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Key Points

• The AML BM milieu is
unique and character-
ized by immunologic
alterations differing
from CML, B-ALL, and
control BM.

• Immune profiles of AML
patients are related to
patient age, T-cell re-
ceptor clonality, and
survival.

The immunologic microenvironment in various solid tumors is aberrant and correlates

with clinical survival. Here, we present a comprehensive analysis of the immune

environment of acute myeloid leukemia (AML) bone marrow (BM) at diagnosis. We

compared the immunologic landscape of formalin-fixed paraffin-embedded BM trephine

samples from AML (n 5 69), chronic myeloid leukemia (CML; n 5 56), and B-cell acute

lymphoblastic leukemia (B-ALL) patients (n 5 52) at diagnosis to controls (n 5 12) with

30 immunophenotype markers using multiplex immunohistochemistry and computerized

image analysis. We identified distinct immunologic profiles specific for leukemia subtypes

and controls enabling accurate classification of AML (area under the curve [AUC] 5 1.0),

CML (AUC 5 0.99), B-ALL (AUC 5 0.96), and control subjects (AUC 5 1.0). Interestingly,

2 major immunologic AML clusters differing in age, T-cell receptor clonality, and survival

were discovered. A low proportion of regulatory T cells and pSTAT11cMAF2 monocytes

were identified as novel biomarkers of superior event-free survival in intensively treated

AML patients. Moreover, we demonstrated that AML BM and peripheral blood samples

are dissimilar in terms of immune cell phenotypes. To conclude, our study shows that

the immunologic landscape considerably varies by leukemia subtype suggesting

disease-specific immunoregulation. Furthermore, the association of the AML immune

microenvironment with clinical parameters suggests a rationale for including immunologic

parameters to improve disease classification or even patient risk stratification.

Introduction

In acute myeloid leukemia (AML), myeloid lineage precursor cells modified by somatic mutations and
transcriptomic dysregulation infiltrate the bone marrow (BM) and disrupt normal hematopoiesis.
Although high-dose cytarabine–based (HD-cytarabine) multiagent chemotherapy forms the backbone
for induction therapy, refractory and relapsed diseases remain common clinical challenges.1,2

Risk stratification of AML patients is used to predict therapy response, tailor treatment intensity, and
guide clinical decision making when considering allogeneic hematopoietic stem cell transplantation
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(allo-HSCT). Patient age, performance status, blast karyotype,
mutation status, and the combined European LeukemiaNet (ELN)
genetics risk stratification score are well-established prognostic
factors.1,3,4 In solid tumors, the clinicopathological prediction tool
Immunoscore highlights the role of T cells as favorable prognostic
biomarkers and is currently being validated by an international task
force for possible clinical use.5 To date, tumor immunology has not
been included in risk stratification of AML patients.

In AML, cytotoxic T cells fail to eliminate leukemic blasts and
become senescent through the activity of immunosuppressive
cells such as regulatory T cells (Tregs).6-8 Macrophages have
been shown to become avidly M2 polarized, and the cytokine
profile in peripheral blood (PB) of AML patients contributes in

preventing T-cell activation and proliferation.9,10 The complex
interactions among blast, stromal, and immune cells of the BM
microenvironment create a multifaceted niche sustaining blast
proliferation and conferring chemoresistance.11-14 Hence, sys-
tematic profiling of different immune cells is critical to improve our
understanding of AML BM from a clinical perspective.

The immune system has been harnessed in the treatment of AML
patients by inducing the graft-versus-leukemia response following
allo-HSCT. Novel immunotherapeutic modalities, such as, immune
checkpoint inhibitors, leukemia antigen-specific antibodies, and
adoptive cell therapy, may challenge conventional chemotherapy-
focused regimens with either improved efficacy or more tolerable
side effects, as they have in the treatment of B-cell acute
lymphoblastic leukemia (B-ALL) and solid tumors,15-20 yet little is
known about the pretreatment immunologic landscape of AML BM
and its potential immune biomarkers.

Here, we present a comprehensive analysis of the immunologic
components of the AML BM niche at diagnosis. Using multiplexed
immunohistochemistry (mIHC), we determined quantitative compo-
sitions and phenotypic states of millions of immune cells in AML BM.
Host immunology was compared with cytogenetic and molecular
genetic features, ELN risk classification, disease burden parame-
ters, T-cell receptor (TCR) clonality, and patient demographics.
Immunologic profiles were compared with previously published data
from chronic myeloid leukemia (CML) and B-ALL patients as well
as controls. Novel immunologic biomarkers were identified in
intensively treated patients.21,22 Taken together, we provide a single-
cell, spatial, multiparametric protein-level analysis of the AML BM
immunologic microenvironment with a clinical perspective.

Materials and methods

Study design

Patient samples To investigate the immune cell and immuno-
phenotype composition of leukemia BM, we collected diagnostic,
pretreatment BM biopsy specimens from AML patients treated at
the Department of Hematology, Comprehensive Cancer Center of
the Helsinki University Hospital (HUS) between 2005 and 2015 (n
5 69; Table 1). Due to ethical reasons, BM trephine samples could
not be taken from healthy subjects. Therefore, we collected control
BM biopsy samples in HUS from age- and sex-matched subjects
without diagnosis of hematologic malignancy, chronic infection, or
autoimmune disorder in 6 years of follow-up (n 5 12; supplemental
Table 1). As additional samples, we included data from immunologic
analyses performed on pretreatment BM samples from CML
(n 5 56) and B-ALL (n 5 52) patients previously published.21,22 AML,
CML, B-ALL, and control samples were analyzed by the same mIHC
platform. In addition, we collected paired BM and PB samples from
AML patients at diagnosis (n5 8) and unpaired BM (n5 8) and PB
(n 5 11) samples from healthy volunteers and analyzed these by
flow cytometry. All study subjects gave written informed research
consent to the study and to the Finnish Hematology Registry. The
study complied with the Declaration of Helsinki and the HUS ethics
committee (DNRO 303/13/03/01/2011).

Clinical data We retrieved 96 clinical diagnostic baseline
parameters, including PB and BM laboratory examination values,
cytogenetics, molecular genetics, patient demographics, and
medical history, from the Finnish Hematology Registry and
clinical databases (supplemental Table 2).

Table 1. Cohort description

Discovery cohort

(n 5 69)

Flow cytometry cohort

(n 5 8, diagnosis)

Age, median (range), y 61 (19-88) 55 (21-77)

Male, % 48 75

Etiology, %

De novo 93 100

Secondary (MDS or therapy-
related)

7 0

Event, %* 68 50

FAB classification, %

M0 4 0

M1 24 13

M2 34 50

M3 1 0

M4 10 0

M5 16 38

M6 1 0

M7 1 0

Unspecified 7 0

Complete remission following
induction therapy, %

83 100

Time from diagnosis to event,*
median (range), mo

13 (0-132) 22 (5-48)

ELN 2017 risk class, %

Favorable 4 13

Intermediate 45 63

Adverse 19 25

Unknown 32 0

Induction treatment, %

Intensive therapy† 86 88

Cytarabine or azacitidine
monotherapy

4 1

No therapy or other therapy 10 0

Allo-HSCT 36 63

FAB, French-American-British; MDS, myelodysplastic syndrome.
*Refractory disease, relapse, or death from any cause.
†Combination of idarubicin and cytarabine with or without mitoxantrone/thioguanine, or

etoposide, cytarabine, and mitoxantrone with or without gemtuzumab or all-trans retinoic
acid and arsenic trioxide (acute promyelocytic leukemia).
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Methods

Tissue microarrays (TMAs). According to routine clinical
practice to visually assess BM morphology, fresh BM biopsy
samples were formalin fixed and paraffin embedded (FFPE) in the
Department of Pathology, HUSLAB and stored at the Helsinki
Biobank at HUS. Using hematopathologic expertise, we con-
structed TMA blocks by punching two 1 mm cores per donor
located in areas of the BM biopsy characterized with high
leukemic infiltrations (Figure 1A). Control cores were punched
from representative areas.

mIHC. The mIHC method combines 5-plex fluorescence and
3-plex chromogenic IHC (Figure 1A). For antibody panels, see
supplemental Tables 3-5. Technical protocol and reagents used
are listed in supplemental material of Blom et al, and more detailed

information are described in previous publications and supple-
mental Methods.21-23

Image preprocessing. First, individualmarkerswere deconvoluted
from bright-field chromogen stainings.24 Mean fluorescent and bright-
field images were downscaled by factor of 8 and image histograms
adjusted to match each other. Mean images of each spots were
registered using 2-dimensional phase correlation method.25 The
analysis was implemented in a numerical computing environment
(MATLAB, MathWorks).

Image analysis. After manual quality assurance, images out of
focus and not correctly registered were eliminated from the analysis.
Cell masks were segmented by parent immune cell markers (eg,
CD3 for T cells) using adaptive Otsu thresholding and individual
cells using gradient intracellular intensity. Cell segmentation,
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Figure 1. Immunocharacterization of the AML, B-ALL, CML, and control BM. (A) Visualization of the quantitative BM immunocharacterization pipeline. FFPE BM tissue

blocks of AML patients (n 5 69) and age- and sex-matched controls (n 5 12) were retrieved from the Helsinki Biobank. TMAs were constructed from duplicate punches

(1 mm in diameter) from each subject. TMAs were cut onto tissue slides and stained with mIHC consisting of #4 primary antibodies detected with fluorescence dyes and 49,6-

diamidino-2-phenylindole (DAPI) counterstain as well as 2 primary antibodies detected with chromogenic probes and hematoxylin counterstain. Tissue slides were scanned

after both staining procedure and corresponding images registered to ensure that the location of individual cells is matched in parallel stainings. Following cell segmentation,

marker colocalization and intensity were quantified in identified cells. (B) Immune cells (as a proportion of all cells in a TMA spot) and their immunophenotypes (as a proportion

of their parent immune cell) derived from mIHC and computerized image analysis are plotted on a heatmap and organized by hierarchical clustering using Spearman correlation

distance and the Ward linkage (ward.D2) method. Immunologic parameters are arranged in rows and patients in columns. Red denotes higher and blue lower proportions. (C)

Using 10-fold crossvalidated elastic net–regularized logistic regression analysis, 4 subtype-specific classifiers were developed to identify AML, B-ALL, and CML patients and

controls. Classifiers were developed with a training group (n 5 94) and assessed with a test group (n 5 95). The accuracy of the classifiers was evaluated on the test group

with receiver-operator curves (AUC).
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intensity measurements, and immune cell classification were
performed with the image analysis platform CellProfiler 2.1.2
(Figure 1A).26-28 The total number of cells was quantified using
TMA core area of binary-transformed 49,6-diamidino-2-phenyl-
indole images using Fiji. Marker colocalization and cell classifi-
cation were computed from integrated intensity values using
single-cell analysis (FlowJo v10).

Besides actual BM cellularity, BM sampling from the patient,
tissue processing in the clinical pathology department, extraction
and insertion of tissue cores into TMAs, tissue slicing, slide
coverslipping, and imaging may affect cell number in individual
TMA core. TMA cores with ,1000 cells were discarded from
the analysis as they were not considered to be technically
representative. Different cell types were quantified as either
proportion to all cells (eg, CD31CD81 T-cell count to total cell
count in a TMA core) or proportion of an immunophenotype
defined by 1 or 2 markers to the cell type of interest (eg, CD31

CD81/PD11TIM31 corresponds to the PD11TIM31 cell pro-
portion of CD31CD81 T cells). Immunophenotyping results from
duplicate cores of each patient were aggregated by their mean
value. Values from duplicate tissue cores correlated well
(r 5 0.85, P , .001, Spearman correlation; supplemental Figure 1),
supporting the use of TMA and duplicate cores to represent the
BM biopsy.

Flow cytometry. Vitally frozen mononuclear cells (n5 500000)
from paired PB and BM samples of AML patients at diagnosis (n 5
8) and unpaired PB (n5 8) and BM (n5 11) control samples were
analyzed as a batch. AML and control samples were stained with 7
and 5 different 8-color panels, respectively, due to limited amount
of control samples. The samples were analyzed with FACSVerse
System (BD Pharmingen).

Statistical analysis. The Mann-Whitney U test (unpaired, 2
tailed) was used to compare 2 groups of continuous variables. To
compare $3 groups, the Kruskal-Wallis test was used and, if
needed, supplemented with Dunn’s test. P values were adjusted
with Benjamini-Hochberg’s false discovery rate correction.29 Bi-
nomial categorical variables were compared with x2 (frequency for
each variable .5) or Fisher’s exact test (frequency for any variable
#5). Correlation between 2 continuous variables was assessed
with Spearman’s rank correlation coefficient. For clustering analy-
ses, data were median centered and maximum scaled. Normalized
values were clustered by Spearman correlation distance and Ward
linkage (ward.D2) methods. For survival analyses, Cox regression
analysis (log-rank test) was used.

To classify patients into leukemic or control category, we developed
four classifiers using 10-fold cross-validated elastic net regularized
logistic regression models.30,31 The optimal shrinkage parameter
l and hyperparameter a were iterated 100-fold. L was tuned to
1 standard deviation of the minimum mean cross-validated error
(l.1se).

Results

Patient characteristics

The characteristics of AML patients are presented in Table 1. No
significant difference between age and sex (Kruskal-Wallis test)
was observed between the discovery cohort analyzed with mIHC
and the flow cytometry cohort.

When comparing leukemia patients, the median age of CML
patients and B-ALL patients was 57 years (range, 19-81 years)
and 47 years (range, 16-72 years), respectively. 63% of CML and
48% of B-ALL patients were male. Control subjects were age and
sex matched to all leukemia subtypes (.0.05, Mann-Whitney U
test) with a median age of 55 years (range, 40-65 years) and
male frequency of 58%. B-ALL patients were younger than AML
(q , 0.001, Dunn’s test) and CML patients (q 5 0.059).

Immune profiles in various leukemias are distinct

Using mIHC, we analyzed 9.6 million cells from 9 different immune
panels, each consisting of #6 different primary antibodies and
nuclear counterstaining on a cohort of 69 FFPE AML BM samples
and 12 control BM combined into TMAs (Figure 1A). The panels
consisted of T-cell, B-cell, natural killer (NK)–cell, macrophage,
myeloid-derived suppressor cell (MDSC)-like cell, myeloid dendritic
cell, and T-cell activation, differentiation, and immune checkpoint
markers (supplemental Tables 3-5). To characterize the immuno-
phenotypic landscape, cells of interest were segmented and the
integrated marker intensity in each pixel of segmented cells scaled
between 0 and 1. Intriguingly, the immunologic profile of AML,
B-ALL, and CML patients formed distinct disease-specific clusters
(Figure 1B). While controls segregated apart from leukemia
patients, we observed that their immune profile clustered closer
to the profile of AML patients (Figure 1B).

To study the impact of each variable in separating patients by their
immunologic phenotypes, we analyzed their differences between
subtypes (Dunn’s test, Benjamini-Hochberg correction; supple-
mental Figure 2A). PD1, TIM3, and LAG3 have been recognized as
markers of exhausted CD31 T cells induced following long-lasting
antigen exposure and chronic inflammation.15,32 PD11 T cells were
most prevalent in both acute leukemia subtypes, and LAG31 T cells
were depleted in all leukemia subtypes. Of particular interest, TIM31

T cells were enriched in CML patients. Granzyme B (GrB) and
CD57 production is sparked by cytolytic activity, especially on
cytotoxic CD81 T cells, and CD57 is also used to label senescent
lymphocytes.33 The highest GrB1 and CD571 levels in cytotoxic
T cells were observed in B-ALL patients. Class I HLA is expressed
on all nucleated cells and presents endogenic antigens primarily
for T cells. The combination of HLA-A, HLA-B, and HLA-C (HLA-
ABC) was expressed in slightly albeit statistically significantly
higher levels on control BM than in various leukemias. Interest-
ingly, when studying cells of the myeloid lineage, CML patients
differed from other subtypes by virtue of a higher proportion of
both M1 (CD681/cMAF-pSTAT11) and M2-type (CD681/cMAF1

pSTAT12) macrophages and MDSC-like (CD331CD11b1HLADR2)
cells but a lower proportion of both type I (CD11c1BDCA11) and
type II (CD11c1BDCA31) myeloid dendritic cells (supplemental
Figure 2A).

Given the distinct immunophenotypes between leukemias and
controls, we hypothesized that these parameters alone could be
used to classify disease subtypes without additional clinical
variables. Patients were randomly divided into training (n 5 94)
and test groups (n 5 95). Developing 4 subtype-specific classifiers
with elastic net–regularized logistic regression with the training
group translated into the accurate distinction of leukemia patients
and control subjects in the test group (AML area under the curve
[AUC]5 1.0, control AUC5 1.0, CML AUC5 0.99, and ALL AUC
5 0.96; Figure 1C; supplemental Figure 2B; supplemental Table 7).
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Figure 2. Comparison of the AML and control BM. (A) Immune cells (as proportion to all cells in a TMA spot) and their immunophenotypes (as proportion to their parent

immune cell) derived from mIHC and computerized image analysis are plotted on a heatmap and organized by hierarchical clustering using Spearman correlation distance and
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Although subtype-specific immune profiles might reflect differences
in the cell of origin and molecular genetics of different leukemias,
results might also suggest differences in immune-editing mechanisms.

The AML BM microenvironment is shaped by

immune regulation

To dissect the immunologic contexture of the AML BM, we
integrated quantified immune cell and their immunophenotypic
proportions (Figure 2A). AML patients clustered into 2 major
groups that were distinct from nonleukemic controls.

After extracting significantly different (Mann-Whitney U test, 2
tailed, q , 0.05) variables in AML patients compared with control
BM subjects and with either an anticancer or procancer immuno-
logic function, we discovered an intriguing dichotomous polarization
(Figure 2B). Compared with control BM, AML BM contained
decreased lymphocyte populations, including T cells, B cells (CD32

CD201), NK cells (CD451CD21CD32CD561), and NK T cells
(CD451CD21CD31CD561), as anticipated due to blast expan-
sion. T cells displayed less cytolytic (GrB and CD57) and
costimulation markers (CD27). Anti-inflammatory immune cells
and immunophenotypes, such as the proportion of M2-polarized
macrophages were enriched in AML BM, while activated pSTAT11

B cells, M1 macrophages, and other conventional proinflammatory
markers were depleted. In terms of immune checkpoint receptors,
PD1 expression in T cells of AML patients exceeded expression in
control subjects, while the contrary was observed for LAG3 and
TIM3. No difference was noted in CTLA4 expression between AML
and control BM.

Next, we studied the co-occurrence (Spearman correlation) of
immune cell abundance and single-cell immunophenotypes in AML
patients (Figure 2C). The proportion of helper and cytotoxic T cells
and B cells as well as various lymphocyte phenotype markers
correlated positively with each other (Figure 2C; supplemental
Figure 3A-C). These included costimulatory (CD27), immune
checkpoint T-cell markers (CTLA4 and PD1), and cytolytic T-cell
markers (CD57), proportion of pSTAT11 NK cells, M1-polarized
macrophages, and overall expression of class I HLA and PDL1.
Interestingly, the proportion of memory CD45RO1 T cells corre-
lated negatively with the immunophenotypes described above
(Figure 2C).34 No correlation between the proportion of cytotoxic
T cells from all BM cells and their level of GrB was noted
(supplemental Figure 3D). However, total PDL11 expression in the
BM correlated with CD31CD41/PD11 (r 5 0.55, P , .001;
supplemental Figure 3E) and CD31CD81/PD11 (r 5 0.40,
P , .001; supplemental Figure 3F).

An aging-related immune profile associates with poor

prognosis and high TCR clonality

The integrated quantitative immune cell and phenotype profiles of
AML patients diverged into 2 main clusters (Figure 2A). Compared

with patients in cluster 2, patients in cluster 1 had a lower
proportion of OX401 and memory CD45RO1 T cells and a higher
proportion of late-stage cytolytic CD571, memory CD251, and
naive or central memory CD271 T cells, as well as pronounced
expression of PDL1/2 and classical class I HLA in all cells (Mann-
Whitney U test, log2 fold change .0.75, q , 0.001; Figure 3A).

While neither patient cluster represented a traditional profile of
immunosuppression, which could have accounted for the observed
patient clustering, we then studied association with prognostic
clinical parameters. We found no significant difference in the
distribution of ELN risk class, complex karyotype, BM blast
proportion, PB leukocyte count, or frequency of NPM1 or FLT3-
ITD between clusters (supplemental Figure 4). However, patients in
cluster 1 were significantly younger than those in cluster 2 (median
54.8 vs 64.6 years, P , .001, Mann-Whitney U test; Figure 3B).
This reflected also on the treatment regimen, as patients in cluster 1
were treated more frequently with allo-HSCT and tended to
receive HD-cytarabine induction therapy more often than patients
in cluster 2 (Figure 3C-D). Furthermore, when studying only HD-
cytarabine–treated AML patients (n 5 59), we observed superior
prognosis in cluster 1 subjects (Figure 3D-F) in terms of event-free
survival (EFS; hazard ratio [HR], 2.10; 95% confidence interval
[CI], 1.11-3.97; P5 .019, log-rank test), relapse-free survival (HR,
1.87; 95% CI, 0.97-3.60; P5 .060), and overall survival (OS; HR,
2.01; 95% CI, 1.02-3.92; P 5 .039).

We observed higher TCR clonality in AML patients in cluster 2
(P 5 .036; Figure 3G). In addition, higher TCR clonality correlated
with higher age (r 5 0.42, P 5 .06; Spearman correlation;
Figure 3H). With regards to immunologic phenotypes, higher TCR
clonality correlatedmost with OX40 expression in cytotoxic (r5 0.50,
P 5 .022) and helper T cells (r 5 0.53, P 5 .015; supplemental
Figure 5A-B). However, no association between TCR clonality and
BM blast proportion, PB leukocyte count, and NPM11 or FLT3-
ITD1 frequency was observed (supplemental Figure 5C-F). While
higher clonality trended to associate with complex karyotype and
higher ELN risk class, patient number remained insufficient to reach
significance (supplemental Figure 5G-H).

Screening for novel immunologic

prognostic biomarkers

Next, we aimed to discover previously unidentified immunologic
prognostic biomarkers. EFS was selected as the primary end
point, because baseline immunology may impact chemotherapy
responses.13,35-37 As induction therapy protocol reflects perfor-
mance status and dramatically affects survival, the prognostic
impact of each clinicoimmunologic parameter was investigated
individually in AML patients treated with HD-cytarabine (n 5 59;
Cox regression).

Clinical parameters such as PB leukocyte count (E9/L; HR, 1.01;
95% CI, 1.00-1.01; P 5 .014, log-rank test) and age .60 years

Figure 2. (continued) the Ward linkage (ward.D2) method. Immunologic parameters are arranged in rows and patients in columns. Red denotes higher and blue lower

proportions. Horizontal column bars indicate AML etiology, complex karyotype, NPM1 and FLT3-ITD molecular genetics, ELN 2017 risk classification, BM blast proportion (%),

PB leukocyte count (E9/mL), and TCR clonality. (B) To focus only on significant comparisons (Benjamini-Hochberg corrected q , 0.05), the median AML-to-control ratio of

each immunologic parameter was transformed to twofold logarithmic scale and grouped as anticancer (green) or procancer immunologic markers (orange) according to the

literature. (C) Spearman correlation of immunologic parameters. Red denotes positive and blue negative correlations. Insignificant correlations (Benjamini-Hochberg corrected

q , 0.05) were blanked. NA, values are not defined (gray bars in panel A).
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Figure 3. Clinicoimmunologic analysis of major AML immune profiles. (A) The proportion of immune cells and their single-marker immunophenotypes in AML patients

(n 5 69) in clusters 1 and 2 were compared (Mann-Whitney U test), P values corrected (Benjamini-Hochberg procedure), and results plotted on a volcano plot. Immunologic

features with log2 fold change (FC) .0 are enriched in cluster 1 and features with log2 fold change ,0 are more frequent in cluster 2. Age (Mann-Whitney U test) (B),
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(HR, 1.91; 95% CI, 1.03-3.56; P 5 .037), as well as novel immune
predictors such as the proportion of M1-polarized macrophages
(%; HR, 2.18; 95% CI, 1.14-4.19; P 5 .008) and the proportion of
FOXP31 helper T cells, including Tregs (%; HR, 1.13; 95% CI,
1.00-1.28; P 5 .049), predicted poor prognosis, while the
proportion of CTLA42LAG32 T-helper cells (%; HR, 0.98; 95%
CI, 0.96-1.00; P 5 .013) was associated with superior survival
(Figure 4A; supplemental Table 8). To visualize their prognostic
impact, we categorized M1 macrophages and Tregs into tertiles. As
the highest 2 tertiles were superimposed, their EFS curves were
combined against the lowest tertile (Figure 4B-C). To study
multicollinearity, the HR and 95% CI of categorized M1 macro-
phages and Tregs were compared both in a univariate setting and
by combining with an essential clinical covariate in a multivariate
setting (Forest plot, Cox regression). The HR of either M1-polarized
macrophages (Figure 4D) or Tregs (Figure 4E) remained virtually
unaffected when studied in combination with either FLT3-ITD1, BM
blast (%), PB leukocyte (10E9/mL), complex karyotype, or patient
age but lost significance when NPM11 or ELN 2017 risk
classification was added with either covariate.

We also screened for immune parameters associated with adverse
ELN risk class and NPM1 and FLT3 mutations, but findings
remained nonsignificant after P value adjustment (supplemental
Figure 6).

Immune profiles differ by sample type

The leukemia BM represents a particular milieu promoting leukemic
proliferation. To investigate whether the BM immunologic microen-
vironment would differ from the PB, we characterized a total of
seven 8-color panels of CD81 T- and NK-cell immunophenotype
markers in paired BM and PB samples of AML patients (n 5 8) at
diagnosis (Figure 5A; supplemental Figures 7A-B and 8; supple-
mental Tables 9 and 10). NK cells expressed less of the activating
receptor NKp30 and CD27 downregulating cytotoxicity in BM than
in PB.38 CD45RA1 effector memory T cells (TEMRA) were more
prevalent in BM but these expressed significantly less CXCR3
associated with Th1-type inflammatory reactions than in the PB.39

However, no clear differential pattern in immune checkpoint
expression was observed between AML BM and PB.

To discern any disease-specific impact on differential BM vs PB
composition, we compared the NK and CD81 T-cell immunophe-
notypes in both sample types of AML patients and healthy controls.
Due to limited availability of control samples, 11 PB and 9 BM
unpaired samples from 16 healthy subjects were analyzed with flow
cytometry. Comparative analysis was performed by comparing the
difference in median values of immunophenotypes in AML BM vs
PB samples to control BM vs PB samples.

Healthy subjects did not differ from AML patients in terms of age
(46.66 29.4 [median6 interquartile range] vs 58.46 27.9, Mann-
Whitney U test, P 5 .15) or sex (70.6% male vs 75% male, x2 test,
P 5 1.0). When studying only significantly differing markers
presented in Figure 5A, we observed that central memory CD81

T cells, NK/NKp301, NK/CD271, and CD251CD81 T cells also
differed more between AML than control BM and PB samples
(Figure 5B). Moreover, CD45RA1 effector memory T cells, which
were more frequent in AML BM than PB samples, also differed more
in AML than control BM vs PB samples.

Discussion

Despite that deviations in the immune system have been recog-
nized as one of the hallmarks of cancer and that the immune
microenvironment affects clinical survival and treatment responses
in solid tumors, their contribution in leukemia is unknown.40,41 Here,
we compared the BM immunologic landscape of AML, ALL, and
CML patients at diagnosis to controls using a single-cell in situ
mIHC approach combined with computerized image analysis for
fast and objective immune cell quantification. We observed immune
profiles were capable of segregating distinct leukemia subtypes and
controls with high confidence without prior information on patient
characteristics.

Due to our primary interest in the BM immunologic landscape from
a T-cell perspective, and because myeloid markers might be
expressed in immature cell subsets, the characterization panels
focused on lymphoid markers. The expression pattern of various
immunologic phenotypes varied by abundance in a subtype-
dependent fashion.

In B-ALL BM, we noted a higher proportion of cytolytic markers and
immune checkpoint receptor PD1 compared with other leukemias.
In CML, the expression pattern of TIM3 differed from other immune
checkpoint receptors by being notably enriched compared with
other leukemias and control. The reason for this contrast remains
unknown but might pose an interesting therapeutic target along with
other immunomodulatory approaches for tyrosine kinase inhibitor–
resistant patients or following treatment discontinuation.42-45 In
addition, compared with acute leukemia and control BM, we
observed a particularly high macrophage polarization toward both
M1 and M2 phenotypes and an abundance of MDSC-like cells in
CML BM. However, despite classifying MDSC-like cells with 3
lineage markers according to recommendations (CD11b1CD331

HLADR2), we recognize that these might partly represent
expanded malignant CML cells.34

Compared with other leukemias, the expression of immune
checkpoint receptors was low in AML. However, we observed
substantial heterogeneity between AML patients, suggesting that
similar immunologic phenomena might not govern in all patients.
The rich immunologic variability could be categorized into 2 main
age-dependent immunologic signatures, which differed by TCR
clonality and clinical prognosis, but no association with other well-
established prognostic markers was noted.

Age-related thymic involution, inapt responses of peripheral
T cells to inflammatory stimulations, and expansion of effector
memory clones account for the decline in the TCR repertoire
during ageing.46-50 Our results suggest that increasing TCR
clonality could be associated with worse prognosis, but our

Figure 3. (continued) allo-HSCT (x2 test) (C), and induction treatment frequency (Fisher’s exact test) (D) distributions of patients in clusters 1 and 2 were compared. The

survival of patients in clusters 1 and 2 who were intensively treated (HD-cytarabine–based induction treatment; n 5 59) were compared (Cox regression, log-rank test) using

EFS (E), relapse-free survival (RFS) (F), and overall survival (OS) (G) as an end point. TCR clonality was compared between patients in cluster 1 and cluster 2 (Mann-Whitney

U test) (G) and correlated with patient age (Spearman correlation) (I).

28 JANUARY 2020 x VOLUME 4, NUMBER 2 IMMUNE PROFILES IN AML BONE MARROW 281

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/4/2/274/1558036/advancesadv2019000792.pdf by guest on 28 M

ay 2024



Subgroup

Hazard Ratio

M1
M1 (+ FLT3-ITD)
M1 (+ NPM1)
M1 (+ BM blast [%])
M1 (+ PB leuk [10E9/ml])
M1 (+ Complex karyotype)
M1 (+ Age)
M1 (+ Risk classification [ELN])

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Patients HR [CI95] P Value
59
24
24
59
59
41
59
43

0.04
0.05
0.55
0.02
0.01
0.06
0.03
0.11

5.5

D

Hazard Ratio
Subgroup
Treg
Treg (+ FLT3-ITD)
Treg (+ NPM1)
Treg (+ BM blast [%])
Treg (+ PB leuk [10E9/ml])
Treg (+ Complex karyotype)
Treg (+ Age)
Treg (+ Risk classification [ELN])

Patients HR [CI95] P Value
59
24
24
59
59
41
59
43

1.9 [1.01-3.59]
1.89 [1-3.6]

1.41 [0.46-4.34]
2.36 [1.18-4.72]
2.63 [1.31-5.27]

2.2 [0.98-5]
2.05 [1.08-3.89]
1.96 [0.86-4.51]

2.35 [1.25-4.4]
2.34 [1.24-4.4]
1.93 [0.7-5.32]

2.33 [1.24-4.38]
2.31 [1.22-4.37]

2.43 [1.07-5.5]
2.24 [1.19-4.22]

2.17 [0.1-4.86]

0.01
0.01
0.2

0.01
0.01
0.03
0.01
0.06

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

E

A

2.0

CD68+/pSTAT1+cMAF- (%)

CD3+CD4+/CTLA4-LAG3-

PB WBC (E9/L)

CI.1 vs. CI.2 CD3+CD4+/CTLA4+LAG3-

CD3+CD4+/CTLA4+

Age 60yearsCD3+CD4+/LAG3+

CD3+CD4+/FOXP3+

1.5

1.0

0.5

0.0

-1.0 -0.5

HR 1 p 0.05 HR 1 p 0.05 p=ns

0.0 0.5

Log10 hazard ratio

Lo
g1

0 
p-

va
lue

1.0

1.00 CD68+/pSTAT1+cMAF-
Low
High

p = 0.045

0.75

0.50

0.25

0.00

0 3 6 9 12

Time (years)
Number at risk

40

19

19

4

4

0

1

0

13

2

EF
S 

(%
)

B

Thelp/FOXP3+
Low
High

p = 0.0061

1.00

0.75

0.50

0.25

0.00

0 3 6 9 12

Time (years)
Number at risk

40

19

19

4

4

0

1

0

12

3

EF
S 

(%
)

C

Figure 4. Immunologic prognostic biomarkers in intensively treated AML patients (HD-cytarabine–based induction treatment; n 5 59). (A) Volcano plot of the

HRs for an EFS incident of immune cells and their immunophenotypes and PB and BM laboratory values. Variables increasing the risk for an EFS event have a positive log10
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combined. A forest plot displaying the HR and 95% CI of the categorized proportion of M1-like monocytes (D) and Tregs (E) in univariate and combined with another essential

clinical biomarker (Cox regression analysis).
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patient number (n 5 20) remained insufficient to confirm this
hypothesis.

Cancer cells have been shown to orchestrate immunosuppressive
changes in surrounding cells of the microenvironment enabling
immune evasion.51-54 Opposite well-reported findings have been
reported, emphasizing that the immune system’s role in AML is not
evident.55 Here, we describe an elevated M2/M1 macrophage
phenotype ratio at diagnosis and an increased number of MDSC-
like cells and proportion of Tregs, while expression of GrB, pSTAT1,

and CD27, representing lymphocyte activity and costimulation,
were found to be decreased in BM of patients with AML. With
respect to immune checkpoint molecules, PD1 expression was
upregulated but LAG3 and TIM3 levels were downregulated in
T cells of AML patients.

High heterogeneity among AML patients suggests various immu-
noregulatory mechanisms and possibly also differences considering
immunotherapy applications. Of the immunophenotypic markers
upregulated in AML only, the PD1/PDL1 signaling pathway can
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currently be targeted. Hypomethylating agentshave been shown
to upregulate PD1/PDL1 expression in myelodysplastic syndrome.56

Interestingly, the combination of hypomethylating agents and anti-
PD1 has induced encouraging response rates, and pretherapy T-cell
numbers are associated with treatment response.57

A comprehensive immunologic characterization and clinical param-
eters in the AML BM has not been performed. Recently, the
expression of immune checkpoint receptors and ligands in AML
patients was elegantly analyzed at diagnosis and relapse and
compared with healthy controls.58 The authors demonstrated
immunologic heterogeneity between BM and PB samples with
flow cytometry. Further reinforcing the findings of our study, the
authors described higher PD1 and OX40 expression in cytotoxic
T cells in AML patients at diagnosis compared with controls.

In immuno-oncology, T cells have been perceived as the key
effector cell type partly following remarkable responses related to
immune checkpoint, bispecific antibody, and adoptive T-cell
therapies.17-20,32 The immunohistochemical tool Immunoscore
further highlights the positive prognostic value associated with
high T-cell infiltration across various cancers.5,41 Immunologic
populations in AML BM have not been previously analyzed for
prognostic biomarkers. In this study, we discovered that high
proportion of Tregs predicted inferior survival in AML. Although
requiring further investigation, Tregs might mediate this effect by
interfering with immunologic synapse formation, previously reported
to be dysfunctional in AML patients.8 In addition, we identified
higher proportion of pSTAT11cMAF2 macrophages and lower
proportion of LAG32CTLA42 helper T cells as novel biomarkers of
worse prognosis. Nevertheless, their validation in larger cohorts
with flow cytometry is warranted.

Immunosuppressive phenotypes and dysfunction in T cells in AML
patients have been observed, although mostly in studies conducted
using PB samples for practical reasons.6,8-10,12-14,59,60 We
demonstrate that the BM and PB are dissimilar in terms of immune
cell phenotypes, also when compared with healthy control BM and
PB samples, and could be crucial in the design of immunology
studies on AML.

Taken together, the AML BM milieu is unique and characterized by
immunologic alterations differing from CML, B-ALL, and control BM.
In addition, while the molecular genetic profile of AML has been
thoroughly studied, implementing immunologic parameters might
not only enhance disease and risk classification but also at best
allow improved individualization of therapy.3,4
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