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Key Points

• KMT2D and TP53 are
predominantly mutated
in rrDLBCL and remain
clonally stable following
therapy.

•MS4A1 mutations are
commonly acquired
and undergo clonal ex-
pansion following treat-
ment with rituximab-
containing therapy.

Diffuse large B-cell lymphoma (DLBCL) patients are typically treated with

immunochemotherapy containing rituximab (rituximab, cyclophosphamide,

hydroxydaunorubicin-vincristine (Oncovin), and prednisone [R-CHOP]); however, prognosis

is extremely poor if R-CHOP fails. To identify genetic mechanisms contributing to primary or

acquired R-CHOP resistance, we performed target-panel sequencing of 135 relapsed/

refractory DLBCLs (rrDLBCLs), primarily comprising circulating tumor DNA from patients

on clinical trials. Comparison with a metacohort of 1670 diagnostic DLBCLs identified 6

genes significantly enriched for mutations upon relapse. TP53 and KMT2D were mutated in

the majority of rrDLBCLs, and these mutations remained clonally persistent throughout

treatment in paired diagnostic-relapse samples, suggesting a role in primary treatment

resistance. Nonsense and missense mutations affecting MS4A1, which encodes CD20, are

exceedingly rare in diagnostic samples but show recurrent patterns of clonal expansion

following rituximab-based therapy. MS4A1 missense mutations within the transmembrane

domains lead to loss of CD20 in vitro, and patient tumors harboring these mutations lacked

CD20 protein expression. In a time series from a patient treated with multiple rounds of

therapy, tumor heterogeneity and minor MS4A1-harboring subclones contributed to rapid

disease recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and

KMT2Dmutation status, in combinationwith other prognostic factors, may be used to identify

high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid biopsies, we

show the potential to identify tumors with loss of CD20 surface expression stemming from

MS4A1 mutations. Implementation of noninvasive assays to detect such features of acquired

treatment resistance may allow timely transition to more effective treatment regimens.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, representing
30% to 40% of cases diagnosed in North America. DLBCL can arise de novo or through histologic
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transformation from indolent lymphoid malignancies, most commonly
transformed follicular lymphoma (tFL). Patients diagnosed with
DLBCL are generally treated with a standard immunochemotherapy
regimen comprising 4 chemotherapeutic agents and the anti-CD20
monoclonal antibody (mAb) rituximab (rituximab, cyclophosphamide,
hydroxydaunorubicin, vincristine [Oncovin], and prednisone [R-CHOP]),
which is curative for 60% to 70% of DLBCL cases.1,2 However, for
patients with DLBCL that is refractory to frontline treatment and
those who experience subsequent relapse (relapsed/refractory
DLBCL or rrDLBCL), outcomes are extremely poor, with a 2-year
overall survival of 20% to 40%.3,4 Although numerous treatments
are under investigation to improve both frontline and salvage
therapy, the success of these new therapies has been limited. The
advancement of therapeutics in the relapse setting has likely been
encumbered by our limited understanding of the molecular features
that underlie resistance to R-CHOP. Identifying such mechanisms may
reveal additional treatment options and lead to biomarkers allowing
patients to be paired with appropriate treatments.

Whereas the genomic landscape of diagnostic DLBCL is well
understood, the genomic features of both rrDLBCL and DLBCLs
that arise through histologic transformation remain elusive due to
the difficulties in obtaining tumor tissue from relapsed patients.
Early studies exploring the genetics of rrDLBCL identified several
candidate genes enriched for mutations among rrDLBCL cases,
including TP53, STAT6, FOXO1, SOCS1, and PIM1.5-7 Indeed,
mutations in some of these are prognostic at diagnosis (eg,
FOXO18 and TP539,10), whereas others may reflect a more diverse
representation of DLBCLs beyond those arising de novo, including
tFLs. Previous studies of rrDLBCL have been limited by small
sample sizes, with the largest single cohort comprising 47 cases.11

In addition to comparing mutation prevalence between untreated
DLBCL and rrDLBCL, some studies compared the clonal population
structure and mutation burden between paired diagnostic and
relapse samples.11,12 Such analyses identified additional candidate
genes whose mutation could contribute to treatment resistance,
such as BCL2 and CREBBP,11 but these results have not been
independently confirmed. The genetic heterogeneity of DLBCL
warrants a comprehensive study of rrDLBCL to definitively identify
genes whose mutation may afford resistance to components of
R-CHOP.

Although cell-free DNA is commonly used for noninvasive quantitative
monitoring of disease burden,13-15 with sufficient levels of circulating
tumor DNA (ctDNA), liquid biopsies can also provide a source of
tumor genetic material allowing broad genetic characterization
of tumors.16-18 In DLBCL, mutations found within ctDNA reflect
somatic mutations irrespective of anatomical biases, providing
opportunity for comprehensive exploration of tumor genetics and
heterogeneity.19 This can be accomplished using a single time
point20 but is more powerful when applied to serial samples as
the variant allele frequency can reveal clonal dynamics and thus
putative resistance mechanisms.21

To more thoroughly survey the genetic mechanisms of R-CHOP
resistance in DLBCL, we explored the genetics of rrDLBCL in 135
cases relying on a combination of tumor tissue and plasma-derived
ctDNA collected after relapse. By comparing the mutational profiles
of these cases to a large cohort of untreated DLBCLs, we identified
6 genes significantly enriched for mutations. Many of these genes
are commonly mutated in untreated DLBCL, notably KMT2D and

TP53, and remain clonally stable over the course of therapy.
Another of these genes,MS4A1, encodes the B-cell surface marker
CD20 and is the target of rituximab. MS4A1 missense mutations
are restricted to transmembrane domains and inhibit binding of both
rituximab and other anti-CD20 antibodies. These finding have the
potential to identify patients at a high risk of R-CHOP failure prior to
frontline treatment and those with tumors likely to be resistant to
rituximab-based secondary therapies and other CD20-targeted
immunotherapies.

Methods

Targeted sequencing and mutational analysis

of rrDLBCLs

This study included samples from 135 patients with rrDLBCL with
117 of these comprising plasma collected within 3 clinical trials or
the general patient population treated in Quebec (supplemental
Table 1). This study was reviewed and approved by the Research
Ethics Boards of the University of British Columbia-BC Cancer and
the Jewish General Hospital (18-030), in accordance with the
Declaration of Helsinki. Plasmas were collected and processed as
previously described18,22 and detailed in the supplemental Meth-
ods. The remaining 18 cases represent tissue biopsies previously
described by our group (supplemental Table 2).6 With the
exception of these 18 cases with existing exome data, all samples
were subjected to library construction using custom adaptors
with unique molecule identifiers. Libraries were enriched by
hybridization-capture using a custom set of LockDown oligonucleo-
tides targeting the exons of 63 genes (supplemental Table 3). The
genes on this panel represent well-established DLBCL genes from
previous publications and included MS4A1 based on preliminary
exome and genome data from PT255 and the 18 rrDLBCL exomes.
Following enrichment, all libraries were multiplexed and sequenced
using Illumina chemistry using 125- or 150-bp paired reads on
either MiSeq or HiSeq2500 instruments. After alignment, reads
were collapsed into consensus sequences using in-house pipeline
that leverages unique molecule identifier information. Single
nucleotide variants and small insertions and deletions (henceforth
simple somatic mutations) were identified with Strelka223 with
custom postfiltration steps to remove artifacts (supplemental
Methods; supplemental Table 4).

Metaanalysis of untreated DLBCLs

To obtain a cohort representative of diagnostic DLBCLs, we compiled
exome data from 3 previously published cohorts24-26 and a cohort
of paired tumor/normal genomes,27 amounting to 1670 cases
termed the “untreated” cohort, because all biopsies were obtained
prior to treatment. As matched constitutional samples were not
available for the majority of these exome cases, and because the
supplied variant calls were generated using diverse pipelines, we
reprocessed all exomes through a standardized variant calling
workflow for unpaired tumor samples, including filtering of common
and rare germline variants (supplemental Methods; supplemental
Figure 1).

Identifying genes associated with rrDLBCL

We identified mutations and hotspots associated with rrDLBCL
using 2 complementary approaches. First, we compared the gene
and hotspot mutation frequency between rrDLBCL and untreated
DLBCL to identify genes enriched for mutations in rrDLBCL.
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Mutation hotspots considered here are listed in supplemental
Table 5. The mutation frequency of all genes in our panel was
compared between the rrDLBCL cohort and the untreated DLBCL
cohort, as well as an additional diagnostic cohort,28 using Fisher’s
exact test and Benjamini and Hochberg false discovery rate
threshold of ,0.1 (supplemental Table 6; supplemental Table 7).
Second, leveraging the paired samples representing time points
prior to and following treatment (supplemental Table 8), we
compared the tumor genomic landscape between time points to
identify genes that recurrently showed evidence of clonal selection.
Mutations were classified based on the log ratio of the cancer cell
fraction (CCF) between the 2 time points, where log-fold change
(T2 CCF)/(T1 CCF) . 1.0 indicates a mutation underwent clonal
expansion following treatment, log-fold change , 21.0 indicated
the mutation was depleted following treatment, with all other values
considered stable. We also explored the prevalence of different
genetic subgroups using the LymphGen classifier (supplemental
Methods; supplemental Tables 2 and 9).29

Evaluation of MS4A1 protein expression and

antibody reactivity

Suspension-adapted Chinese hamster ovary (CHO-S) cells (Life
Technologies) were cultured in FreestyleCHOmedia supplemented
with 8 mM glutamine (Gibco). Cells were maintained between
0.3 and 1.5 3 106 cells/mL in a humidified shaking incubator at
37°C in 8% CO2. CHO-S cells (107) were transfected with 10 mg
of plasmid DNA containing MS4A1 wild-type (WT) or mutant
constructs. Details of mutagenesis are included in supplemental
Methods and supplemental Table 10. For each transfection,
efficiency was determined using a positive control (green fluores-
cent protein [GFP]) to demonstrate that cells were permissive for
transfections. For all experiments, WT CD20 transfections were
performed in parallel with mutants. Transfected cells (1.5 3 105)
were opsonized with 1.5 mg of unlabeled anti-CD20 antibody for
30 minutes at 4°C. Unbound antibody was washed twice in 2 mL
wash buffer (phosphate-buffered saline containing 1% bovine
serum albumin and 10 mM sodium azide) and centrifuged at 400g
for 5 minutes and resuspended in;150 mL of wash buffer. Primary
antibody was detected with 0.2 mg/mL of anti-human immunoglob-
ulin G (IgG)–phycoerythrin or anti-mouse IgG-phycoerythrin poly-
clonal antibodies (Stratech) and stained for 30 minutes at 4°C.
Cells were washed in 2 mL of wash buffer before acquiring on
a FACSCalibur fluorescence-activated cell sorter. Flow cytometry
data were analyzed in FCSExpress v.3 (De Novo software, Pasadena,
CA). rituximab (human [h]IgG1), ofatumumab (hIgG1), tositumomab
(B1, murine [m]IgG1), and obinutuzumab (non-glycomodified hIgG1
type II relative of obinutuzumab) or an isotype control (mIgG1 or
hIgG1) were used to stain the cells. Immunoblotting was performed
largely as reported previously.30 In brief, 53 106 cells were lysed in
radioimmunoprecipitation assay buffer with 20 mg separated on
a 10% Bis-Tris gel. CD20 expression was assessed using rabbit
anti-CD20 clone EP459Y (Abcam) alongside an HRP-conjugated
anti-rabbit secondary antibody (NA9340, Sigma) detected using
a ChemiDoc-It Imaging System. Full details of immunoblotting are
included in supplemental Methods.

PT255 exome sequencing and single-cell analysis

We performed exome sequencing on a single relapsed case
(PT255) representing 3 time points: (1) the diagnostic biopsy

(diagnosis, D); (2) cell-free DNA (cfDNA) collected following
second relapse (relapse 2, R2/P1); and (3) cfDNA collected
following third relapse (relapse 3, R3/P5). Somatic variants, copy
number alterations, and clonal population structure were analyzed
as described above. Somatic coding variants were chosen from this
bulk tumor and plasma exome sequencing to represent different
clones at varying time points (supplemental Table 11). The Fluidigm
Access Array was used for multiplexing amplicon sequencing of
selected variants in PT255 plasma samples and circulating tumor
single cells from selected time points following relapse (supple-
mental Table 12).

Results

Enrichment of mutations in rrDLBCL

The pattern of mutations observed in rrDLBCL largely resembles
that of untreated DLBCL (Figure 1). As this survey was focused on
the genetic landscape following relapse, we searched for genes
enriched for mutations after treatment failure. Such mutations are
expected to represent either features of primary treatment re-
sistance or examples of mutations subjected to clonal expansion
under the selective pressures exerted by therapy. This analysis
revealed 6 genes enriched for mutations: KMT2D, TP53,CREBBP,
FOXO1, NFKBIE, and MS4A1, with another 2 genes depleted for
mutations in rrDLBCL (Figure 2).

The lysine methyltransferase KMT2D is a tumor suppressor in
DLBCL and follicular lymphoma (FL)31 and was mutated in half of all
rrDLBCLs (Figure 2A). In addition to a significant increase in
KMT2D mutations in rrDLBCL relative to untreated DLBCL (q 5
0.0678; OR, 1.68), loss-of-function mutations were even more
strongly enriched at relapse (55/135 rrDLBCLs [40.7%] vs 304/
1314 untreated [23.1%], q5 1.7 3 1025). Similar to the pattern in
untreated cases, truncating mutations were observed across the
length of the protein (Figure 3A) and tend to occur before the
N-terminal SET domain, which catalyzes H3K4 methylation.

The majority (51%) of rrDLBCLs harbored a TP53 mutation (q 5
2.25 3 10211; OR, 3.99). In contrast to KMT2D, mutations were
predominately missense and affected the DNA-binding L1-sheet-
helix domain (Figure 3B). We observed recurrent mutations
affecting known TP53 hotspots, including Arg175, Arg248, and
Arg273, which either bind directly to DNA or coordinate DNA
binding.32 The Arg248 residue, which directly binds to the minor
groove of DNA, was the only hotspot significantly enriched for
mutations in rrDLBCL (q 5 0.0807; OR, 3.29). In our untreated
cohort, mutations in TP53 and KMT2D were associated with
inferior progression-free survival and overall survival (supplemental
Figure 2), with KMT2D truncating mutations associated with inferior
progression-free survival (supplemental Figure 3). This survival
correlate was independent of other known prognostic factors,
including the International Prognostic Index (IPI) and cell-of-orgin
(COO) in a multivariate setting (supplemental Figure 4; supple-
mental Table 12).

The rrDLBCLs were also enriched for mutations affecting each of
CREBBP (q 5 0.0807; OR, 1.74), NFKBIE (q 5 0.0232; OR,
2.78), and FOXO1 (q5 0.087; OR, 2.33). The majority ofCREBBP
missense mutations affected the acetyltransferase domain (28/48
mutations, 58%) (Figure 3C), with the remainder predominantly
causing truncation. Mutations in FOXO1 could broadly be defined
into 2 classes: those that disrupt the forkhead DNA-binding domain
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and those that disrupt FOXO1 phosphorylation (Figure 3D). The
latter include mutations-targeted Tyr24, adjacent residues, or the
canonical start codon, which both affect the regulation of FOXO1
nuclear localization.8 We also observed recurrent frameshift
deletions affecting Tyr254 in NFKBIE, a negative regulator of NF-
ĸB signaling (Figure 3E). Although mutations in NFKBIE were
significantly enriched in rrDLBCL, the prevalence of mutations
affecting the Tyr254 hotspot was not significantly higher in this
cohort.

MS4A1 exhibited the strongest enrichment for mutations in
rrDLBCL (q 5 0.023; OR, 4.32). MS4A1 encodes CD20, the
B-lymphocyte antigen and target of rituximab and several other
therapeutic mAbs. Although truncating mutations were observed
across the length of MS4A1, a striking number of missense
mutations were also observed (Figure 3F). None of these are
predicted to directly affect residues comprising the rituximab
epitope nor the epitopes of other mAbs. Instead, the recurrent

missense variants were predicted to affect the transmembrane
domains of the small loop, including 3 examples of a Tyr86 mutation
(2 Tyr86Cys, 1 Tyr86His). Outside of rrDLBCL, mutations affecting
this residue appear to be exceedingly rare as they were absent from
the entire untreated DLBCL cohort and only appear in a single
tumor in COSMIC.33

Recurrent clonal selection following

rituximab-based therapy

To further explore genetic mechanisms that contribute to treatment
resistance, we inferred the clonal structure and dynamics in the 57
patients with serially collected samples representing time points
prior to and following rituximab-containing treatment regimens,
including de novo DLBCL, tFL, and other B-cell lymphomas. For
each set of samples, we inferred the CCF of each mutation
detected in pretreatment tumor tissue biopsies and posttreatment
plasma samples. We then compared individual CCFs between
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Figure 1. Mutation landscape of lymphoma-related genes in 135 rrDLBCL cases. Exonic mutations affecting the top 50 most recurrently mutated genes in our cohort

of 135 rrDLBCL samples representing 5 different cohorts (“Methods”). The inferred effect of each mutation is indicated by color. Noncoding mutations are suppressed with the

exception of NFKBIZ, which includes 39 UTR mutations that have been previously described as driver mutations. The 2 covariate tracks on the bottom show COO information

(where available) and the source cohort for each sample. Bar plots above and to the right of the plot indicate number of mutations per patient and number of patients with

a mutation in that gene, respectively. Although the mutation landscape closely resembles untreated DLBCL, there are some notable differences. For example, approximately half

of all rrDLBCLs harbored mutations in either TP53 (51%) or the histone methyltransferase KMT2D (50%) with 31% of cases harboring mutations in both genes.
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paired samples and categorized mutations as enriched (clonal
expansion), depleted (clonal regression), or stable at relapse within
that tumor (Figure 4A). Figure 4B-I shows representative time series
for mutations of interest. Overall, coding mutations affecting TP53
(Figure 4B,D-I) and KMT2D (Figure 4D,F-G,I) tended to be stable
following therapy, including all examples of TP53 Arg248 mutations
and KMT2D loss-of-function mutations (Figure 4D,F,I). We observed
numerous examples showing clonal expansion of 1 KMT2Dmutation
and clonal depletion of a separate KMT2D mutation, suggesting
a persistent selective advantage for KMT2D loss (Figure 4G).
Mutations affecting CREBBP and NFKBIE, including NFKBIE
Tyr254, were similarly stable prior to and following treatment in most
patients. Taken together, mutations in these genes appear to
generally represent a component of the founding clone.

In contrast to these genes,MS4A1mutations exhibited a consistent
trend toward clonal expansion in patients following rituximab-
containing therapy (Figure 4B-E). This includes several cases

inferred to harbor multiple subclonal populations with distinct
MS4A1mutations, with each exhibiting clonal expansion (Figure 4D).
MS4A1 mutations were consistently undetectable in diagnostic
tissue and appear to result from consistent positive selection
under the pressure of R-CHOP and other therapies. This trend
along with their predominance in rrDLBCL relative to untreated
DLBCLs indicates a role of these mutations in contributing
to acquired treatment resistance during exposure to rituximab-
containing therapy.

Mutations in MS4A1 attenuate rituximab binding

We next explored the functional effects of MS4A1 mutations and
their potential role in promoting rituximab resistance. We trans-
fected a CD202 cell line with WT or mutant CD20 constructs
representing common MS4A1 missense mutations observed in
patients (Figure 5A). We showed that all 3 MS4A1 mutants had
significantly decreased binding of rituximab or other anti-CD20
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Figure 2. Differentially mutated genes between rrDLBCL and untreated DLBCL. (A) Mutation type and frequency of each differentially mutated gene in the untreated

and rrDLBCL cohorts, using a significance threshold of 0.1 following false discovery rate correction. Untreated cases with insufficient coverage (not callable) in the gene of

interest were not counted in the denominator for that gene (supplemental Methods). (B) Forest plot showing the odds ratio for all differentially mutated genes, as determined

by the Fisher’s exact test, for all differentially mutated genes (supplemental Table 6). CI, confidence interval.
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antibodies, including tositumomab (B1), ofatumumab, and obinutuzumab
derivatives by flow cytometry, with 2 mutants (Y86C and L66R)
showing a complete absence of binding (Figure 5B; supplemental
Figure 5). Consistent with the other mutation tested, cells with
ectopic expression of Tyr86Cys were not recognized by any of the
anti-CD20 antibodies. In contrast, cells expressing Tyr86His were
recognized by all 4 antibodies, albeit at a significantly reduced
amount. Because this assay requires expression on the plasma
membrane, we next explored whether the mutations affected the
expression of CD20 within the cell using immunoblotting with
a CD20 antibody that binds within the cytoplasmic domain.
Consistent with the result from flow cytometry, an immunoblot of
cell lysates showed reduced CD20 protein with the Y86H mutant
and no visible expression with the other 2 mutants (Figure 5C).
We separately performed CD20 staining on cell lines derived from
tumors naturally harboring MS4A1 mutations. Both Gly98Arg and
Tyr86His cell lines were negative for CD20 staining by immuno-
histochemistry using L26, another mAb recognizing the C-terminal
cytoplasmic region of CD20 (Figure 5D). Taken together, we
conclude that MS4A1 missense mutations can directly contribute
to rituximab resistance by reducing CD20 expression and/or
stability.

MS4A1-harboring subclones drive rapid

treatment resistance

To further explore how multiple rounds of therapy can influence
clonal structure in a MS4A1-mutant patient (PT255), we followed
the progression of a patient with chemorefractory aggressive high-
grade B-cell lymphoma using multiple complementary approaches
(Figure 4B). We initially performed exome sequencing on 3 time
points beginning with the untreated diagnostic tumor biopsy
(diagnosis, D), followed by cfDNA collected after failure of both
R-CHOP and subsequent high-dose chemotherapy (relapse 2, R2/
P1) and a second cfDNA sample following additional rounds of
chemotherapy including prednisone (relapse 3, R3/P5) (Figure 6A).
We identified several distinct subclonal populations in these
samples (Figure 6B) and selected mutations representative of
each population: trunk (clonal), R2-associated (high prevalence at
R2), and R3-associated (high prevalence at R3) for validation. We
measured the variant allele frequency for these representative
mutations in each time point and additional cfDNA samples and
circulating tumor cells from blood collected between R2 and R3.

This analysis revealed a heterogenous clonal structure consisting of
distinct subclones at each relapse (Figure 6C). Following R-CHOP
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Figure 3. Mutation patterns in genes enriched for mutations within the population of rrDLBCLs. Lollipop plots displaying the mutations discovered in the 6 genes

(KMT2D [A], TP53 [B], CREBBP [C], FOXO1 [D], NFKBIE [E], MS4A1 [F]) found to be significantly enriched for mutations at relapse compared with untreated DLBCL.

Mutations in rrDLBCL are displayed above each gene, and mutations in the untreated cohort are displayed below each gene. The number of mutated cases and percentage of cases

with mutations in that gene are shown beside each gene (red: relapse; blue: untreated). The size of a lollipop and vertical displacement represent the number of patients with nonsilent

mutations observed at that position. Note that lollipops were scaled down in the untreated cohort, and thus, the size of a lollipop cannot be directly compared between the untreated

and relapse cohorts. Relevant protein domains are displayed for genes with differing mutation patterns within these domains. There is a general enrichment for recurrent mutations in the

untreated cohort, most pronounced in KMT2D. These are attributed to rare germline variants that we were unable to filter due to their absence in any database of common variants.
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and high-dose chemotherapy (R2), we observed emergence
of a population containing an MS4A1 truncating mutation and
a missense mutation within the kinase domain of DDR2, which
has been described in lung cancer and may confer susceptibility

to dasatinib.34 This R2-associated subclone was undetectable at
R3 and was replaced by a distinct population harboring a MS4A1
missense mutation (Gly98Arg) and a truncating mutation affecting
NR3C1, which encodes the glucocorticoid receptor and could
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Figure 5. Distribution and functional impact of MS4A1 mutations in rrDLBCL. (A) Topology of MS4A1 transmembrane domains and extracellular loops, as annotated

by Uniprot and elsewhere.47 MS4A1 mutations observed in the rrDLBCL cohort have been labeled, along with the predicted binding epitope of 4 different CD20 mAbs. (B)

Comparison of antibody binding between CHO-S cells transfected with plasmids expressing either WT CD20 or 1 of 3 mutants (Tyr86His, Tyr86Cys, and Leu66Arg) for 4
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Figure 5. (C) Representative western blot (of 2 independent experiments performed) showing CD20 expression of CHO-S cells transfected with WT or mutant CD20 (Y86H,

Y86C, and L66R) and a nontransfected (NT) control. (D) Immunohistochemistry of CD20 in a cell line and tumor tissue biopsy harboring WT CD20 as well as 2 patient-
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contribute to resistance against steroids such as prednisone.35

Although some mutations present in this later population were
detectable at low levels following deep sequencing at R2, the extent
of clonal expansion was striking given that ,3 weeks elapsed
between R2 and R3. In particular, this subclone exhibited rapid
clonal expansion in the 8 days separating samples P3 and P4.
Taken together, these data show that rapid changes in clonal
structure can contribute to treatment resistance in DLBCL.

Given the emergence of subclones with different genetic features,
we next sought to validate the clonal dynamics observed in R2 and
R3 using single-cell sequencing. We determined mutation status
and ploidy for the same set of mutations in a total of 74 isolated
single cells from R2 and 35 isolated cells from R3. This confirmed
that the R2-associated and R3-associated subclones exist in
mutually exclusive subpopulations and confirmed the subpopulation
at R2 representing the dominant clone found at R3 (Figure 6D). This
also revealed genetic features that could not be inferred from bulk
sequencing alone, such as a 17p deletion affecting TP53 and
TUSC5 in the R3-associated clone andMS4A1 loss of heterozygosity
in the R2-associated clone. The MS4A1 missense (R3-associated)
and frameshift (R2-associated) mutations were detected in the
majority of cells from each time point and thus were interpreted
to represent early events in the foundation and development of
these individual subclones. The vast majority of cells (. 99%)
were negative for cell surface expression of CD20, consistent with
each of these MS4A1 mutations causing loss of CD20 expression.
As rituximab can persist for weeks following treatment,36 these
MS4A1 mutations likely provided the founder cells with a strong
selective advantage, resulting in the independent emergence of
multiple resistant subclones.

Discussion

By comparing the genetic landscapes of untreated and rrDLBCL,
we highlight the potential role of 2 DLBCL-associated genes,
KMT2D and TP53, as contributors to primary treatment resistance.
Mutations affecting either gene were enriched in rrDLBCL and
were typically clonal in matched pretreatment samples (Figure 4).
TP53 is known to be associated with inferior patient outcomes
in DLBCL,9,10 has been shown to be enriched for mutations in
rrDLBCL,7 and can contribute to resistance against chemother-
apeutics, which induce DNA damage.37,38 For instance, mutations
affecting Arg248, a residue critical in DNA-binding that was
enriched for mutations in our rrDLBCL cohort, can increase
expression of cytochrome P450, which promotes resistance
against a diverse range of chemotherapeutics in vitro and leads
to inferior patient outcomes.39 Given the high prevalence of TP53
and KMT2D mutations in untreated DLBCL (20.7% and 36.9%,

respectively), and their clonal prevalence and stability, mutations
affecting these genes likely contribute to lymphomagenesis and
primary refractory disease. Indeed, KMT2D mutations have been
described as early drivers in DLBCL and FL40 and contribute to
increased cell survival and proliferation.41 Although loss of H3K4me3
methylation results in transcriptional repression of numerous tumor
suppressor genes, the contribution toward treatment resistance
remains to be elucidated. KMT2D is commonly mutated in DLBCL
overall, and these mutations may be enriched in the C3 genetic
subgroup, which is associated with inferior prognosis within
GCB-DLBCL.26 Here, KMT2D mutations were associated with
inferior prognosis in our untreated cohort regardless of COO or
IPI (supplemental Figure 2). Together with genetic features such as
double-hit/triple-hit, COO, and the DHITsig expression signature,42

KMT2D and TP53mutations may facilitate the identification of high-
risk patients for alternative treatments.

One barrier that has limited the genetic exploration of rrDLBCL is
the lack of tissue biopsies, which are not routinely collected upon
relapse. With sufficient levels of ctDNA, liquid biopsies have been
shown to accurately reflect that mutational landscape of both the
primary tumor and the distal sites.19 Collection of posttreatment
liquid biopsies is gaining adoption as it can noninvasively inform on
treatment response20,22,43 and, as demonstrated herein, affords the
opportunity for serial sampling such that clonal dynamics can be
inferred within the context of treatment resistance. As some
patients in this study exhibited rapid changes in population structure
(Figure 6), noninvasive methods will be required to allow pro-
spective detection of resistance-associated mutations.

In this study, mutations in MS4A1 recurrently exhibited clonal
expansion following rituximab-based therapy (Figure 4). Single-cell
analysis of a case harboring 2 mutually exclusiveMS4A1-containing
subclones revealed that these mutations were acquired after
exposure to R-CHOP and became founder events for the multiple
subclones that occurred at both relapses (Figure 6). Curiously,
manyMS4A1 mutations were not predicted to truncate the protein,
and these missense variants did not directly affect the rituximab
binding epitope. Prior work utilizing Sanger sequencing and
a smaller rrDLBCL cohort also found limited evidence for MS4A1
mutations within the rituximab epitope,44 leaving the phenomenon
of reduced CD20 expression unexplained. We explored the
influence of these mutations on anti-CD20 antibody interactions
and found that common missense mutations attenuated mAb
recognition (Figure 5B), largely as a result of reduced expression,
with patient-derived cell lines harboring these mutations appearing
on CD202 (Figure 5D). Although the underlying mechanism of
CD20 loss stemming from these transmembrane domain missense
mutations remains unresolved, the most likely explanation is that

Figure 6. Plasma and single-cell sequencing of multiple time points in a DLBCL patient (PT255). (A) Timeline of events for PT255. Clinical time point shows the

timing of diagnosis (D) and relapses (R2, relapse 2; and R3, relapse 3) relative to blood sample collection (P1 to P6). Bulk tumor DNA was separately obtained from a biopsy

at diagnosis, circulating tumor cells extracted at R2 and R3, and cfDNA extracted from plasma samples P1 to P6 after R2. Varying types of sequencing was performed on

DNA from each time point, as summarized below. (B) Results from running PyClone on exome sequencing of DNA obtained from diagnosis, R2(P1,) and R3(P5). Clusters

0 and 1 contain trunk mutations seen at both P1 and P5; cluster 2 contains R2-specific mutations, and cluster 3 contains mutations that were subclonal at R2 and clonal at

R3. (C) Amplicon sequencing of a subset of mutations found in the clusters in panel B from all 6 plasma time points reveal a more complete but similar evolution of the tumor

as inferred from bulk sequence analysis in panel B. Below shows the suspected proportion of the tumor made up of each clone at individual time points. (D) Single-cell

amplicon sequencing of circulating tumor cells taken at R2 and R3 revealed 2 distinct populations of cells containing mutations specific to each of R2 and R3. Genes are

ordered by group and by frequency of mutation detected (top to bottom), suggesting a relative order of mutation acquisition.
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they impair correct protein folding and subsequent stable expression,
rather than simply destroying the antibody epitope(s), as 5 different
mAbs were unable to detect expression, including one targeting the
cytoplasmic domain in the C terminus. Given the low mutation
frequency and low clonal prevalence of MS4A1 mutations prior to
therapy, we hypothesize that these mutations provide limited (if any)
fitness advantage until the tumor is exposed to anti-CD20 antibodies.
Furthermore, this suggests additional unidentified mechanisms by
which tumor cells inhibit CD20 surface expression, possibly through
other genetic or epigenetic mechanisms. These findings reinforce the
necessity of evaluating tissue biopsies following relapse for CD20
expression in trials including immunotherapy targeting this protein.
These CD202 non-Hodgkin lymphoma cases are known to have
poor outcomes with available therapies45 and thus represent
a population in need of alternative therapies.

In summary, we have identified 6 genes that are significantly
enriched in rrDLBCL: KMT2D, TP53, CREBBP, NFKBIE, FOXO1,
and MS4A1. The enrichment of KMT2D mutations in the rrDLBCL
population and its association with inferior outcome suggests
distinct biology or natural history of these DLBCLs, as KMT2D and
CREBBP mutations are among the most common genetic feature
of FL. One explanation for our observations is that a substantial
proportion of de novo DLBCLs result from occult transformation
from FL. Further evidence supporting this possibility has recently
been gleaned through the genetic analysis of DLBCLs with MYC
and BCL2 translocations.46 In contrast to these early mutations,
MS4A1 mutations are rare in untreated DLBCL and were generally
undetectable prior to therapy. Our data indicate that these
mutations directly contribute to rituximab resistance, resulting in
rapid clonal selection and expansion in the presence of rituximab-
containing therapy. Furthermore, our single-cell data highlight the
significant clonal heterogeneity of rrDLBCL, and the contribution of
MS4A1mutations toward rapid treatment resistance. The recurrent
loss of CD20 expression in the rrDLBCL population may have
profound implications given the widespread use of rituximab and the
ongoing targeting of CD20 with additional mAbs and more modern
forms of immunotherapy.
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