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Key Points

• JAK2S523L is a novel
activating JAK2 muta-
tion in JAK2V617F2

MPNs.

• JAK2S523L occurs in
a residue that is critical
for the negative regula-
tion of JAK2 kinase
activity.

The SH2-JH2 linker domain of JAK2 has been implicated in the negative regulation of

JAK2 activity. In 2 patients with myeloproliferative neoplasms (MPNs), we identified and

characterized the novel JAK2 mutation S523L, which occurs in a key residue in the linker

region. In 1 case, acquisition of JAK2S523L was associated with thrombocytosis and bone

marrow megakaryocytic hyperplasia, and there were no other somatic alterations in this

patient. The second patient with JAK2S523L mutation presented with increased hematocrit

and had concurrent mutations in RUNX1 and BCORL1. Consistent with the genetic and

clinical data, expression of JAK2S523L causes interleukin-3–independent growth in Ba/F3

cells transduced with the erythropoietin receptor by constitutively active Jak2/Stat5

signaling.

Introduction

Myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem/progenitor
cells that manifest with an increased number of mature myeloid cells. The most common BCR-
ABL12 MPNs are polycythemia vera (PV), essential thrombocythemia, and primary myelofibrosis.
The JAK2V617F mutation1-4 is identified in ~98% of PV, 35% to 57% of primary myelofibrosis, and
23% to 57% of essential thrombocythemia patients.5-7 It occurs in the JH2 pseudokinase autoinhibitory
domain and leads to constitutive JAK2 activation, increased sensitivity to cytokine signaling, and
erythrocytosis in preclinical models.8 Molecular screening of PV patients lacking the JAK2V617F
mutation has identified .10 other JAK2 mutations in exon 12, a majority within residues 536 to 5448

(eg, N542-E543 del [23%], E543-D544del [11%], and F537-K539delinsL and K539L [10%]).9,10

These mutations are most commonly characterized by isolated erythrocytosis and have been shown to
confer a proliferative advantage and increased downstream signaling of JAK2 in the absence of
cytokines.8,10

The tyrosine kinase activity of JAK2 is tightly regulated. The intramolecular cis interaction between the
JH2 pseudokinase and the JH1 tyrosine kinase domain of JAK2 negatively regulates JH1 tyrosine kinase
activity and maintains the kinase in an inactive state in the absence of cytokine stimulation.11-13

Phosphorylation of Y570 in the JH2 domain and S523 in the SH2-JH2 linker domain has been shown to
interact with the JH1 domain and enforce the JH2-JH1 autoinhibitory interaction.14-17 These data
suggest mutations at the JH2-JH1 interface, either in the JH2 domain (eg, R683G, L611S) or in the JH1
domain (D873N, P933R), or mutations at the negative regulatory sites Y570 or S523 destabilize the
JH2-JH1 interaction and enhance JAK2 signaling. Here we report clinical and molecular data of
2 patients who presented with JAK2V617F2 MPNs with novel mutations at serine 523, specifically the
S523L mutation, which we describe and functionally characterize.
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Methods

Sequencing

Peripheral blood samples were subjected to Sanger sequencing
of JAK2 exon 12 and next-generation sequencing of 54 myeloid
neoplasm–associated genes (TruSight Myeloid Sequencing Panel;
Illumina), including JAK2 exon 12. Mutational analysis of MPL and
CALR was performed using Sanger sequencing. The BCR-ABL1
fusion transcript was ruled out by reverse transcription polymerase
chain reaction.

In vitro mutagenesis

Jak2S523L and Jak2K539L mutations were introduced into murine
Jak2 wild-type (WT) MSCV-IRES-GFP using the QuikChange
Lightning Multi Site-Directed Mutagenesis Kit (Affymetrix) with the
following primers: Jak2S523L, F-mutagenesis: aaatggtatttctgatgt
tcagatcttaccaacattacagaggc and R-mutagenesis: gcctctgtaatgttg
gtaagatctgaacatcagaaataccattt and Jak2K539L, F-mutagenesis:
ttcattaaatattaaatcttcattcctgattaagtgaaacaccatttgattcacattattatg
c and R-mutagenesis: gcataataatgtgaatcaaatggtgtttcacttaatcag
gaatgaagatttaatatttaatgaa.

IL-3 withdrawal

Ba/F3 cells stably expressing the murine erythropoietin receptor
(EPOR) (Ba/F3-EPOR)18 or the human MPL (Ba/F3-MPL) were
grown in RPMI medium (10% fetal calf serum, penicillin/strepto-
mycin) and transduced with retroviral supernatant containing MSCV-
Jak2WT-GFP, MSCV-Jak2V617F-GFP, MSCV-Jak2S523L-GFP, or

MSCV-Jak2K539L-GFP, respectively. Flow-sorted green fluores-
cent protein (GFP)–positive Jak2 WT, Jak2S523L, Jak2V617F,
or Jak2K539L cells coexpressing either EPOR or MPL were
plated (6-well plates; 106 cells per 3 mL per well) in interleukin-3
(IL-3)–free RPMI (10% fetal calf serum, penicillin/streptomycin).
Cell numbers were counted using the Beckman Coulter ViCell XR
cell counter.

WB and immunoprecipitation

Transduced Ba/F3-EPOR and Ba/F3-MPL cells were grown in
the presence (Jak2 WT) or absence (Jak2V617F, Jak2S523L, or
Jak2K539L) of IL-3 for 4 to 6 hours. For assessment of effects of
ruxolitinib on signaling pathways, cells were grown in the absence
or presence of ruxolitinib (1 mM) for 4 hours before lysis. Lysate (30-
40 mg) was separated on 4% to 12% Bis-Tris electrophoresis gels
and probed for Jak2 (Cell Signaling Technologies [CST] #3230),
phosphorylated Jak2 (pJak2; CST #3776), Stat5 (CST #9363),
pStat5 (CST #9351), Akt (CST #4691), pAkt (CST #4060), Erk1/
2 (CST #9102), pErk1/2 (CST #9101), and Cofilin (CST #5175).
Jak2 was immunoprecipitated from 600 to 900 mg of lysate
followed by western blot (WB) with anti-pS523 and anti-pY570,
provided by Martin G. Myers Jr.

In vitro proliferation assay during

ruxolitinib treatment

For proliferation assays, 100 000 cells per 200 mL of medium were
plated in triplicate and supplemented with increasing doses of
ruxolitinib using 9-point, threefold dilutions with a top concentration
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Figure 1. Detection of the JAK2S523L mutation in 2 patients. (A) Clinical features and cooccurring molecular alterations detected by Sanger and next-generation se-

quencing (NGS). (B) Conventional Sanger sequencing in peripheral blood and buccal swabs reveals a somatic point mutation at c.1568, which causes an amino acid change

from TCA to TTA. (C) Detection of the JAK2S523L mutation by NGS of 54 myeloid neoplasm–associated genes using a targeted panel (TruSight Myeloid Sequencing Panel;

Illumina). (D) Schematic illustration of JAK2 structure and the localization of the JAK2S523L mutation. BM, bone marrow; Hb, hemoglobin; Hct, hematocrit; NA, not applicable;

plts, platelets; VAF, variant allele frequency.
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of 100 mM. After 48 hours, proliferation was assessed using the
CellTiter-Glo Luminescent Cell Viability Assay (Promega) and
normalized to proliferation in media with an equivalent volume
of dimethyl sulfoxide. Results were illustrated using GraphPad
Prism 8.0.

Results

The first patient was a 48-year-old man who presented with an
increased hemoglobin level (18 g/dL) and hematocrit (53%) while
being followed for hypertension. White blood cell count was 9.2 3
109/L and platelet count was 319 3 109/L at the time of diagnosis.
The second patient was a 36-year-old woman who presented
with an increased platelet count; her platelet counts had been in
the range of 534 3 109/L to 701 3 109/L over a 15-year period. A
bone marrow biopsy at the time of initial diagnosis showed

megakaryocyte hyperplasia without other abnormalities. Cytoge-
netic analysis was normal.

JAK2V617F, MPL, and CALR mutations were not detected
(Figure 1A). Screening for JAK2 exon 12 mutations detected point
mutation c.1568C.T, leading to an amino acid change from serine
to leucine in peripheral blood samples from both patients, but not in
matched germ line DNA (Figure 1B). Next-generation sequencing
confirmed somatic JAK2S523L mutations in both patients (Figure 1C)
and revealed missense mutations of RUNX1 (G69R) and BCORL1
(P810L) in the first patient. No additional mutations were detected
in the second patient. The JAK2S523L mutation is localized in the
linker region between the SH2 and pseudokinase (JH2) domains of
JAK2 (Figure 1D).

We next assessed the functional significance of these mutations
in vitro. Given the clinical phenotypes of the 2 patients, with either
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Figure 2. The Jak2S523L mutation causes IL-3–independent growth in Ba/F3 cells expressing EPOR through Jak2/Stat5 activation by impairing

phosphorylation of S523, a negative regulatory site for Jak2. (A) Ba/F3 cells transduced with MPL and either Jak2 WT, Jak2S523L, Jak2V617F, or Jak2K539L were

grown in the absence of IL-3. Results of 3 independent experiments are depicted as means 6 standard errors of the mean. (B) Ba/F3 cells transduced with EPOR and either

Jak2 WT, Jak2S523L, Jak2V617F, or Jak2K539L were grown in the absence of IL-3. Results of 3 independent experiments are depicted as means 6 standard deviations. (C)

WB analysis of Jak2/Stat5, Akt and mitogen-activated protein kinase (Mapk) signaling in Ba/F3-MPL or Ba/F3-EPOR cells transduced with Jak2 WT, Jak2S523L, Jak2V617F,

or Jak2K539L. (D-E) Lysates from Ba/F3 cells were immunoprecipitated (IP) with total Jak2 antibody and analyzed by WB using antibodies for pS523 and pY570, respectively.
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erythrocytosis or thrombocytosis, we generated Ba/F3 cell lines
stably expressing the mutant Jak2S523L (or its controls, Jak2 WT,
Jak2V617F, or Jak2K539L) in combination with either the EPOR or
thrombopoietin receptor (MPL). Ba/F3 cells stably expressing MPL/
Jak2S523L proliferated in the absence of IL-3, similar to the MPL/
Jak2V617F and MPL/Jak2K539L cells, whereas Ba/F3-MPL/Jak2
WT cells did not grow in the absence of IL-3 (Figure 2A). In line with
these results, in EPOR-overexpressing Ba/F3 cells, expression of
Jak2S523L conferred cytokine-independent growth, similar to expres-
sion of Jak2V617F or the exon 12 Jak2K539L mutation (Figure 2B).

WB analyses revealed cytokine-independent activation of the
Jak2/Stat5 pathway in Jak2S523L-expressing cells (Figure 2C).

Furthermore, activation of the Jak2/Stat5 pathway in Jak2S523L-
expressing cells was associated with impaired phosphorylation of
S523, a negative regulatory site for Jak2 activity (Figure 2D). The
phosphorylation status of Y570, another Jak2 regulatory site, was
not significantly altered in Jak2S523L-mutant cells (Figure 2E).

Ba/F3 cells harboring the Jak2S523L mutation in combination
with either MPL or EPOR displayed sensitivity to ruxolitinib equal
to that displayed by cells expressing Jak2V617F (Figure 3A-B).
Ruxolitinib treatment showed similar attenuation of Stat5, Akt,
and mitogen-activated protein kinase signaling in cells expressing
the Jak2S523L, Jak2V617F, or Jak2K539L mutation (Figure 3C-D)
and slightly increased phosphorylation at Jak2 Y1007/1008 but did
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Figure 3. Jak2S523L-expressing Ba/F3 cells coexpressing EPOR or MPL cells are sensitive to treatment with ruxolitinib. (A) Proliferation with increasing
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not affect phosphorylation at Jak2Y570 or Jak2S523 (supplemental
Figure 1).

Discussion

JAK2 is the critical kinase for mediating cellular signaling by type
I/II cytokine receptors (eg, EPOR, thrombopoietin receptor, granulocyte-
macrophage colony-stimulating factor, or interferon g receptor).
Cytokine binding to their cognate receptors induces dimerization
of JAK2s, resulting in auto/transphosphorylation of the activation
loop Tyr1007/1008 residues and subsequent phosphorylation of
other potentiating residues, such as Tyr637, Tyr813, Tyr868,
Tyr966, and Tyr972, as well as phosphorylation of residues that
negatively regulate JAK2 activity, such as Tyr119, Tyr221, Tyr317,
Tyr570, and Tyr913.14-17,19-21 Ser523 is the only residue that is
constitutively phosphorylated in JAK2.16,19

JAK2 consists of FERM and SH2-like domains, a JH2 pseudokinase
domain, and a JH1 tyrosine kinase domain. The JAK2 JH2 domain is
a mutational hotspot in JAK2 linked to a hyperactive JAK2 and MPN
pathophysiology.22 The SH2-JH2 linker domain reinforces the JH2-
JH1 autoinhibitory interaction, which plays a role in the negative
regulation of JAK2 kinase activity and reduction of JH1 domain
affinity for ATP.13,22 As a consequence, mutations in the JH2 and
SH2-JH2 linker domains disrupt the autoinhibitory pose and
constitutively activate JAK2 signaling.15,22 The JH2 domain has
been shown to negatively regulate JH1 activation by allosteric
inhibition in the JH1-JH2 autoinhibitory dimer,13 which is reinforced
by phosphorylation of Ser523 and Tyr570.19 Phosphorylation of
JAK2 at Ser523 and its negative role in the regulation of JAK2
activity were identified by Mazurkiewicz-Munoz et al,17 who
introduced a serine-to-alanine mutation at residue 523 and showed
that this substitution resulted in enhanced JAK2 tyrosine kinase
phosphorylation and increased JAK2/STAT5 signaling.16,23

To our knowledge, this is the first identification of somatic mutations
at JAK2S523 in human disease. We demonstrate that mutations at
this residue transform Ba/F3 cells, confer cytokine-independent
growth, and constitutively activate Jak2/Stat5 signaling. Similarly to
the experimentally introduced serine-to-alanine substitution,17 the
JAK2S523L mutation leads to a change from a polar amino acid
(serine) to a nonpolar, hydrophobic leucine and removes the
negative regulatory phosphorylation site. We hypothesize that
the abrogated Ser523 phosphorylation then leads to dysregulated
JAK2 activation. Taken together, these data demonstrate the
pathophysiologic significance of Ser523 mutations in the SH2-
JH2 linker domain of JAK2 in the pathogenesis of MPNs and

underscore the role of autoinhibitory phosphorylation, including at
S523, in regulating JAK2 kinase activation.
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