRCh37/hg19 by HISAT2 (version 2.1.0)33

with default setting for paired-end reads. The aligned reads were
converted to BAM files and sorted by using SAMtools 1.934 with
index files created. The sorted BAM files were processed in R
version 3.5 (R Foundation for Statistical Computing, Vienna,
Austria) with Bioconductor packages. The count matrix on gene

level was generated by featureCounts35 in Rsubread function. The
differentially expressed genes were found by edgeR with an FDR
cutoff of 0.05 and the fold change (FC) cutoff of 1.5. Gene Set
Enrichment Analysis (GSEA) was performed based on preranked
genes considering both the direction of enrichment indicated by
FC and the level of significance indicated by FDR.36 Three signature
databases (Reactome,37 Kyoto Encyclopedia of Genes and Genomes
[KEGG],38 and Gene Ontology [GO]39,40) were used to identify
networks of differentially expressed genes. Heatmaps were plotted
with the standardized feature counts, which were first normalized to
account for the library size.

STRING database version 11.0 (https://www.string-db.org/) was
queried for pathway and cluster analysis of enriched protein sets in
the AML group and to construct a protein–protein interaction (PPI)
network.41

Results

BM cells from patients with AML harbor significant

alterations in global gene expression profiles

We first performed total RNA-sequencing on whole BM aspirate
from a cohort of 10 patients with AML (median age, 62 years; range,
30-81 years) (Table 1) and 10 age- and sex-matched healthy donor
control subjects (median age, 53.5 years; range, 34-65 years).
Comparison of transcriptome profiles revealed distinct gene
expression patterns with 4807 genes differentially expressed in
AML BM (FC $1.5; FDR #0.05) (Figure 1A). The full list of
upregulated and downregulated genes is provided in supplemental
Tables 1 and 2. Hierarchical clustering of the top 100 aberrantly
expressed genes resulted in a successful separation of patients
with AML and healthy control subjects into 2 distinct groups,
indicating a common disease-specific transcriptional signature for
AML (Figure 1B).

Functional assessment of upregulated genes by GSEA using the
Reactome, KEGG, and GO databases revealed significant
enrichment of gene functions particularly linked to metabolic
pathways, including RNA metabolism, protein metabolism, and
amino acid metabolism along with translation, oxidative phosphor-
ylation, cell cycle, extracellular matrix organization, and activation of
the NF-kB pathway (Figure 1C). Unlike the upregulated genes that
were enriched for diverse functions, the GSEA of downregulated
genes revealed no significantly enriched pathways or terms with
adequate statistical power.

Our RNA-sequencing approach only represents a single, static, and
spatiotemporal snapshot of stable RNA molecules present in whole
BM aspirate cells of patients with AML compared with healthy
control subjects. Moreover, given that the plasma proteome is
secreted from multiple cell types residing in BM, RNA derived
from intracellular sources of BM may not reflect the proteomic
composition of the extracellular compartment. We therefore
complemented these findings with a high throughput proteomic
analysis of BM plasma.

SOMAscan analysis enables identification of

numerous novel proteins differentially expressed in

the BM niche of patients with AML

To identify differentially abundant proteins, we performed proteomic
analyses of 1305 proteins in BM plasma samples derived from the
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same patients with AML and healthy control subjects described
earlier using the aptamer-based SOMAscan proteomics assay. We
first performed principal component analysis to validate the data
generated with the SOMAscan platform, which showed clear
separation of buffers, calibrators, internal/external QC controls, and
BM plasma samples used in the screening assays (Figure 2A). In
total, 168 analytes that passed our filtering criteria (FC $ 1.5; FDR
# 0.05) were identified as significantly different in BM plasma
samples from patients with AML vs healthy control subjects
(Figure 2B). Of these, 91 proteins were significantly more abundant
and 77 proteins less abundant in leukemic marrow compared with
healthy marrow (supplemental Tables 3 and 4, respectively). In
addition to proteins with an established role in the pathophysiology
of AML such as iron homeostasis regulators (eg, erythropoietin,
hepcidin, ferritin) and dysregulated pathways previously identified
as disease-relevant (eg, arginase),42 we identified numerous
proteins whose role in AML pathogenesis or treatment is currently
undescribed. The unsupervised hierarchical clustering of subjects
based on their expression levels of the 168 differentially expressed
proteins accurately discriminated patients with AML and healthy
control subjects, with only one exception (Figure 3A).

We next examined the similarities and differences in the proteomic
profile of the BM microenvironment and the PB by performing
the SOMAscan assay on PB serum samples collected in parallel
from the same patients with AML and healthy control subjects.
Comparative analysis between PB serum and BM plasma samples
identified 65 similarly regulated proteins (37 upregulated vs 28
downregulated) and 1 differently regulated protein (MetAP2)
(Figure 3B; supplemental Table 5). Full lists of upregulated and
downregulated proteins identified in the PB serum of patients with
AML are provided in supplemental Tables 6 and 7, respectively. Of
the total 168 and 165 proteins differentially expressed in BM
plasma and PB serum samples, 102 proteins were specifically
dysregulated only in the BM compartment.

We further compared the transcriptome data generated by in-depth
bulk RNA-sequencing of whole BM aspirate cells with the
proteomics data obtained from the SOMAscan analysis. The
transcriptomic and proteomic data only partially overlapped. In

total, of the 168 proteins identified as differentially expressed by the
SOMAscan platform, only 45 were also identified as dysregulated
by RNA-sequencing. Of the similarly regulated genes, 16 were
upregulated and 14 were downregulated. However, a total of 15
genes were found to be differently regulated when compared with
SOMAscan analysis (Figure 3C; supplemental Table 8). These
findings highlight the limited utility of RNA-sequencing of BM to
determine changes in functionally relevant BM extracellular protein
levels.

The proteomic signature of the leukemic BM niche

reveals perturbation of signaling networks

particularly associated with cytokine and

chemokine signaling

To gain further insight into the biological relevance of proteins
identified as upregulated in the BM plasma of patients with AML,
STRING software was used to construct a PPI network and perform
a network and cluster analysis. This analysis showed that the
majority of upregulated proteins were connected by significantly
more interactions than expected through at least one association,
either directly or indirectly (248 vs 55 expected edges; P , 10216)
(Figure 4A), which indicates that upregulated proteins in the
leukemic BM niche can form large and complex protein interaction
networks. Subsequent functional enrichment analysis revealed that
the highly connected signaling network of cytokines and chemo-
kines (including several cytokines, chemokines, interleukins, mem-
bers of the transforming growth factor b [TGF-b]/BMP superfamily,
tumor necrosis factor superfamily, and their receptors) was the
most significant and notable pathway enriched by the majority of the
upregulated proteins across all 3 databases (KEGG, Reactome,
and GO) (Figure 4B; supplemental Table 9). In addition, neuronal
differentiation–related pathways such as ephrin receptor signaling
and axon guidance were significantly altered in leukemic BM niche
compared with healthy marrow. We identified many other proteins
important in numerous signaling pathways as upregulated in
leukemic marrow compared with healthy marrow.

We also performed equivalent analyses to identify biological
pathways specific to the downregulated proteins in the BM plasma

Table 1. Clinical characteristics of patients with AML and healthy control subjects included in this study

Healthy control

subjects Age, y/sex

Patients with

AML Age, y/sex Diagnosis Cytogenetics Mutation status

Previous

treatment

AML blast

%

HD 1 50/F AML 1 74/M Relapse (2nd) inv(16), 18, 220q DNMT3A 2 5

HD 2 50/F AML 2 62/F Refractory (s/p 2nd
relapse)

t(6;14)(q25;q22) DNMT3A, CUX1, U2AF1,
NPM1

2 9

HD 3 48/M AML 3 54/F Refractory 27q, 18, 220q U2AF1 2 13

HD 4 34/M AML 4 30/M Refractory t(9;11)(p21.3;q23.3) None 3 30

HD 5 60/M AML 5 71/M Relapse (late, 1st) Normal DNMT3A, TET2 1 4

HD 6 59/M AML 6 51/F Relapse (early, 1st) 25q, 27p, 214q, 120q, 121 NRAS, RUNX1, TP53 2 33

HD 7 65/M AML 7 56/F Refractory Normal DNMT3A, TET2, U2AF1 3 12

HD 8 60/F AML 8 69/M Refractory 27, 25q, 11q TP53, ASXL1 1 30

HD 9 57/F AML 9 62/F Refractory Normal EZH2, SETBP1, ASXL1,
STAG2, RUNX1

3 9

HD 10 49/F AML 10 81/M Refractory 18 SRSF2, ASXL1, RUNX1 2 10

F, female; HD, healthy donor; M, male.

370 ÇELIK et al 28 JANUARY 2020 x VOLUME 4, NUMBER 2

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/4/2/367/1630395/advancesadv2019001124.pdf by guest on 17 M

ay 2024



samples of patients with AML. These analyses found substantial
overlap with upregulated protein networks, particularly in KEGG
pathways including aberrant pathway alterations associated
with cytokine/chemokine signaling (supplemental Figure 1A).
The upregulation and downregulation of proteins across these signal-
ing pathways suggests a coordinated impairment of multiple
regulatory mechanisms. We also identified a large number of
unique pathways and terms enriched for downregulated proteins,
particularly neutrophil degranulation and platelet function, known to
be impaired in AML (supplemental Table 10).

We applied the same PPI network and pathway analyses to the
SOMAscan data set obtained for PB serum samples (supplemental
Figure 1B-C; supplemental Tables 11 and 12) and identified
substantial overlap with many of the same top-ranked, enriched
pathways identified in the BM plasma proteome.

IL-8 is overexpressed in the BM microenvironment of

patients with AML

The pro-inflammatory cytokine IL-8 (CXCL8) was identified as the
hub protein located at the center of the cytokine/chemokine

AML
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Figure 1. RNA-sequencing of whole BM aspirate cells from patients with AML compared with healthy control subjects. (A) A volcano plot illustrating differentially

regulated gene expression in patients with AML (n 5 10) compared with healthy control subjects (n 5 10). RNA-sequencing analysis revealed a total of 2630 genes upregu-

lated (red) and 2177 genes downregulated (blue) (FC $1.5; FDR #0.05). The FC (in log2 scale) of the transcript abundance is plotted on the x-axis and the statistical

significance expressed as -log10(FDR) on the y-axis. Genes not classified as differentially expressed are plotted in gray. (B) Heatmap of unsupervised hierarchical clustering

indicates the top 100 differentially expressed genes ranked based on FDR between patients with AML and healthy control subjects, with high levels of expression shown in red

and low levels shown in blue. Color coding is based on standardized and normalized read counts accounting for the library size. (C) GSEA of upregulated genes for Reactome

and KEGG pathways, as well as their GO annotation for molecular function terms, reveals the pathways that were significantly altered in patients with AML (FDR # 0.05). ATP,

adenosine triphosphate; ER, endoplasmic reticulum; mRNA, messenger RNA; rRNA, ribosomal RNA; UTR, untranslated region.
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signaling network (Figure 4). The high sensitivity of the SOMAscan
platform enabled identification of significantly elevated levels of IL-8
in leukemic BM plasma samples compared with healthy BM plasma
(P 5 .0001) (Figure 5A).

Our group has previously reported PB serum IL-8 levels using the
Luminex immunoassay assay in a larger combined cohort of 24
patients with relapsed/refractory AML (median age, 59 years; age
range, 22-81 years; 14 male subjects, 10 female subjects) and
20 age-matched healthy control subjects (median age, 50 years;
age range, 24-84 years; 9 male subjects, 11 female subjects).43 In
this large cohort, which also included all subjects evaluated in this
study, PB serum IL-8 levels were statistically elevated in patients
with AML compared with healthy control subjects (P 5 .017).

This overlap between cohorts also allowed orthogonal validation of
our proteomics screen across multiple platforms. PB serum IL-8
levels were positively correlated between the SOMAscan and
Luminex assays (Spearman r 5 0.8090; P # .0001) (supplemental
Figure 2).

BM plasma from patients with AML display higher

levels of CKb8 and CKb8-1 isoforms compared with

healthy BM

MPIF-1, also known as CCL23 or CKb8, is a myelosuppressive
chemokine that reportedly suppresses hematopoietic progenitor
cells.44 In these patients with AML, the levels of both CKb8 and
CKb8-1 isoforms resulting from alternative splicing of the MPIF-1
gene were significantly higher in both BM plasma (Figure 5B) and
PB serum (Figure 5C) samples compared with those of healthy
control subjects. Subsequent analysis of CKb8 levels in PB serum
from the cohort of 24 patients with relapsed/refractory AML and

20 age-matched healthy control subjects described earlier and
a group of 9 patients with MDS (median age, 56 years; age range,
26-72 years) using an ELISA-based immunoassay showed
statistically significant increased levels in both MDS and AML
patients compared with healthy controls, with the greatest increase
seen in patients with AML (Figure 5D). These data suggest that
MPIF-1 may have a role in the suppression of normal hematopoiesis
that is typically associated with AML.

Given the critical importance of cytopenias (often disproportional
to the degree of leukemic marrow involvement) in the morbid-
ity and mortality of patients with MDS/AML, we examined this
hypothesis further by testing the in vitro myelosuppressive effects of
recombinant human CKb8 and CKb8-1 isoforms on human BM
CD341 progenitor cells obtained from a healthy control. Culture of
CD341 cells in colony-forming unit (CFU) assays with either
isoform at a concentration of 50 ng/mL resulted in significant
suppression of granulocyte-macrophage (CFU-GM) and multipo-
tential (CFU-GEMM) progenitor cells but not erythroid (BFU-E),
granulocyte (CFU-G), and macrophage (CFU-M) progenitor cells
under the culture conditions of our assays (Figure 5E).

Discussion

Factors found within the extracellular compartment of BM can
activate numerous signal transduction pathways in leukemic cells
involved in survival, proliferation, and acquisition of drug re-
sistance.17 Previous proteomic profiling studies of AML aimed to
identify novel diagnostic markers or reveal insights into disease
pathogenesis but were performed on blood samples, patient
leukemic blasts, or in primary/established cell lines.21,45,46 In this
study, we performed a novel comprehensive proteomic analysis of
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1305 proteins directly on plasma samples from the BM of patients
with AML and healthy subjects. Compared with other proteomics
technologies, the high binding affinity and selectivity of the
SOMAscan method used here enabled multiplexed, accurate,
sensitive, and fast screening of many targets30,47-49 across a wide
dynamic range of 8 orders of magnitude.30,50,51

We identified a total of 168 proteins that were significantly
dysregulated in the BM plasma of patients with AML vs that of
healthy control subjects (Figures 2B, 3A). This included proteins
already known to be dysregulated in patients with AML (eg,
erythropoietin, hepcidin, ferritin, thrombopoietin)52,53 as well as
perturbations not previously described. It is not possible to
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determine, based on this study, if changes in soluble protein
expression levels observed in AML BM, compared with that from
healthy donors, are from the leukemic cells themselves, the
nonmalignant BM microenvironment, or some combination of
both. Only 45 of the 168 proteins identified as dysregulated in
the BM microenvironment were also identified as having an
altered gene expression profile by RNA-sequencing of BM
aspirate. Analysis of PB serum identified a total of 165 proteins
that were significantly dysregulated in patients with AML vs
healthy control subjects, of which only 66 overlap with those
altered in the BM plasma. This multimodal reference data set

highlights the importance of profiling the correct compartment
by using the appropriate methodology.54

Using systems biology tools, we identified the cytokine/chemo-
kine signaling network as the most striking AML-associated
proteomic alteration in the BM microenvironment. Significantly
elevated levels of chemokines, cytokines, and cytokine receptors
were observed. String pathway analysis showed that these
proteins form a large and complex cytokine/chemokine in-
teraction network. IL-8 was identified as a differentially
expressed and key central molecule of this network in AML,
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suggesting this pathway may be an attractive therapeutic
target.55-61

Unlike IL-8, the role of MPIF-1 in myeloid malignancies has not
previously been described. MPIF-1 is an inhibitory cytokine with
potent myelosuppressive activity, and it inhibits proliferation and
differentiation of myeloid progenitor cells.44 Studies indicate that
extensive remodeling of the BMmicroenvironment by AML leukemic
cells impairs normal hematopoiesis and interferes with the function
of hematopoietic stem and progenitor cells by impeding their
differentiation.5,62 Consistent with this, we found significant
enrichment of downregulated proteins involved in neutrophil
degranulation and platelet function pathways (supplemental Ta-
ble 10). Significantly elevated levels of both MPIF-1 isoforms, CKb8
and CKb8-1, were found in BM plasma and PB serum samples.

Incubation of CD341 cells with either isoform of recombinant
human MPIF-1 led to a significant suppression of CFU-GM and
CFU-GEMM, suggesting that MPIF-1 may play a role in suppression
of the normal myelopoiesis commonly seen in patients with myeloid
malignancy.

Recent studies have shown that cytokines derived from AML cells
shift the BM microenvironment toward a pre-osteoblastic niche by
simultaneously inducing osteogenic differentiation and inhibiting
adipogenic differentiation of MSCs, resulting in a growth advantage
and expansion of AML cells.6,63,64 Simultaneous activation of
osteoclasts and induction of osteolytic activities in leukemic marrow
results in osteopenia/osteoporosis.63,65 The pro-osteoclastic che-
mokine CCL3, elevated in the BM plasma of leukemic mice and
patients with AML, is believed to inhibit osteoblastic cell functions
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and contribute to remodeling.66 AML cells induce an osteoproge-
nitor niche while also activating osteoclasts and blocking differen-
tiation of MSCs into mature osteoblasts.67 TGF-b superfamily
cytokines cooperate with other TGF-b factors and cytokines to
regulate bone organogenesis and homeostasis.68 We found
significantly elevated levels and a highly interconnected network
of proteins involved in bone homeostasis, including BMP10,
GDF15 (a member of TGF-b superfamily), CCL3, CX3CL1,
osteopontin, endoglin (a part of the TGF-b receptor complex),
parathyroid hormone–like hormone, the secreted regulators of BMP
signaling pathway that include the follistatin family of proteins
(FSTL3 and FSTL1), chordin-like protein 1, matrilysin (MMP-7), and
neuroblastoma suppressor of tumorigenicity 1; also recorded were
decreased levels of osteonectin in the BM plasma of patients with
AML. These findings suggest their coordinated involvement in
regulating the osteogenic and osteolytic activities in leukemic
marrow.

Significantly elevated protein levels of several Ephrin ligands
(Ephrin A4 and Ephrin B2) and receptors (EphA1, EphA2, and
EphB2) were identified in patients with AML. The Ephrin
signaling system is believed to mediate different aspects of
bone homeostasis and also hematopoiesis, including growth,
survival, differentiation, and motility of BM cell populations.69

Notch ligands Jagged1 and DLL4 were elevated in patients with
AML, in line with previous observations indicating a role for
Notch signaling in crosstalk between BM stromal cells and
leukemic cells to induce AML progression.10,20,70 S100A
calcium-binding proteins A9 (S100A9) and A12 (S100A12)
were significantly lower in leukemic vs healthy marrow consistent
with the reported role of S100A9 in suppressing AML growth
and progression.71

Finally, we identified increased TIM-3, CD84, and LAG-3
inhibitory immune checkpoint molecules at both the RNA and
protein level in leukemic marrow. An autocrine stimulatory loop
involving TIM-3 on the surface of human leukemic stem cells and
its secreted ligand galectin-9 has been shown to promote self-
renewal of the stem cells and leukemic progression in a range of
myeloid malignancies.72 We also identified a higher abundance
of the stress protein MICB in AML marrow, consistent with
escape of immune surveillance through proteolytic shedding
of this ligand for the natural killer cell–activating receptor
NKG2D.73

In conclusion, we previously reported a detailed analysis of the
cellular compartment of human BM using single-cell RNA-
sequencing benchmarked to immunophenotyping using flow and

mass cytometry.74 We now report the first comprehensive
proteomics analysis of the noncellular soluble compartment of
the BM microenvironment, leading to new insights into AML
disease pathobiology. Our comprehensive proteomics data set,
with paired RNA-sequencing, of AML and healthy human BM
should serve as a foundational resource for future research in
this area.
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