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Key Points

• Single-cell whole-
genome amplification
can be used to interro-
gate the genomic
architecture of
Waldenström’s
macroglobulinemia.

• The mutational signa-
ture ofCXCR4MUT cells
may be associated with
alterations in DNA
repairing genes and
tumor suppressors.

Introduction

MYD88 and CXCR4 somatic mutations are the most common alterations in Waldenström’s
macroglobulinemia (WM), affecting 95% to 97% and 30% to 40% of patients, respectively.1 CXCR4
mutations occur in the C-terminal domain and are often subclonal to mutated MYD88 with a median
allele burden of 35%, suggesting that these mutations occur after acquisition of the MYD88 mutation.
These activating mutations in CXCR4 are typically nonsense or frameshift mutations that impact clinical
presentation. The nonsense variants in particular are associated with higher bone marrow disease
burden, high serum immunoglobulin M levels, symptomatic hyperviscosity, and earlier time to first
treatment.CXCR4mutations also impact ibrutinib response, including depth and time to major response
and progression-free survival.2,3 Differences in response rates are minor when using a combination of
ibrutinib and rituximab, but delayed responses are still observed in CXCR4MUT patients.4,5 The
acquisition of BTKCys481 mutations that underlie ibrutinib resistance also appears more common in
CXCR4-mutated patients, suggesting an underlying genomic predisposition. As such, we sought to
examine the CXCR4 mutant subclone at a single-cell level to identify the alterations that may explain
these unique features.

Methods

We selected 1 untreated patient with the clinicopathologic diagnosis of WM, with mutated MYD88
and CXCR4 for this proof-of-concept study. Single-cell sorting was performed on CD191

immunoglobulin M1 bone marrow mononuclear cells, followed by whole-genome amplification
(WGA) of the DNA on each isolated cell with the REPLI-g single cell kit (Qiagen, Valencia, CA).
MYD88 and CXCR4 mutational status was assessed by Sanger sequencing.6 A total of 22 single
cells, distributed in 13MYD88MUT/CXCR4MUT and 9MYD88MUT/CXCR4WT, together with the bulk
tumor CD191 fraction and the bulk CD192 germline sample (non–whole-genome amplified) from
the same patient, were sent for whole-genome sequencing (WGS) to the Broad Institute of
Massachusetts Institute of Technology and Harvard (Cambridge, MA). Data were analyzed
following the Genome Analysis Toolkit Best Practice Guidelines (Broad Institute).7 Sequencing
reads were aligned to the human reference genome GRCh37/HG19 using Burrows-Wheeler
Aligner. Small variants and indels were called using Strelka8 and Ensembl Variant Effect Predictor,9

and copy number alterations (CNA) were analyzed using Control-FREEC (Boeva Laboratory,
Institut Curie, Paris, France)10 and Genome Analysis Toolkit Copy Number Variation (Broad
Institute).11 Further analyses, including nonnegative matrix factorization,12 Fisher’s exact test, and
differential gene expression analysis with voom from the edgeR/limma Bioconductor packages,13

were conducted in R (R Foundation for Statistical Computing, Vienna, Austria). The pipeline
followed is detailed in previous studies of the group.1,14 All validations were carried out by Sanger
sequencing.

Submitted 2 March 2020; accepted 4 August 2020; published online 21 September
2020. DOI 10.1182/bloodadvances.2020001775.

The data set has been submitted to the National Institutes of Health and will be made
available by the authors upon request in the interim by contacting the corresponding
author at zachary_hunter@dfci.harvard.edu.

The full-text version of this article contains a data supplement.
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Results and discussion

Because this was the first experiment of this kind carried out in WM,
and considering the potential limitations of theWGA (allele dropout,
false positives, and sequence-dependent bias),15 we were able to
establish an appropriate workflow to carry out single-cell in-
terrogation (Figure 1). Briefly, we first performed an unsupervised
clustering of the 22 single cells based on the variants of the bulk
sample. Then, we applied the Fisher’s exact test to identify variants
significantly different in the single cells according to CXCR4 status
and validated them by Sanger sequencing on the bulk sample and
on 22 single cells. Next, we searched for mutations on these genes
in a series of patients to see whether they were predominant in
CXCR4-mutated or wild-type cases, and we conducted differential
gene expression analysis based on CXCR4 in an independent
set of patients. Finally, copy number alterations were compared
between both groups of cells.

Our first approach was to perform an unsupervised clustering of the
22 single cells based on the variants of the bulk sample by using
nonnegative matrix factorization,12 but the samples did not cluster
according to the CXCR4 status, possibly because of biased
amplification or allele dropout of the variants in the single cells.
Therefore, we decided to find variants from the bulk sample that
were enriched in CXCR4-mutated vs CXCR4 wild-type single cells.
Fifty-three single nucleotide variants and 10 indels corresponding to
59 genes were identified (supplemental Table 1). Most of these
variants (48 of 63; 76%) were predominant inCXCR4MUT cells. We
selected the variants belonging to genes that are expressed in WM
or in healthy donors B cells16 and located near transcribed genes,
ending up with 14 mutations (Table 1). Among the affected genes
were MACROD2 and CCSER1, which are associated with
chromosome instability,17,18 and UVRAG, which is involved in
DNA damage repair.19 There were also tumor suppressors, such as
BTG220 and DAB2,21 a regulator of the cell cycle (SCAPER),22

and genes responsible for posttranslational protein modifica-
tions (LNX1 and DCUN1D4). The remaining genes (TMEM14B,

transmembrane protein; LRMP, lymphocyte protein; SPON1, cell
adhesion protein; OSGEPL1, endopeptidase; VTA1, protein in-
volved in vesicle trafficking; EXOC6B, part of the exocyst complex)
have a less known role.

We picked up half of the variants for validation in the bulk tumor
sample by Sanger sequencing and confirmed all of them. Validation
in the 22 single cells was also performed, although in this case,
results were hampered by the biased amplification and allele drop
out associated with the WGA process.15 However, LRMP kept
the significantly different distribution observed in the single-cell
WGS results, being detected almost exclusively inCXCR4MUT cells
(supplemental Table 2). This gene encodes a lymphoid-restricted
membrane protein involved in antigen receptor assembly and
trafficking during lymphocyte development.23

The following step was to translate these findings to a cohort ofWM
patients. We searched for mutations in the 14 genes in a series
of 46 patients from a previous WGS study14 to see whether they
were predominant in CXCR4-mutated or CXCR4 wild-type WM.
Characteristics of this cohort are summarized in supplemental
Table 3. Results did not show any significant difference in the
distribution of the mutations on these genes between both groups
of patients from this cohort (supplemental Table 4). As most mutations
were noncoding, we hypothesized that they may influence gene
expression. Using our previously published RNASeq cohort of 57WM
patients, we checked to make sure the candidate gene was expressed
in healthy donor B cells and/or WM.16 Then we used differential
gene expression analysis between the CXCR4MUT and CXCR4WT

cohorts to look for evidence of transcriptional dysregulation.
Interestingly, from our list of 14 genes, LRMP was significant for
differential expression (adjusted P 5 .003). We then analyzed
a larger cohort of patients (n 5 284) from an ongoing project, and
LRMP was within the top 10 most differentially expressed genes
(sorted by adjusted P value), with a fold change of 20.6
(supplemental Table 5). Finally, we analyzed the CNA to look for
alterations specific to the CXCR4MUT subclone, but this patient did
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Figure 1. Workflow of the single-cell WGS analysis. Schematic representation of the steps followed for the analysis of the study. WGS was performed in 22 whole-

genome amplified single-cells (13 MYD88mut/CXCR4mut and 9 MYD88mut/CXCR4wt) and the bulk tumor sample from a patient with WM. Variants called in the bulk sample

were used as a matrix for the unsupervised clustering of the 22 cells. As cells did not cluster together according to CXCR4 mutation, we intentionally searched for variants

significantly present in one group vs the other, by applying the Fisher’s exact test, and selected a list of 14. We validated them by Sanger sequencing on the bulk sample and

on the 22 single cells. Next, we looked for mutations on these genes in a series of patients with whole-genome sequencing data to see whether they were predominant in

CXCR4-mutated (mut) or wild-type (wt) cases. In addition, differential gene expression analysis based on CXCR4 was conducted in an independent set of patients, and results

were cross-referenced with our list of variants. Finally, copy number alterations were compared between both groups. DGEA, differential gene expression analysis; NMF,

nonnegative matrix factorization.
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not present any CNA of sufficient size to analyze at the single-
cell level.

In summary, this is the first single-cell study carried out in WM to
characterize the clonal diversity of the disease. Our results have
highlighted several alterations associated with the CXCR4MUT

clone in DNA repairing genes and tumor suppressors, suggesting
that CXCR4 mutations could be related to the alteration of certain
mechanisms rather than to specific genes. The findings may
therefore help guide future studies to determine the role of CXCR4
in the clonal evolution of WM. Different treatment approaches
may be needed for these patients according to the underlying
pathogenic mechanisms associated with the presence of CXCR4
mutation. The analysis tools and workflow provided in this paper will
help set up the basis for future studies on single-cell interrogation
in WM.
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