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Key Points

• Reversible complemen-
tation of FA pathway
defects in human
IPSCs permits deriva-
tion of isogenic mutant
and control hematopoi-
etic progenitor cells.

• FANCA-deficient cells
undergo accelerated
erythroid differentiation
because of activation of
the p53-p21 axis.

Fanconi anemia (FA) is a disorder of DNA repair thatmanifests as bonemarrow (BM) failure.

The lack of accurate murine models of FA has refocused efforts toward differentiation of

patient-derived induced pluripotent stem cells (IPSCs) to hematopoietic progenitor cells

(HPCs). However, an intact FA DNA repair pathway is required for efficient IPSC derivation,

hindering these efforts. To overcome this barrier, we used inducible complementation of

FANCA-deficient IPSCs, which permitted robust maintenance of IPSCs. Modulation of FANCA

during directed differentiation to HPCs enabled the production of FANCA-deficient human

HPCs that recapitulated FA genotoxicity and hematopoietic phenotypes relative to isogenic

FANCA-expressing HPCs. FANCA-deficient human HPCs underwent accelerated terminal

differentiation driven by activation of p53/p21.We identified growth arrest specific 6 (GAS6)

as a novel target of activated p53 in FANCA-deficient HPCs and modulate GAS6 signaling to

rescue hematopoiesis in FANCA-deficient cells. This study validates our strategy to derive

a sustainable, highly faithful humanmodel of FA, uncovers a mechanism of HPC exhaustion

in FA, and advances toward future cell therapy in FA.

Introduction

Most patients with Fanconi anemia (FA) will develop failure of bone marrow (BM) function, typically
occurring in the first decade of life. Curative therapy requires allogeneic hematopoietic stem cell
transplantation, a therapy constrained by the availability of human leukocyte antigen matched donors
and complications including graft-versus-host disease.1 Therefore, to benefit patients for whom stem cell
transplantation is not an option, investigation has focused on the development of alternative therapies.2-4

To this end, several model systems have been engineered as platforms for mechanistic investigation of
FA hematopoietic progenitor cell (HPC) dysfunction. FA is caused by mutations in at least 22 genes
encoding proteins that function in the FA DNA repair pathway.5 However, knockout of single FA genes in
mice typically does not produce HPC failure unless HPCs experience replicative stress, reinforcing the
need for human-based systems in which to validate observations made in mouse models.6-9

The discovery of human induced pluripotent stem cell (IPSC) technology presented the opportunity for
new human FA models.10 Transduction of terminally differentiated somatic cells such as skin fibroblasts
or leukocytes with a defined set of transcription factors confers pluripotency and the capacity for
differentiation to tissue derivatives of all 3 embryonic germ layers.11-13 Because IPSCs share these
characteristics with embryonic stem cells, protocols for morphogen directed differentiation of embryonic
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stem cells to hematopoietic lineages can be applied to patient-derived
IPSCs to model blood diseases and investigate new approaches to
gene therapy or drug discovery.11,14,15 Human IPSC-based models
have been used to study the BM failure disorders Diamond-
Blackfan anemia and Shwachman-Diamond syndrome.16,17 How-
ever, modeling of FA has proven challenging because of the
requirement for an intact FA DNA repair pathway for effective
induction and maintenance of pluripotency.18-21 Rescue of FA
genetic defects by introduction of a complementing cDNA in FA
somatic cells can rescue reprogramming, but permanent repair of
FA pathway mutations in IPSCs precludes the downstream
derivation of FA-deficient HPCs for disease modeling.18,19

Here, we used a system of conditional FA pathway complementa-
tion wherein FANCA-mutated, patient-derived IPSCs bear an
inducible FANCA expression cassette.22 We used these cells in
a hematopoietic-directed differentiation system to derive definitive
FA HPCs and isogenic control HPCs.23 FANCA-deficient, IPSC-
derived HPCs show phenotypes consistent with human FA,
including sensitivity to genotoxic stress and diminished clonoge-
nicity in culture. Using this system, we found that activation of the
p53/p21 axis in FANCA-deficient HPCs hinders cell cycle pro-
gression and drives terminal differentiation. We identify growth
arrest specific 6 (GAS6) as a target of p53 during differentiation and
show that modulation of GAS6 signaling can rescue hematopoiesis
in FANCA-deficient HPCs. This system overcomes the challenges of
studying FA using IPSCs and provides a renewable source of human
FA HPCs and isogenic controls for further study of FA pathobiology.

Methods

Cell culture

For embryoid body (EB) formation, IPSCs were plated onto
irradiated mouse embryonic fibroblast layers and cultured for 6 to
8 days in the presence of 20% knockout serum replacement (Life
Technologies) with 20 ng/mL basic fibroblast growth factor (bFGF;
Gibco) and 2 mg/mL doxycycline. Colonies were released by digestion
with collagenase IV (Gibco) and cultured under low adherence
conditions to form EBs.23 On day 8, EBs were dissociated, and
CD341 hemogenic endothelium (HE) was affinity purified using
anti-human CD34 microbeads (Miltenyi Biotech) and seeded on
Matrigel-coated plates.

For endothelial to hematopoietic transition (EHT) culture, cells were
cultured in EB medium supplemented with 5 ng/mL bFGF, 15 ng/mL
vascular endothelial growth factor, 10 ng/mL interleukin 6 (IL-6),
5 ng/mL IL-11, 25 ng/mL insulin-like growth factor 1, 50 ng/mL
stem cell factor, 2 U/mL erythropoietin, 10 ng/mL bone morpho-
genetic protein 4 (BMP4), 30 ng/mL thrombopoietin, 10 ng/mL Flt3
ligand, and 30 ng/mL IL-3 for 8 days in 5% oxygen (EHT culture).
Where indicated, doxycycline was either removed or maintained in
culture starting at day 0 of EHT culture. For erythroid differentiation,
hematopoietic cells were harvested at day 8 of EHT culture and
further cultured in EHT medium. For neutrophil differentiation, EB
formation and EHT were performed in the absence of EPO, and
nonadherent cells were cultured with 50 ng/mL stem cell factor and
50 ng/mL granulocyte colony-stimulating factor for 4 days, at which
time they were analyzed by flow cytometry. Recombinant human
GAS6 was used at 800 ng/mL where indicated. For StemDiff
culture, IPSCs were cultured with StemDiff reagents per the
manufacturer’s protocol (StemCell Technologies).

For methylcellulose culture, HPCs were collected at day 5 or 8 of
EHT. A total of 1000 to 10000 viable cells were suspended in 1.5 mL
MethoCult SF H4636 (Stem Cell Technologies) supplemented with
50 ng/mL IL-6, 50 ng/mL thrombopoietin, and 50 ng/mL Flt3 ligand.
Colonies were enumerated by blinded scoring at day 14. Where
indicated, nutlin-3a at a final concentration of 1 mM was added.

Gene editing

IPSCs were transfected using the 4-D nucleofector platform (Lonza)
with crRNA/Cas9 ribonucleoprotein complexes (IDT Technologies)
and assembled according to the manufacturer’s protocol. Trans-
fected cells were enriched for those with biallelic TP53 inactivation
by culture with nutlin-3a at a concentration of 5 mM for 7 days.
Frequency of insertions and deletions was measured by deep
sequencing of a polymerase chain reaction (PCR) product amplified
with primers flanking the crRNA binding site.

Statistics

Analyses were performed using R, Microsoft Excel, and Graphpad
Prism. An unpaired Student t test was used with a significance
cutoff of 0.05 unless otherwise stated. Results are presented as
mean 6 standard error of mean (SEM) unless otherwise stated.

Flow cytometry

The antibodies used in this study were all against human antigens:
anti-CD71 allophycocyanin (APC), anti-GLYA PE-Cy7, anti-CD49d
phycoerythrin (PE), anti-CD45 APC, anti-CD45 fluorescein isothio-
cyanate, anti-Ki67 APC, anti-CD34 PE-Cy7 (all from BD Bioscien-
ces), anti-Band 3 fluorescein isothiocyanate (American Research
Products), anti-gH2AX (EMD Millipore), and anti-FANCD2 (Novus).
Annexin V APC was used (BD Pharmingen).

Cell cycle analysis

Cells were collected in phosphate-buffered saline and fixed with 70%
ethanol. FxCycle PI/RNase staining solution (Molecular Probes/Life
Technologies) or a combination of 49,6-diamidino-2-phenylindole
(DAPI) counterstain with Ki67 immunostaining was used for flow
cytometry analysis.

RNA sequencing

HPCs were collected at day 8 of EHT culture and resuspended in
Trizol (Thermo Fisher Scientific) followed by RNA purification and
on-column DNAase treatment using the RNeasy Kit (Qiagen). Three
biologic replicates for each condition were included. Low input
library preparation was performed by the Molecular Biology Core
Facility at the Dana-Farber Cancer Institute (Boston, MA). Libraries
were sequenced using the Illumina NextSeq 500 Single-End 75 bp
platform with expected 400 million read count.

Quantitative PCR

Whole RNA was used to synthesize cDNA using the miScript Reverse
Transcription Kit (Qiagen). Primer sequences were as follows—
FANCA forward: CTTCCGAGAGGTGTTGAAAGA; FANCA re-
verse: GAAGTCCTGCCGTTCAGTATC; ACTB forward: GGA
TCAGCAAGCAGGAGTATG; ACTB reverse: AGAAAGGGTGTA
ACGCAACTAA;CDKN1A forward: CTGGGGATGTCCGTCAGA
AC; CDKN1A reverse: CATTAGCGCATCACAGTCGC; GAS6
forward: ACCTGTGAGGACATCTTGCC; GAS6 reverse: GGG
TCAAAGGTCCGGAAGTC.
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Figure 1. Hematopoietic differentiation of doxycycline inducible human FANCA patient IPSCs. (A) Schema for the differentiation of human IPSCs to HPCs adapted

from published protocols.23,27 The first 8-day period involves morphogen-directed specification of hemogenic endothelium within EBs (see "Methods"). This period of culture

incorporates 2 phases: BMP-4 and bFGF-mediated mesoderm induction, followed by HE differentiation driven by vascular endothelial growth factor, IL-11, insulin-like growth

factor 1, and hematopoietic cytokines. At day 8, EBs were dissociated, and HE was isolated based on CD341 selection. HE was plated on a 2-dimensional Matrigel sub-

stratum for an 8-day EHT culture in the presence of hematopoietic cytokines with or without doxycycline to modulate FANCA expression. At the end of the 8-day EHT culture,

round floating HPCs were harvested for analysis in assays of clonogenicity and hematopoietic differentiation. (B) Representative image of day 8 EBs before dissociation
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Teratoma assay

One million IPSCs were harvested from Matrigel cultures. Cells
were resuspended in a 1:1 mixture of DMEM/F12 medium and
Matrigel and injected subcutaneously into NOD.Cg-Prkdcscid

IL2rgtmlWjl/SzJ (NOD/SCID/IL2rgnull; NSG) mice. After 10 to 12 weeks,
teratomas were harvested, fixed, embedded, sectioned, and stained
for analysis.

Immunofluorescence

For the p53 immunostain, cells were fixed with 4% paraformalde-
hyde and permeabilized with 0.2% Triton X-100. The DO-7 mouse
monoclonal antibody was used (Cell Signaling Technologies) with
an Alexa Fluor 594 goat anti-mouse secondary antibody. To costain
for FANCD2/gH2AX, cells were fixed with 4% paraformaldehyde
and permeabilized with 0.2% Triton X-100 followed by immunostaining

Figure 1. (continued) (scale bar, 200 mm). (C) The entire cellular composition of dissociated day 8 EBs derived from the indicated human IPSC lines was stained with the

indicated antibodies and definitive HE (CD341GLYA2KDR1CD432) was analyzed by flow cytometry gated on viable singlet cells. (D) Representative images of cultured HE at

the indicated time points during EHT culture (scale bar, 50 mm). (E) Representative images of day 8 EHT culture in the presence or absence of doxycycline (scale bar, 100

mm). (F-G) Nonadherent, round cells were harvested at day 8 EHT and analyzed for expression of the indicated surface markers of HPCs by flow cytometry. Percent CD341

CD451 HPCs within the nonadherent population was quantified over 6 independent experiments (results presented as mean 6 SEM, analyzed by a paired Student t test).
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Figure 2. Analysis of FANCA-deficient and FANCA-

expressing IPSC-derived hematopoietic cells. (A) Total

RNA was isolated from the nonadherent cells at day 8 EHT,

and expression of FANCA was analyzed by quantitative

PCR (n 5 3 biologic replicates; results presented as mean

6 SEM, analyzed by a Student t test). (B-C) Nonadherent

cells were isolated at day 8 of EHT after culture with or

without doxycycline and then cultured with mitomycin C

(20 ng/mL) for 18 hours, at which time the cells were fixed

and immunostained for FANCD2 and gH2AX and visualized

by confocal microscopy (scale bar, 10 mm). Results are

compiled from 3 separate lines, and the proportion of cells

with double-positive foci presented as mean 6 SEM, ana-

lyzed by a paired Student t test. (D-E) A total of 10 000 non-

adherent cells collected from day 5 or day 8 EHT cultures

were embedded into methylcellulose with hematopoietic

growth factors. Doxycycline was either maintained in these

assays or withheld consistent with EHT culture conditions.

After 14 days, colonies were scored morphologically, and

the results were quantified (n 5 7 biologic replicates for day

5 and n 5 10 biologic replicates day 8 across 3 cell lines;

total colony numbers analyzed by a paired Student t test,

results are presented as mean proportions of each colony

type 6 standard deviation). (F) Hematopoietic colonies were

isolated at day 14 from cultures with doxycycline and spun

onto slides when the cells were stained with May-Grünwald-

Giemsa and analyzed by light microscopy (scale bar, 10 mm).
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for FANCD2 (Novus) and gH2AX (EMD Millipore). For quantifica-
tion of nuclear p53, images were acquired using a 403 lens on
a CV7000 CellVoyager Measurement System (version R1.17.06). A
script (run on Fiji, V2.0.0-rc-68/1.52g) was used to further process
and analyze the images.

Patient cells

FA patient BM aspirates were collected on a human subjects study
approved by the Institutional Review Board at Boston Children’s
Hospital, after informed consent was obtained. This study was
performed in accordance with the Declaration of Helsinki. Normal
healthy BM mononuclear cells were purchased from AllCells.

Enzyme linked immunosorbent assay

Human GAS6 enzyme linked immunosorbent assay (ELISA) was
performed using the Duoset ELISA Kit (R&D Systems).

Results

Directed differentiation of FA IPSCs to HPCs

We used human patient-derived, FANCA homozygous mutant
IPSC lines that harbor a stably integrated doxycycline-inducible
transgene encoding the wild-type FANCA open reading frame for
inducible and reversible expression.22 For this study, we used the
FA-A#1 and FA-A#2 lines that have previously been characterized
as pluripotent22 and a subclone of FA-A#2 that was verified as
pluripotent and euploid in our hands (supplemental Table 1; supple-
mental Figure 1). For subsequent experiments, unless otherwise
indicated, we pooled results from experiments using all 3 of these IPSC
lines to limit effects of variability in differentiation potential between lines
attributable to background genetic or clonal variation.24-26

We adapted previously described protocols of EB-based directed
differentiation to generate human HE (Figure 1A).23,27 For unperturbed
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Figure 3. Analysis of gene expression by RNA sequencing. (A) Heatmap showing gene regulatory network enrichment scores as analyzed by CellNet29 for FANCA-
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directed differentiation and specification of HE, we maintained EBs
with doxycycline throughout this 8-day phase of differentiation
(Figure 1A). FA IPSCs robustly formed EBs (Figure 1B). We
dissociated day 8 EBs and confirmed that we could detect cells
expressing a CD341GLYA2CD432KDR1 HE immunophenotype
(Figure 1C).23 We isolated HE from dissociated EBs based on
surface CD34 and found that adherent HE showed the expected
morphology (Figure 1D).

After purification of HE, we initiated EHT culture (Figure 1A). At the
initiation of EHT, doxycycline was either removed or maintained for
the subsequent 8 days to generate FANCA-deficient or FANCA-
expressing HPCs, respectively (Figure 1A). During EHT, we observed
the progressive budding of round, nonadherent human HPCs from the
adherent HE layer (Figure 1D), which was not affected by the presence
or absence of doxycycline (Figure 1E). Moreover, at the completion
of EHT, we detected equivalent proportions of cells expressing the
HPC markers CD45 and CD34, further supportive of unimpaired
EHT in the absence of doxycycline (Figure 1F-G). As an independent
method, we used the StemDiff system, again observing no difference
in HPC emergence (Stem Cell Technologies; supplemental Figure 2).

We next examined the status of the FA pathway after EHT. We
found that in HPCs generated without doxycycline contained

approximately 20% FANCA mRNA compared with HPCs gener-
ated with doxycycline (Figure 2A). To test the functionality of the FA
pathway in response to genotoxic stress, we exposed HPCs to
mitomycin C, finding that FANCA-deficient cells were unable to
localize FANCD2 at sites of DNA damage marked by gH2AX as
observed in FANCA-expressing cells (Figure 2B-C). These results
indicate the absence of functional FANCA expression in HPCs
emerging in the absence of doxycycline.

Hematopoietic potential of FA HPCs derived

from IPSCs

Next, to determine whether our system recapitulates the hallmarks
of HPC dysfunction in FA, we examined the hematopoietic capacity
of FANCA-deficient HPCs.28 We cultured IPSC-derived HPCs
either with or without doxycycline to either maintain or deactivate
the inducible FANCA transgene, respectively, during assays of
hematopoietic function (Figure 2D). In colony formation assays,
FANCA-deficient HPCs collected at either day 5 or day 8 EHT
showed significantly diminished clonogenicity relative to control
FANCA-expressing cells after 14 days (Figure 2E-F). As expected,
colony-forming capacity diminished from day 5 to day 8 because of
differentiation of HPCs in culture. We observed similarly impaired
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clonogenicity of FANCA-deficient HPCs derived independently
via the StemDiff system and in primary mononuclear cells isolated
from FA patients compared with normal healthy control donors
(supplemental Figure 2). These results indicate that FANCA
deficiency in HPCs derived from IPSCs impairs hematopoietic
colony formation, recapitulating a known phenotype of HPCs from
the BM of human FA patients.28

Transcriptional profile of FANCA-deficient HPCs

Next, we performed RNA sequencing to evaluate the effect of
FANCA deficiency on the transcriptional profile of human IPSC-
derived HPCs. Using CellNet, a cell state prediction algorithm,29 we
found that all specimens included in this analysis classified as HPCs
without residual signatures of endothelial cells, consistent with
unimpaired EHT (Figure 3A). We found 422 transcripts differentially
expressed between FANCA-expressing and FANCA-deficient
IPSC-derived HPCs at a significance cutoff of 0.05. We used the

Molecular Signatures Database to probe signatures modulated by
FANCA.30 Using gene set enrichment analysis (GSEA), we observed
enrichment of terms related to mitochondrial respiration in FANCA-
expressing cells, consistent with a reported role of the FA pathway in
regulation of mitochondrial function (Figure 3B).31,32 Furthermore, we
observed signatures consistent with active oxidative phosphorylation,
ribosome biogenesis, and translation (Figure 3B; supplemental
Figure 3). We found that FANCA-expressing HPCs more strongly
maintained a normal human HPC signature relative to FANCA-
deficient HPCs30,33(Figure 3C). In FANCA-expressing cells, we also
observed enrichment of signatures related to regulation of the G2/M
checkpoint and DNA repair, consistent with the known biology of
FA (supplemental Figure 3).34,35 Moreover, we found signatures
associated with the acute inflammatory response including IL-1 and
interferon-b production enriched and Toll-like receptors in FANCA-
deficient cells as has been described previously in mice36,37

(supplemental Figure 4). We did not observe signatures suggestive
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of perturbed transforming growth factor-b signaling in FANCA-
deficient cells and observed partial overlap with transcripts altered
in Fancd22/2 mouse hematopoietic stem and progenitor cells vs
wild type (supplemental Figure 4).2,38,39 Interestingly, we found
enrichment for transcripts associated with heme metabolism and
terminal erythropoiesis in FANCA-deficient HPCs, suggestive of an
erythroid committed state in these cells (Figure 3D-E). Together,
these findings show that our FANCA-deficient HPCs bear transcrip-
tional signatures consistent with perturbation of HPC state, re-
capitulation of known transcriptional signatures associated with FA,
as well as a novel signature related to terminal erythropoiesis.

Accelerated terminal differentiation of

FANCA-deficient HPCs

On further investigation of the pro-erythroid signature observed in
FANCA-deficient HPCs, we found that these cells expressed
higher levels of the downstream erythropoietin signaling compo-
nents JAK2 and STAT5B, as well as the erythropoietin targets
BCL2L1 and SOCS3 (supplemental Figure 3).40 Therefore, we
next examined erythropoietin-dependent differentiation.17,41 Within
the GLYA1 fraction containing committed erythroid cells, stepwise
erythroid differentiation can be examined including proerythroblasts
(region I; CD49d1Band 32), early basophilic erythroblasts (II;
CD49d1Band 32low), late basophilic erythroblasts (III; CD49d1

Band 31), polychromatophilic erythroblasts (IV; CD49d2low Band
31), and orthochromatophilic erythroblasts (V; CD49d2Band 31;
supplemental Figure 5).42 Although both FANCA-expressing and
-deficient cells showed efficient early erythroid commitment with
erythroid-induced acquisition of CD71 and GLYA expression
(Figure 4A), we found that FANCA-deficient HPCs showed acceler-
ated terminal erythroid differentiation (Figure 4B-D). To determine
whether this phenotype was specific to erythroid cells, we also tested
granulocyte colony-stimulating factor–driven myeloid differentiation,
observing an effect suggestive of acceleration in FANCA
deficient cells (supplemental Figure 6). Together, these findings
show that FANCA deficiency predisposes HPCs to terminal
differentiation.

Impaired cell cycling promotes differentiation of

FANCA-deficient HPCs

Given the known role of the FA pathway in regulation of the cell
cycle and the importance of cycling in differentiation,35,43,44 we next
examined the cell cycle. FANCA-deficient HPCs showed a signif-
icantly reduced proportion of cells in G1-phase and a trend toward
fewer cells in S/G2/M-phases consistent with less proliferation
(Figure 5A-B). We also observed higher expression of theCDKN1A
transcript encoding the G1/S phase checkpoint regulator p21 in
FANCA-deficient cells (Figure 5C). Consistent with this finding, we
observed increased nuclear localization of p53 protein, increased
p53 protein levels, and loss of an E2F transcriptional signature in
FANCA-deficient cells (Figure 5D-G). Increased p53 pathway

activation was associated with slightly increased apoptosis in
FANCA-deficient cells (supplemental Figure 8).

We next examined the connection between FANCA, p53, and
differentiation. Erythroid differentiation is triggered by GATA1-
dependent activation of p21-driven cell cycle arrest rather than
apoptosis.43-45 We found that cell cycling diminishes with pro-
gression through erythroid differentiation (supplemental Figure 5).
We therefore hypothesized that the enhanced p53/p21 activity
in FANCA-deficient HPCs augments physiologic expression of p21
to drive erythroid differentiation. To test this, we treated FANCA-
expressing cells with nutlin-3a, an inhibitor of MDM2-driven p53
degradation. Nutlin-3a induced p21 mRNA expression, impaired
colony formation, and accelerated erythroid differentiation in
FANCA-expressing HPCs (supplemental Figure 7). Thus, activation
of p53 is sufficient to augment erythropoietin-induced erythroid
differentiation at the expense of clonogenicity.

To further verify this model, we used gene editing to ablate the TP53
gene in IPSCs followed by treatment of IPSCs with nutlin-3a to
increase inserted/deleted allele frequency (supplemental Figure 8).
Edited cells were deficient in TP53 transcripts and could not recruit
CDKN1A in response to irradiation as expected based on disruption
of the TP53 locus (Figure 6A-B). FANCA-deficient, p53-disrupted
HPCs showed increased cycling relative to unedited FANCA-
deficient HPCs (Figure 6C-D). p53 deficiency rescued the impaired
clonogenicity of FANCA-deficient HPCs (Figure 6E). Moreover,
p53 deficiency in FANCA-deficient cells slowed progression of
erythroid differentiation (Figure 6F-G), establishing p53 as an
effector of aberrant HPC differentiation in FA.

GAS6 is a p53 target modulating HPC function

To further investigate the role of p53 in regulating HPC function, we
used K562 erythroleukemia cells either deficient for p53 or where
the endogenous TP53 locus was repaired using genome editing.46

We exposed these cells to hemin to induce erythroid differentia-
tion.47 We then performed chromatin immunoprecipitation with
sequencing for p53, finding that p53 bound the GAS6 locus
(Figure 7A). GAS6 is a known regulator of erythropoiesis.48 We
found that GAS6 expression was increased in FANCA-deficient
HPCs relative to controls at the RNA and protein levels (Figure 7B-
C). Nutlin-3a increased GAS6 expression, consistent withGAS6 as
a p53 target gene (Figure 7D). We initially hypothesized that p53-
driven GAS6 synthesis would negatively regulate HPC function
by signaling through its TYRO, AXL, and MER (TAM) receptors.
We therefore inhibited TAM signaling in FANCA-deficient HPC
by using the TAM receptor inhibitor BMS-777607 and activated
TAM receptors in FANCA-expressing HPCs by exposing them to
exogenous GAS6. We found that inhibition of TAM receptors did
not rescue clonogenesis in FANCA-deficient cells, whereas exoge-
nous GAS6 modestly increased HPC function in FANCA-expressing
cells (Figure 7E).

Figure 6. (continued) cell cycle status. Results are aggregated from 3 parental IPSC lines and compiled over 2 independent experiments and analyzed by a Student t test.

(E) The indicated HPCs isolated at day 8 of EHT were plated in methylcellulose in the presence of hematopoietic cytokines (10 000 cells/assay), and 14 days later colonies

were scored (n 5 4 biologic replicates over 3 independent experiments, and total colony numbers were compared by a Student t test, results are presented as mean 6 SEM

for each aggregated colony type). (F-G) The indicated cell lines were cultured under pro-erythroid differentiation conditions and analyzed by flow cytometry at the indicated

time points. CD49d/Band 3 plots are from the GLYA1 population of the differentiating culture. Results are aggregated over 3 independent experiments and compared by

a Student t test.
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Given that GAS6 is a prosurvival growth factor, we next hypothesized
that p53-induced GAS6 induction acts as a feedback mecha-
nism that could be potentiated to rescue FANCA-deficient HPC
progenitor function by repressing p53.49 We found that in p53-
repaired K562 cells, GAS6 could decrease p53 protein levels
(Figure 7F). Therefore, we treated FANCA-deficient HPCs with or
without recombinant human GAS6, finding that GAS6 treatment
rescued HPC clonogenesis (Figure 7G). GAS6 did not diminish
DNA damage as marked by formation of gH2AX (Figure 7H).
Treatment of primary FA patient hematopoietic stem and progenitor
cells could improve clonogenesis in all 4 patients tested in at least 1
of the GAS6 treatment durations (Figure 7I). These results identify
GAS6 is a p53 target that can be modulated to improve FA HPC
function.

Discussion

In this study, we used an inducible system to complement FANCA
mutations in patient-derived IPSCs to maintain the function of the
FA pathway while cells are in the pluripotent state.22 By either
removing or maintaining doxycycline exposure on initiation of EHT,
we generated abundant fully complemented or uncomplemented
human FA HPCs. These HPCs recapitulated key hallmarks of
FA.28,35,37 We identified GAS6 as a novel target of hyperactive p53
activity in FA HPCs and demonstrated that modulation of GAS6
signaling improves the function of FANCA-deficient HPCs.

Our system overcomes challenges faced over the past decade in
the development of an IPSC-based human model of FA. Previous
systems of hematopoietic differentiation have used either modified
reprogramming methods or constitutive complementation of FA
patient cells to generate IPSCs.18-20,50 Alternatively, RNA interfer-
ence has been used in non-FA pluripotent stem cells to disrupt the
FA pathway.51 Reprogramming under hypoxic conditions and with
the addition of further transcription factors over the minimum
required factors has been reported to enhance the efficiency of
IPSC derivation from FA patient fibroblasts, although IPSCs from
only 2 of 6 patient-derived fibroblast cultures could be propagated
in this study.20 Using this approach, post-reprogramming comple-
mentation was used to generate independent parallel control cell
lines for use in functional analysis.20 Although these approaches
yield IPSCs that can undergo hematopoietic differentiation,18 these
cells maintain complementation constitutively, and so hematopoi-
etic phenotypes caused by deficiency of the FA pathway are not
evaluable and mechanisms of HPC dysfunction cannot be pursued.
Alternatively, in rare uncomplemented FA patient-derived IPSC
lines, the FA pathway can be repaired after reprogramming in order
to generate isogenic, FA-expressing cells.52 However, using our
approach, one can readily derive isogenic FA-deficient and FA-
competent hematopoietic cells from a single IPSC source. This

system modulates FANCA expression at the time of hematopoietic
specification and HPC emergence, mitigating confounding effects
of FANCA deficiency on cells in the pluripotent state or during
early germ layer patterning in EBs. Perhaps most importantly, this
approach avoids comparison of IPSC lines derived from FA patients
to those from healthy donors, where background genetic variability
is well known to affect comparison of differentiation capacity.24,53

Our IPSC-derived, FANCA-deficient HPCs recapitulate key aspects
of hallmark FA hematopoietic phenotypes. We found a highly
reproducible defect in hematopoietic colony formation in HPCs
derived from EBs and the StemDiff 2-dimensional differentiation
system, as has been reported with primary patient FA cells.28

Moreover, we find that FANCA-deficient, IPSC-derived HPCs show
impaired cell cycle progression as has been demonstrated in both
mouse models of FA and primary human cells,54-56 as well as an
impaired response to genotoxic stress.57 Although the classic cell
cycle defect in FA cells is a G2/M arrest, our findings of slowed
G1/S progression are consistent with prior observations of cell
cycle defects in FA HPCs.54,58 These results indicate that FA
pathway deficiency may exert context-dependent effects on the cell
cycle, in this case enhancing the G1/S arrest that occurs during the
transition from cycling multipotent/oligopotent progenitor to com-
mitted erythroid or myeloid progenitor.44

We used RNA sequencing to delineate the transcriptional divergence
of otherwise isogenic FANCA-deficient and FANCA-expressing
HPCs. Consistent with the phenotype of impaired clonogenicity,
we found that FANCA-expressing HPCs maintained a signature of
normal blood stem and progenitor cells relative to FANCA-deficient
HPCs. Furthermore, distinct signatures related to cell cycle progression
and DNA repair reflected known biology of the FA pathway.54 Using
unbiased GSEA against the Molecular Signatures Database,30 we
observed that FANCA-deficient HPCs showed a signature of
erythroid differentiation relative to FANCA-expressing HPCs, leading
us to validate this finding in functional studies. FANCA-deficient
HPCs showed accelerated erythroid differentiation compared with
FA-competent HPCs, a phenotype not previously described in FA.
However, mice with germline FA pathway defects show depletion of
phenotypic HPC populations with growth arrest that could represent
rapid differentiation toward committed downstream lineages.4,56

The combination of impaired colony-forming capacity and acceler-
ated differentiation in FANCA-deficient HPCs supports a model
wherein these cells rapidly lose HPC identity and more readily
acquire a lineage-committed state. These findings illustrate the
advantage of this system in providing a renewable source of
human FA HPCs and isogenic control cells, as such primary patient
derived HPCs are difficult to reproducibly investigate disease
mechanisms.

Figure 7. (continued) ELISA experiments). (D) FANCA-expressing HPCs were treated with or without nutlin-3a and expression of GAS6 measured by quantitative PCR

(n 5 3 biologic replicates results presented as mean 6 SEM and compared by a Student t test with P value shown). (E) The indicated cells were treated either with BMS-

777607 or GAS6 during EHT and then used in a colony formation assay (n 5 7 biologic replicates over 3 experiments). (F) p53-repaired K562 cells were cultured serum free

for 24 hours during which time they were treated with GAS6, and protein was collected for western blot analysis. (G) FANCA-deficient HPCs generated in the absence of

doxycycline either in the presence of absence of recombinant GAS6 were harvested at day 5 of EHT and plated in methylcellulose medium, where colony formation was

quantified after 14 days (n 5 9 biologic replicates including 3 cell lines over 5 independent experiments). (H) Day 8 EHT cells generated without doxycycline and with or

without GAS6 were exposed to mitomycin C and gH2AX-positive foci per cell quantified (n 5 3 cell lines included and pooled in the overall analysis). (I) Primary FA patient

bone marrow mononuclear cells were treated with or without GAS6 for either 3 or 7 days and then used in a colony formation assay, where colonies were quantified at day 14.

All results presented as mean 6 SEM and compared by a Student t test with P value shown.
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FANCA-deficient HPCs show a delayed G1/S phase transition with
a diminished proportion of cells in S-phase compared with controls,
recapitulating such findings observed in primary human FA CD341
HPCs.58 As reported previously, we find that this effect is associated
with elevated activity of the p53-p21 axis, consistent with recapitu-
lation of human FA disease phenotypes.58 Intact MDM2-mediated
p53 inhibition preserved HPC clonogenicity in FANCA-expressing
cells, consistent with prior reports demonstrating that p53 activa-
tion in FA pathway deficiency impairs the growth and survival of
HPCs.59,60 In contrast, activation of p53 by pharmacologically
impairing its interaction with MDM2 led to the loss of clonogenicity
and acceleration of erythroid differentiation in FANCA-expressing
HPCs. Conversely, disruption of the TP53 gene in FANCA-
deficient cells rescues clonogenicity and abates terminal differen-
tiation. Given the known requirement of p21 activation for early
erythroid commitment,45 we suggest that the attenuated G1/S
transition induced by FANCA deficiency predisposes these cells to
differentiation. Modulation of p53/p21 activity downstream of FA
pathway mutations as a therapeutic approach should be consid-
ered with caution, given the accelerated tumorigenesis of p53-null
mice bearing FA pathway mutations.61 However, our results concur
with the broader paradigm that cell cycle progression regulates
differentiation propensity of stem and progenitor cells in a variety of
tissues.62,63

We aimed to leverage our model of human FA to identify novel
mechanisms of HPC dysregulation that could be targeted therapeu-
tically. We found that hyperactive p53 in FANCA-deficient HPCs
induced activation of GAS6, likely by directly binding the GAS6 locus.
Since GAS6 acts as a prosurvival, prohematopoietic factor,48,49 we
treated FANCA-deficient HPCs with recombinant GAS6, finding
that this intervention was sufficient to partially rescue clonogenesis.
These results are consistent with leveraging an endogenous negative
feedback mechanism wherein potentiation of p53-induced GAS6
signaling may provide an intervention to improve hematopoiesis in FA,
although this would in theory have to be accomplished in a selective
manner given GAS6’s reported protumorigenic effects.64

Compared with other diseases modeled with patient-derived IPSCs,
FA has proven challenging because of the requirement for an intact
FA DNA repair pathway for efficient reprogramming of somatic cells
to pluripotency.65 We used a doxycycline inducible system for
inducible, reversible complementation of FANCA-deficient patient
derived human IPSCs. This approach allowed us to generate
isogenic FANCA-deficient and FANCA-expressing human HPCs
that recapitulated key aspects of FA pathobiology, providing an

indefinitely renewable source of human FA and otherwise isogenic
control HPCs not obtainable in prior human IPSC-based models of
FA. We used this system to discover a novel phenotype wherein
FANCA-deficient, IPSC-derived HPCs undergo accelerated ery-
throid differentiation via a mechanism involving cell cycle regulation
by p53 and p21. Our model provides a foundation for future studies
of IPSC-based cellular therapy that could benefit patients with FA.

Acknowledgments

This study was supported by National Institutes of Health, National
Institute of Diabetes, Digestive, and Kidney Diseases grants 1 K08
DK114527-01 (R.G.R.) and U54DK110805-02 (G.Q.D. and T.M.S.),
and the Fanconi Anemia Research Fund (R.G.R. and G.Q.D.). S.I.W.
was supported by National Institutes of Health, National Cancer
Institute grant R01 CA102357 and a grant from the Fanconi Anemia
Research Fund. E.L.d.R. was supported by a fellowship from the
Coordination for the Improvement of Higher Education, Brazil.

Authorship

Contribution: W.M., S.B., S.R.-T., V.M., V.L., S.C., A.M.Z., O.A., C.K.,
Y.Z., T.M.S., and R.G.R. performed experiments; B.L.E., A.S., S.R.-T.
and S.I.W. provided key reagents. S.B., S.R.-T., S.I.W., E.L.d.R.,
T.M.S., and R.G.R. analyzed data; and T.E.N., G.Q.D., S.I.W., and
R.G.R. designed the research and wrote the manuscript.

Conflict-of-interest disclosure: During the conduct of this study,
G.Q.D. held equity or received consulting fees from the following:
Epizyme, 28/7 Therapeutics, and MPM Capital, LLC. The remaining
authors declare no competing financial interests.

The current affiliation for E.L.d.R. is Department of Microbiology,
Immunology, and Parasitology, Federal University of Santa Catarina,
Florianopolis, Brazil.

The current affiliation for V.L. is Center for Hematology and Re-
generative Medicine, Karolinska Institutet, Department of Medicine,
Karolinska University Hospital, Huddinge, Stockholm, Sweden.

ORCID profiles: W.M., 0000-0003-3126-8432; S.B., 0000-
0001-9937-0957; C.K., 0000-0002-7783-6602; O.A., 0000-
0002-4961-077X; A.S., 0000-0002-4683-9958; T.M.S., 0000-
0002-1599-9908; B.L.E., 0000-0003-0197-5451; R.G.R., 0000-
0003-3620-2950.

Correspondence: R. Grant Rowe, Karp Family Research Build-
ing, 7th Floor, 1 Blackfan Cir, Boston, MA 02115; e-mail: grant_rowe@
dfci.harvard.edu.

References

1. Kutler DI, Singh B, Satagopan J, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood. 2003;101(4):1249-1256.

2. Zhang H, Kozono DE, O’Connor KW, et al. TGF-b inhibition rescues hematopoietic stem cell defects and bone marrow failure in fanconi anemia. Cell
Stem Cell. 2016;18(5):668-681.

3. Zhang QS, Tang W, Deater M, et al. Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood. 2016;
128(24):2774-2784.

4. Zhang QS, Marquez-Loza L, Eaton L, et al. Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol. Blood. 2010;
116(24):5140-5148.

5. Mehta PA, Tolar J. Fanconi anemia. Gene Reviews. 8 March 2018. https://www.ncbi.nlm.nih.gov/books/NBK1401/. Accessed 3 February 2020.

6. Pulliam-Leath AC, Ciccone SL, Nalepa G, et al. Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of
Fanconi anemia. Blood. 2010;116(16):2915-2920.

4690 MARION et al 13 OCTOBER 2020 x VOLUME 4, NUMBER 19

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/4/19/4679/1760139/advancesadv2020001593.pdf by guest on 20 M

ay 2024

https://orcid.org/0000-0003-3126-8432
https://orcid.org/0000-0001-9937-0957
https://orcid.org/0000-0001-9937-0957
https://orcid.org/0000-0002-7783-6602
https://orcid.org/0000-0002-4961-077X
https://orcid.org/0000-0002-4961-077X
https://orcid.org/0000-0002-4683-9958
https://orcid.org/0000-0002-1599-9908
https://orcid.org/0000-0002-1599-9908
https://orcid.org/0000-0003-0197-5451
https://orcid.org/0000-0003-3620-2950
https://orcid.org/0000-0003-3620-2950
mailto:grant_rowe@dfci.harvard.edu
mailto:grant_rowe@dfci.harvard.edu
https://www.ncbi.nlm.nih.gov/books/NBK1401/


7. Carreau M, Gan OI, Liu L, et al. Bone marrow failure in the Fanconi anemia group C mouse model after DNA damage. Blood. 1998;91(8):2737-2744.

8. Cheng NC, van de Vrugt HJ, van der Valk MA, et al. Mice with a targeted disruption of the Fanconi anemia homolog Fanca. HumMol Genet. 2000;9(12):
1805-1811.

9. Walter D, Lier A, Geiselhart A, et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature. 2015;520(7548):
549-552.

10. Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 2019;20(7):377-388.

11. Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134(5):877-886.

12. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):
663-676.

13. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872.

14. Chadwick K, Wang L, Li L, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003;102(3):
906-915.

15. Wiles MV, Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development. 1991;111(2):259-267.

16. Tulpule A, Kelley JM, Lensch MW, et al. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and
hematopoietic dysfunction. Cell Stem Cell. 2013;12(6):727-736.

17. Doulatov S, Vo LT, Macari ER, et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci Transl Med. 2017;
9(376):eaah5645.

18. Müller LU, Milsom MD, Harris CE, et al. Overcoming reprogramming resistance of Fanconi anemia cells. Blood. 2012;119(23):5449-5457.
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