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Key Points

•Missense mutations in
the FIX signal peptide
and propeptide cause
FIX deficiency by vari-
ous mechanisms.

•Oral administration of
vitamin K may alleviate
the severity of hemo-
philia B with certain
missense mutations
in FIX.

Many mutations in the signal peptide and propeptide of factor IX (FIX) cause hemophilia B.

A FIX variants database reports 28 unique missense mutations in these regions that lead to

FIX deficiency, but the underlying mechanism is known only for the mutations on R43 that

interfere with propeptide cleavage. It remains unclear how other mutations result in FIX

deficiency andwhy patients carrying the samemutation have different bleeding tendencies.

Here, we modify a cell-based reporter assay to characterize the missense mutations in the

signal peptide and propeptide of FIX. The results show that the level of secreted

conformation-specific reporter (SCSR), which has a functional g-carboxyglutamate (Gla)

domain of FIX, decreases significantly in most mutations. The decreased SCSR level is

consistent with FIX deficiency in hemophilia B patients. Moreover, we find that the decrease

in the SCSR level is caused by several distinct mechanisms, including interfering with

cotranslational translocation into the endoplasmic reticulum, protein secretion,

g-carboxylation of the Gla domain, and cleavage of the signal peptide or propeptide.

Importantly, our results also show that the SCSR levels of most signal peptide and propeptide

mutations increase with vitamin K concentration, suggesting that the heterogeneity of

bleeding tendencies may be related to vitamin K levels in the body. Thus, oral

administration of vitamin K may alleviate the severity of bleeding tendencies in patients

with missense mutations in the FIX signal peptide and propeptide regions.

Introduction

Hemophilia B is an X-linked recessive bleeding disorder with a prevalence rate of;1 in 30 000 live male
births.1 This inherited disorder is caused by deficiency of coagulation factor IX (FIX) in patients, whose
bleeding tendencies correlate with their plasma level of FIX activity (FIX:C). With the normal level of FIX:
C at 1 IU/mL in plasma, patients having ,1% of normal FIX:C (,0.01 IU/mL) are defined as severe
cases, those with 1% to 5% of normal (0.01-0.05 IU/mL) are considered moderate cases, and those
with 5% to 40% of normal (0.05-0.40 IU/mL) are classified as mild cases.2

A total of 1113 unique mutations in the FIX gene had been reported in hemophilia B patients.3 These
mutations are distributed over exons, introns, or untranslated regions of the FIX gene, and 923 mutations
occur in the coding region of FIX domains,3 which contain an N terminus signal peptide and propeptide,
followed by the mature protein that is subdivided into the g-carboxyglutamate (Gla) domain, 2 EGF
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domains, linkers, and the protease domain.3-5 Mutations in the
signal peptide and propeptide account for 6.5% of the total
mutations in the coding region of FIX.3 To date, 28 unique missense
mutations have been recorded in the signal peptide and propeptide
in a FIX variants database.3 Among these, the R43W and R43Q
mutations render the propeptide uncleaved, resulting in deficient
generation of FIX.6-9 However, it remains unclear how the other
mutations affect the activity of FIX and why, in some cases, patients
carrying the same mutation exhibit different bleeding tendencies
that vary from mild to severe.3,5,10

The signal peptide and propeptide are required for the maturation of
FIX protein.5 The signal peptide directs the cotranslational trans-
location of FIX into the endoplasmic reticulum (ER) lumen of liver
cells; it is subsequently removed by the signal peptidase at the C28
position. The propeptide is required for g-carboxylation of FIX,
a posttranslational modification that is essential for its membrane-
associated activity.11,12 The propeptide provides the primary
binding site between FIX and vitamin K–dependent g-glutamyl
carboxylase (GGCX),13 which converts glutamate residues to Gla
in FIX’s Gla domain. The presence of the propeptide also increases
the enzymatic activity of GGCX.13,14 After g-carboxylation of the
Gla domain, the propeptide is cleaved off to generate the mature
FIX protein.6

The g-carboxylatedGla domain anchors FIX to broken cell membranes
in case of injury.11,15,16 The negative charge of the broken
membrane triggers the binding of Gla domain to membrane in
a calcium-dependent interaction.11,12,17,18 Gla residues have
a high affinity for calcium ions. In turn, the calcium binding induces a
structural transition in the Gla domain, which is converted from
a largely unfolded and nonfunctional19 region to a tightly folded
domain that is capable of membrane binding.8,9,20 The N terminus
of the foldedGla domain contains av-loop,8,9 which forms an exposed
hydrophobic patch that participates in membrane binding.9,21,22

Conformational-specific antibody recognizing the v-loop23 can
detect whether FIX has a functional Gla domain that is fully
g-carboxylated and calcium stabilized.15,24

Here, we modify a well-established cell-based assay to charac-
terize 28 missense mutations in the signal peptide and propeptide
of FIX. We find that FIX deficiency of these missense mutations is
caused by various mechanisms. In addition, our results indicate
that the heterogeneity of bleeding tendencies in hemophilia B
patients with the same mutation may be caused by different levels
of vitamin K in the body, suggesting that oral administration of
vitamin K may be a strategy to alleviate the severity of bleeding in
patients with certain missense mutations in FIX signal peptide and
propeptide.

Materials and methods

Research subjects and FIX mutations nomenclature

The missense mutations in the signal peptide and propeptide
regions were analyzed based on the online FIX variants database
(http://www.factorix.org/index.php#).3 Detailed information about
patients was collected (supplemental File 1), and mutations in the
FIX protein were described following the nomenclature system of
the HumanGenome Variation Society (http://www.hgvs.org/mutno-
men). The sequence NP_000124.1 of FIX protein was used as
a reference for amino acid numbers; mature FIX starts at residue 47.

Plasmid construction

A chimera reporter, termed “FIX-PC,” was constructed with the
N-terminal domains of FIX (signal peptide, propeptide, and Gla
domain) fused to the C-terminal domains of protein C (supplemen-
tal Figure 1A), which is similar to a previous reporter.15,25 This
reporter protein allows us to detect the calcium-stabilized conformation
of FIX’sGla domain by using amonoclonal antibody. This reporter gene
was subcloned into the EF1a promoter multiclone site of the pBud
CE4.1 vector. To evaluate the transfection efficiency, Metridia
luciferase complementary DNA was subcloned into the same vector
at the CMV promoter multicloning site (supplemental Figure 1B).
The mutants were created using a ligation-free method, as
previously described.26

Detection of the secreted FIX-PC reporter in medium

HEK293T cells were cultured in Dulbecco’s modified Eagle
medium supplemented with 10% fetal bovine serum (both from
Gibco). The cells were plated onto a 24-well plate to reach;50%
to 60% confluence on the following day, and then cells were
transfected with different constructs using Lipofectamine 3000
(Thermo Fisher Scientific). After 4 to 6 hours of transfection, the
medium was replaced by fresh complete medium supplemented
with vitamin K, the cells were incubated for an additional 36 to
48 hours, and the medium was collected. Calcium ion was added
to the medium to 5 mM final concentration. The secreted
conformation-specific reporter (SCSR) of FIX-PC was detected
by an antibody (GMA001; Green Mountain Antibodies), as
previously described.15

To detect the secreted total reporter (STR) of FIX-PC, each well of
a 96-well enzyme-linked immunosorbent assay plate was coated
with 100 mL of mouse anti–human protein C monoclonal antibody
(2 mg/mL; GMA-067; Green Mountain Antibodies) overnight at
4°C. After washing with TBS with Tween 20 buffer (20 mM Tris-HCl
[pH 7.6], 150 mMNaCl, and 0.1% Tween 20) 5 times, the plate was
blocked using bovine serum albumin. The samples and FIX-PC
protein standards were added and incubated for 2 hours at room
temperature. After the unbound proteins were washed off using
TBS with Tween 20 buffer 5 times, 100 mL of sheep anti–human
protein C immunoglobulin G conjugated to horseradish peroxidase
(HRP) (HRP1598-1R4; Affinity Biologicals) was added to each well
and incubated for an additional hour at room temperature. After
unbound antibody was washed off, ABTS substrate was used for
color development, and absorbance was measured at 405 nm by
a plate reader.

To eliminate the transfection efficiency difference among
constructs, SCSR and STR levels of different samples were
divided by their Metridia luciferase, which was measured
as previously described27 (supplemental Figure 1C). These
corrected SCSR and STR levels were further normalized to
those of FIX-PC with wild-type signal peptide and propeptide
sequences.

Normalization of the SCSR/STR ratio of FIX-PC

To analyze the relationship between SCSR and STR of FIX-PC, we
calculated the ratio of SCSR/STR (RC/T). RC/T of mutants was
normalized to that of wild-type FIX-PC. All error propagations were
calculated accordingly.
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Analysis of the expression, maturation, and

g-carboxylation of FIX-PC reporter by

western blotting

To analyze the expression, maturation, and g-carboxylation of the
FIX-PC reporter, the constructs were transiently expressed in
HEK293T cells in a 6-well plate. Transfection and cell growth were
performed as described above. The cells were washed once with
ice-cold phosphate-buffered saline and lysed with 120 mL of lysis
buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% Triton X-100,
and protease inhibitor cocktail). The cell lysate was subjected to
reducing sodium dodecyl sulfate–polyacrylamide gel electrophore-
sis, and western blot was conducted with sheep anti–human
protein C immunoglobulin G conjugated to HRP, anti-Gla (3570;
BioMedica Diagnostics), and anti–b-actin (Santa Cruz Bio-
technology) antibodies. Corresponding HRP-conjugated sec-
ondary antibodies were used to detect the primary antibody, and
the chemiluminescent signal was detected using an ECL kit
(WBKLS0100; MilliporeSigma).

Analysis of the relative expression level and the

relative g-carboxylation efficiency of intracellular

FIX-PC reporter

To determine the relative expression level of the intracellular FIX-PC
reporter, the band intensity from western blot was analyzed using
ImageJ (National Institutes of Health). The expression ratio of the
reporter to b-actin of different mutants was normalized to that of
wild-type FIX-PC to give the relative expression level.

To analyze the relative g-carboxylation efficiency of the intracellular
FIX-PC reporter, the g-carboxylated reporter/total reporter ratio was
calculated. The ratio of the mutations was normalized to that of
wild-type FIX-PC to give the relative g-carboxylation efficiency.

Signal peptide analysis

The online SignalP server (http://www.cbs.dtu.dk/services/
SignalP/)28 was used to predict the probability of signal peptide
in mutations.

Results

Survey of missense mutations in signal peptide and

propeptide of FIX in hemophilia B patients

Based on the FIX variants database, the occurrence and frequency
of missense mutations in the signal peptide and propeptide regions
were investigated first. Twenty-eight unique missense mutations
were reported in 2 regions, accounting for 226 cases of hemophilia
B. These mutations are distributed on 9 residues in the signal
peptide and 8 residues in the propeptide (Figure 1; supplemental
Figure 2). In particular, 166 patients carry mutations on R43 in
the propeptide, and there are 3 types of mutations (R43W/Q/L).
Residue C28 at the signal peptide cleavage site is another
mutation hotspot, and 4 types of mutations (C28R/G/Y/W) were
found in 16 patients. Multiple mutations have also been reported
for other residues, including V30 (I or L), A37 (V, T, or D), and
R46 (K, T, or S), all of which are located in the propeptide
region. The remaining 12 residues only have a single type of
mutation that is distributed sporadically in the signal peptide and
propeptide regions.

Characterization of the secreted reporter of the

missense mutations in the signal peptide

and propeptide

Mutations in the signal peptide and propeptide may allow some
functional FIX to be secreted, because they are not located in the
region of the mature protein. One indicator of functional FIX is its
fully g-carboxylated and properly folded Gla domain. Thus, we
evaluated whether these mutations have a functional Gla domain by
measuring their SCSR level.15,25 We found that the SCSR level
was significantly decreased in most mutations (Figure 2A), which is
consistent with FIX deficiency in hemophilia B patients.

FIX deficiency in patients may be caused by the absence of, or
decrease in, secreted total FIX protein.29 Thus, we measured the
STR levels of the mutants and then compared RC/T. Our results
show that mutations in the signal peptide region decrease SCSR
protein and STR protein proportionally, with RC/T close to 1
(Figure 2B-C). Similarly, the SCSR and STR levels of several
propeptide mutations, including T29I, V30L, N36T, A37V, and
N38H, are proportionally expressed (Figure 2B-C). To our
surprise, several mutations in the propeptide region changed
the SCSR and STR levels to different extents (Figure 2B-C). V30I
mutation shows increased RC/T, indicating relatively more
secretion of functional protein, whereas the remaining mutations
in the propeptide region show decreased RC/T, indicating relatively
less secretion of functional protein. In summary, these results
suggest that mutations in the signal peptide region impair FIX
function, primarily by affecting the production of FIX, whereas
mutations in the propeptide region may use multiple mecha-
nisms to cause FIX deficiency.

Mutations in the hydrophobic region of signal peptide

hinder cotranslational translocation of the FIX-PC

reporter into the ER

The decreased SCSR level may originate from the decreased
protein expression. To test that possibility, we analyzed the
intracellular reporter protein expression level of the mutations by
western blot. Most mutations did not show any change in this level,
indicating that the decrease in their SCSR is not caused by the
change in protein expression. However, certain mutations in
the signal peptide (I17N, L20S, L23P, L24P, and C28Y/R/W)
and the propeptide (V30I) regions reduced the reporter protein
expression level (supplemental Figure 3), which is consistent with
the decrease in the SCSR level (Figure 2A). Among them, 4
mutations in the signal peptide region show a lower molecular
weight (MW) band compared with the other constructs (supple-
mental Figure 3A), which indicates that these 4 mutations have
a distinct mechanism to decrease the SCSR level.

Residues of I17, L20, L23, and L24 belong to a hydrophobic region
of the signal peptide (Figure 3A), which involves cotranslational
translocation of FIX into the ER lumen, where MW of FIX is
increased because of glycosylation. By predicting the signal
peptide probability with SignalP server,28 these 4 mutations were
also found to decrease the probability of signal peptide (Figure 3B).
Thus, we assume that the lower MW band of these mutations may
be caused by the dysfunction of signal peptide, which leads to the
eradication of cotranslational translocation of the reporter into the
ER lumen.
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To confirm this hypothesis, the essential hydrophobic residues
of the signal peptide were mutated to alanines to ensure the
dysfunction of cotranslational translocation in this region (M1 and
M2; Figure 3A). The signal peptide prediction also assumes that the
mutations eliminate the function of the signal peptide (Figure 3B).
As expected, western blot results show a low MW band in M1 and

M2 as the 4 missense mutations (Figure 3C). Moreover, the
SCSR and STR levels of M1 and M2 are undetectable (Figure
3D-E). Collectively, these results suggest that these mutations
lead to FIX deficiency because of the dysfunction of the signal
peptide via its interference with cotranslational translocation of
FIX into the ER.
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Figure 1. Survey of hemophilia B patients with

the missense mutations in the signal peptide

and propeptide. Twenty-eight unique missense

mutations (226 cases) in the signal peptide and pro-

peptide were found in the FIX variants database.
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signal peptide region, and mutations on residues 29

to 46 reside in the propeptide region.
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Figure 2. Characterization of the secreted re-

porter with the missense mutations in the signal

peptide and propeptide. SCSR protein (A) and STR

protein (B) were normalized to Metridia luciferase and

expressed relative to wild-type FIX-PC. The error bars

indicate the standard deviation from 3 biological repli-

cates. The dashed blue and red lines show 40% and

5% level of wild-type FIX-PC reporter, respectively.

(C) Normalized RC/T. The ratio was renormalized by

RC/T of wild-type FIX-PC, which is defined as “1”. All

error propagations were calculated accordingly. The

black, green, and violet dashed lines show 1.2-fold,

0.8-fold, and 0.2-fold wild-type RC/T, respectively.
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Characterization of the protein-maturation process

and g-carboxylation of the FIX-PC reporter

The maturation of FIX in the ER requires several steps, including
signal peptide cleavage, propeptide cleavage, g-carboxylation,
and glycosylation.3,25 To assess whether these mutations affect
these processes, we analyzed the electrophoresis mobility and
g-carboxylation level of the intracellular FIX-PC reporter.

Because FIX is a vitamin K–dependent protein, the effect of vitamin
K on protein maturation and g-carboxylation was determined first. At
least 4 bands were observed in the process of protein maturation
using anti–protein C antibody (supplemental Figure 4A; long
exposure). Interestingly, the band with the highest MW (band 1),
depending on vitamin K, should be one of the states of the
g-carboxylated reporter. By using an anti-Gla antibody, vitamin K is
required to detect the g-carboxylated reporter (supplemental
Figure 4A, bottom panel); however, in the absence of vitamin K,
we observed nonspecific bands that were at a background (;20%)
level on the immunoblot (supplemental Figure 4B).

Next, we assessed the protein processing and g-carboxylation
of these mutations. By using the anti–protein C antibody, most
mutations show a similar band pattern as wild-type FIX-PC, except
that A26D and C28R/Y/W in the signal peptide have slower
electrophoresis mobility (Figure 4A, upper panel). By using the anti-
Gla antibody, the g-carboxylated reporter is decreased in mutations
of A26D, C28W, and A37D (Figure 4A, lower panel). Further, our
results show that the relative g-carboxylation efficiency of most
mutations is similar to that of wild-type FIX-PC. However, mutations
in A26D, C28W, and A37D show decreased relative g-carboxylation
efficiency; in contrast, mutations in C28Y and V30I show increased
relative g-carboxylation efficiency (Figure 4B). The complexity of protein
processing and g-carboxylation of the mutations suggests that various
mechanisms underlie the decrease in the SCSR level. To better
understand their potential mechanisms, we address them in detail in
the following paragraphs.

The residues of C28 and A26 are located in the signal peptidase
recognition region, and signal peptide prediction indicates that
mutations in both residues decrease the signal peptide probability

of FIX (supplemental Figure 5); therefore, the slower electropho-
resis mobility indicates that mutations in A26D and C28R/Y/W may
affect reporter protein processing by interfering with cleavage of the
signal peptide. In addition, our results indicate that these mutations
may also affect the g-carboxylation efficiency of the reporter
(Figure 4) by the uncleaved signal peptide, which leads to a longer
propeptide to affect the subsequent g-carboxylation of the Gla
domain. In addition, the A26D mutation may affect secretion of the
reporter because its intracellular protein expression is not affected
(supplemental Figure 3), whereas the SCSR and STR levels are
decreased significantly (Figure 2A-B).

Mutation of V30I in the propeptide region decreases protein
expression significantly, consistent with the FIX deficiency in
patients.29 However, the relative g-carboxylation efficiency is
significantly increased in V30I (Figure 4B), which is consistent with
its increase of the normalized RC/T of the secreted reporter
(Figure 2C). We conducted a signal peptide prediction for V30I
because this residue is close to the signal peptide, but we found
that V30I did not affect the signal peptide probability of FIX
(supplemental Figure 5). Therefore, an additional study is required
to explore how V30I decreases protein expression and increases
the relative g-carboxylation efficiency at the same time.

The 3 types of A37 mutations in the propeptide region have
different effects on g-carboxylation. Our results show that A37D
cannot be g-carboxylated (Figure 4), but it does not affect protein
expression (supplemental Figure 3). The SCSR level of A37D was
consistently undetectable (Figure 2A). This mutation causes FIX
deficiency, probably because it generates a dysfunctional propep-
tide that leads to an uncarboxylated Gla domain. The other
mutations, A37T and A37V, were reported to cause bleeding
symptoms during the course of treatment with vitamin K antago-
nists.30 Our data show that both mutations decrease the SCSR
level (Figure 2A), consistent with previous results from Hao et al25

and Pezeshkpoor et al.30 Moreover, our analysis of the normalized
RC/T (Figure 2C), the relative g-carboxylation efficiency (Figure 4B),
and the intracellular protein expression level shows that A37T
primarily affects g-carboxylation efficiency, whereas A37V largely
affects protein secretion.
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The propeptide is cleaved off after g-carboxylation of the Gla
domain. Unremoved propeptide leads to FIX with an extended N
terminus that abolishes proper folding of the Gla domain,8,9,20

resulting in FIX dysfunction.7,18 Residues 43 through 46 are
essential for propeptide cleavage. Naturally occurring mutations
on residues R43 and R46 interfere with propeptide cleavage and
lead to FIX with an extended N terminus.6,31 However, it remains
controversial whether these mutations affect g-carboxylation of the
Gla domain.6,7,32,33 To resolve this issue, we analyzed all missense
mutations on residues 43 through 46. Our results show that these
mutations do not affect intracellular expression or g-carboxylation of
the reporter (Figure 4), but they do decrease the SCSR level
(Figure 2A). Thus, these mutations only interfere with propeptide
cleavage.

Different bleeding tendencies in patients with the

same mutation may be caused by different levels of

vitamin K in the body

Given that the SCSR level could represent bleeding tendencies, we
investigated the correlation between them. Most mutations show
a mild or normal decrease in their SCSR levels; only a subset of
mutations exhibit moderately (L24P, R43W/Q/L, K45N, R46K/T)
or severely (L23P, A37D, and R46S) decreased levels (Figure 2A).
As a comparison, most patients reported in the database have
moderate or severe bleeding tendencies; very few are mild
(supplemental File 1).3 In addition, patients carrying the same
mutation in the database have different bleeding tendencies
(Figure 5A), an observation that was also implied in recent
studies.5,10 To resolve these inconsistencies, we investigated the
effect of vitamin K level on SCSR level, because the vitamin K level
may vary widely in patients and cause the phenotypic heterogene-
ity.5 Indeed, our results showed that, with the exception of L23P,
L24P, and A37D mutations, the SCSR level depends on the vitamin
K concentration (Figure 5B; supplemental Figure 6). Thus, the
discrepancy between the SCSR levels in our experiments and the
bleeding tendencies in patients is probably due to different levels of

vitamin K in the 2 settings. Furthermore, variations in the vitamin K
level in patients may explain why the same mutation has different
bleeding tendencies in different patients.

Discussion

The signal peptide and propeptide of FIX regulate protein secretion
and g-carboxylation, respectively. However, FIX deficiency has not
been well understood in hemophilia B patients with mutations in
these regions. In this study, we modified a cell-based reporter
assay15,25,34,35 and used the FIX-PC reporter to characterize the
missense mutations in the signal peptide and propeptide regions of
FIX. Our results demonstrate that the SCSR level of most mutations
is decreased significantly, which is consistent with FIX deficiency in
hemophilia B patients; however, different mechanisms of FIX
deficiency are involved in these mutations (Figure 6).

The signal peptide contains a hydrophobic region and a signal
peptidase recognition site (Figure 6). The hydrophobic region
helps cotranslational translocation of FIX into the ER, and the
signal peptidase recognition site is for signal peptide cleavage.
Thus, missense mutations (I17N, L20S, L23P, and L24P) in the
hydrophobic region interfere with cotranslational translocation of
FIX into the ER, and mutations (A26D and C28R/Y/W) in the signal
peptidase recognition site interrupt signal peptide cleavage.
Interference with signal peptide cleavage will lead to a longer
propeptide, which, in turn, affects protein expression (C28R/Y/W),
protein secretion (A26D), and g-carboxylation of the Gla domain
(A26D and C28R/Y/W). It is intriguing that the longer propeptide
can decrease or increase g-carboxylation efficiency, requiring
further study to elucidate the underlying mechanism.

The propeptide contains 2 elements: the GGCX recognition site
and the propeptidase recognition site25 (Figure 6). This study
indicates that various mechanisms are involved in the FIX deficiency
in missense mutations of both recognition elements. For mutations
in the GGCX recognition site, V30I decreases FIX expression,
A37D leads to uncarboxylated FIX, A37T primarily decreases
g-carboxylation efficiency, and A37V primarily affects FIX secretion.
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porter protein maturation and g-carboxylation

of the missense mutations. (A) Electrophoresis

mobility assay shows intracellular reporter protein

maturation process of the intracellular FIX-PC re-

porter, as detected by anti–protein C antibody

(upper panel). Western blot shows g-carboxylation

of the reporter, as detected by anti-Gla antibody

(lower panel). (B) Relative g-carboxylation efficiency.

Western blot bands in (A) were quantified by using

ImageJ, and the g-carboxylated reporter/total in-

tracellular reporter ratio was calculated and normal-
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relative g-carboxylation efficiency. The green, red,

and blue dashed lines show 1.2-fold, 0.8-fold, and
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These distinct mechanisms indicate that the GGCX recognition site
is involved in g-carboxylation of the Gla domain, as well as in protein
expression and secretion. In addition, our study clarifies that
mutations in the propeptidase recognition site interfere with
propeptide cleavage and prevent proper folding of the Gla domain;
however, they do not affect g-carboxylation of the Gla domain.25

Importantly, our data show that the SCSR level depends on vitamin
K concentration in most mutations, suggesting that oral adminis-
tration of vitamin K may alleviate the severity of bleeding tendencies

for patients carrying certain missense mutations in the signal
peptide and propeptide. For instance, R43 is a mutation hotspot
that accounts for 73.5% of hemophilia B cases; in this study, we
find that vitamin K supplementation can improve the SCSR level of
R43 mutants from severe (,1%) to moderate or mild (;5%).
Therefore, we assumed that R43 mutations significantly decrease
cleavage efficiency between R46 and Y47 by propeptidase, but
there is still a little functional FIX, which can well explain why
patients carrying R43 mutations have different bleeding tendencies.
Although our results suggest that oral administration of vitamin K
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may be a strategy to alleviate the severity of bleeding tendencies in
patients who have missense mutations in the FIX signal peptide
and propeptide regions, it remains to be demonstrated in clinical
practice.

In this study, our modified cell-based reporter assay provided
a reasonable explanation for most hemophilia B patients with
missense mutations in the signal peptide and propeptide; however,
this method may have some limitations (eg, it may not be applicable
to mutations altering DNA transcription or messenger RNA splicing).
Signal peptide and propeptide are encoded by exon 1 (1-29)
and exon 2 (30-77) of the FIX gene. It had been reported that
mutations in exons can change the gene’s splicing site,34,36-38 and
those in exon 1 may affect the binding of transcription factors.39

Thus, further study is required to understand how several missense
mutations, such as R3H, I7F, C18F, G21V, and T29I, lead to
hemophilia B.
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