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Key Points

•CTCL patient blood
isolates show differen-
tial responses to JAK
inhibition, with JAK2
expression negatively
correlating to IC50.

• JAK inhibition potenti-
ates malignant cell kill-
ing in combination with
BCL2, BET, HDAC, or
proteasome inhibition.

Cutaneous T-cell lymphoma (CTCL) is a malignancy of skin-homing T lymphocytes that is

more likely to involve the peripheral blood in advanced stages. For such patients with

advanced disease, there are few available systemic treatment options, and prognosis

remains poor. Exome sequencing studies of CTCL have suggested therapeutic targets,

including within the JAK/STAT pathway, but JAK inhibition strategies may be limited by

patient-specific mutational status. Because our recent research has highlighted the potential

roles of single and combination approaches specifically using BCL2, bromodomain and

extra-terminal domain (BET), and histone deacetylase (HDAC) inhibition, we aimed to

investigate the effects of JAK inhibition on CTCL cells and established CTCL cell lines when

paired with these and other targeting agents. Peripheral blood malignant CTCL isolates

exhibited differential responses to JAK inhibition, with JAK2 expression levels negatively

correlating to 50% inhibitory concentration (IC50) values. Regardless of single-agent

sensitivity, JAK inhibition potentiated malignant cell cytotoxicity in combination with BCL2,

BET, HDAC, or proteasome inhibition. Combination inhibition of JAK and BCL2 showed the

strongest potentiation of CTCL cytotoxicity, driven by both intrinsic and extrinsic apoptosis

pathways. JAK inhibition decreased expression of BCL2 in the high-responder samples,

suggesting a putative mechanism for this combination activity. These results indicate that

JAK inhibition may have major effects on CTCL cells, and that combination strategies using

JAK inhibition may allow for more generalized cytotoxic effects against the malignant cells

from patients with CTCL. Such preclinical assessments help inform prioritization for

combination targeted drug approaches for clinical utilization in the treatment of CTCL.

Introduction

The most common forms of cutaneous T-cell lymphoma (CTCL) exist on a clinical spectrum of mycosis
fungoides (MF), presenting with primarily skin involvement, to Sézary syndrome (SS) in which malignant
T cells expand to maintain a clonal population in the peripheral blood. Blood involvement in MF/SS has
a poorer prognosis due to the associated erythrodermic cutaneous compromise, as well as the resulting
immune suppression that increases the risk of secondary malignancies and infections.1,2 More recent
advances in the understanding of CTCL biology have resulted in the development of targeted systemic
therapies, including the histone deacetylase (HDAC) inhibitors vorinostat and romidepsin, anti-CCR4
monoclonal antibody mogamulizumab, and the anti-CD30 antibody drug conjugate brentuximab
vedotin.3,4 Nonetheless, aside from limited therapeutic success with peripheral blood stem cell
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transplantation, a definitive cure has not yet been achieved, and
there remains an unmet medical need for new, more effective
treatments.5

Studies using next-generation sequencing, including exome se-
quencing and expression analysis, have elucidated the mutational
landscape of MF/SS to show that genomic copy number alterations
(GCNAs) comprise 92% of all driver mutations present within the
CTCL cells over single-nucleotide variant (SNV) mutations.6-9 Our
previous comparative genomic hybridization array,10,11 and more
recent exome sequencing6 of .40 CTCL patient cells, revealed
a diverse set of GCNAs and SNVs that do not readily permit
a single-targeted precision medicine approach to treatment.
Specific common pathways nonetheless seem to drive CTCL
behavior across patients: (1) constitutive T-cell activation (eg, JAK/
STAT and NF-kB mediated); (2) cell cycle release/apoptosis
resistance (driven by, for example, BCL2 and MYC); and (3)
chromatin remodeling/gene expression regulation (eg, DNA deme-
thylation, histone acetylation). These data have informed the
screening of recently discovered agents targeting these common
pathways. We have previously shown that BCL2 inhibition
effectively induces apoptosis in CTCL patient–derived malignant
cells, and the combination of BCL2 and HDAC inhibition results in
synergistic killing of CTCL cells.12 We have also shown that
bromodomain and extra-terminal domain (BET) inhibition, alone and
in combination with HDAC or BCL2 inhibition, substantially
diminished the viability of CTCL cells.13 These approaches reveal
synergism against a proportion of CTCL patient cell isolates and
raise the possibility of formulating a combination therapy that might
be more generally effective, despite the wide genetic diversity
represented across patients with CTCL.

Genetic alterations of the JAK/STAT pathway are associated with
hematologic malignancies and diseases linked to cytokine activa-
tion.14 In CTCL, STAT3 and STAT5 have been commonly reported
as amplified,15-17 and our group has described SNVs and GCNAs
(;12.5%) of JAK2 in patient-derived CTCL cells.6 T-cell activation
involves a cascade of protein interactions downstream of the T-cell
receptor (TCR). In normal T cells, stimulation occurs with antigen
presentation; however, in CTCL cells, mutations give rise to
heightened activation of this cascade, driving T-cell proliferation
and aberrant cytokine production. Although there are US Food and
Drug Administration (FDA)–approved therapies and investigational
agents enabling inhibition of various elements along this cascade,
few have been examined in CTCL. One such agent, ruxolitinib
(a JAK inhibitor), has been approved for myeloproliferative disorders
and is being investigated for use in lymphomas.18 Ruxolitinib
improves clinical well-being of patients and increases survival in
myelofibrosis14 and is in phase 2 trials for refractory leukemia.19

Ruxolitinib was previously shown to have antiproliferative and
cytotoxic effects on CTCL cell lines; however, the effect of JAK
inhibition alone or in combination with other agents on CTCL
patient–derived cells has not been previously reported.

We used our exome sequencing data to prioritize 5 candidate
agents, FDA approved or in development for other malignancies
and/or drug class in development for CTCL: venetoclax (BCL2),
mivebresib (BET), bortezomib (proteasome), ruxolitinib (JAK1/2),
and talazoparib (poly (ADP-ribose) polymerase [PARP]). We also
used these data to prioritize 3 established agents FDA approved for
CTCL: vorinostat (HDAC inhibitor), bexarotene (retinoid X receptor

[RXR] agonist), and methotrexate (dihydrofolate reductase [DHFR]
inhibitor), for efficacy screening against cells from patients with
CTCL. Through in vitro preclinical assessment against CTCL
patient–derived cells, we herein show the fuller potential of these
agents, alone and in combination, as potential treatment modalities
for CTCL. In particular, we highlight ruxolitinib by revealing that JAK
inhibition is synergistically potentiated by HDAC, BCL2, protea-
some, or BET inhibition, with the most substantial synergy observed
in combination with BCL2 inhibition. Taken together, our data
strongly suggest a potential role for JAK inhibition in the treatment of
CTCL and lay the groundwork whereby a strategic combination
formulation may move forward for clinical assessment.

Methods

Cell lines

MyLa 2059, HH, Sez4, SeAx, and Hut78 are well established cell
lines and were cultured as previously reported.12,13

Patient samples

Blood samples were obtained from patients with CTCL at the Yale
Cancer Center. Written informed consent was obtained from all
subjects in accordance with the Yale Human Investigational Review
Board. Peripheral blood samples from consenting patients and
healthy donors were collected in lithium heparin tubes, and
peripheral blood mononuclear cells were separated from whole
blood as previously reported.12,13 Unfractionated peripheral blood
mononuclear cells and isolated malignant T-cell populations were
analyzed by using flow cytometry as previously described.

Fluorescence in situ hybridization panel

Purified blood mononuclear cells from patient samples were
analyzed by fluorescence in situ hybridization as previously
described.20 This method includes a panel of 11 probes designed
to capture GCNAs present in 97.5% of patients with leukemic
CTCL as elucidated in our previous exome study.6 The panel
includes probes for TP53, MYC, RB1, CDKN2A, ATM, STAT3/5B,
ARID1A, ZEB1, FAS, CARD11, and DNMT3A.

Cell viability assay

Single-agent and drug combination toxicity studies were performed
at the Yale Center for Molecular Discovery using purified malignant
cells, normal CD41 T cells, or CTCL cell lines. Compounds were
dissolved in dimethyl sulfoxide (DMSO) to obtain 100 mM stocks
and manually diluted in a threefold series directly into 384-well Echo
Qualified COC Source Plates (Labcyte, Sunnyvale, CA).

For dose–response toxicity experiments, 4000 to 6000 cells per
well were plated into 384-well, black, clear-bottom assay plates
(Corning 3764; Corning, Corning, NY) using MultiDrop Combi
reagent dispensers (Thermo Fisher Scientific, Waltham, MA).
Twenty nanoliters of compound was then transferred into assay
plates using Echo 550 acoustic liquid handler (Labcyte). The same
compound source plate was used for both single-drug and
combination drug additions. Final DMSO concentration in the
assay was 0.1%. Eighteen to 24 replicates of negative control
(0.1% DMSO) and positive control (20% DMSO) were included
in each assay plate. Following 72 hours incubation with the
compounds, CellTiter-Glo reagent (Promega, Madison, WI) was
added to measure total adenosine triphosphate accumulation as
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a readout for cell viability. Luminescence measurements were
taken on a Synergy Neo2 plate reader (BioTek Instruments,
Winooski, VT).

Mean and standard deviation of positive and negative control wells
were used to quantify signal-to-background and Z9 values for each
screening plate to ensure assay robustness. Drug data were

normalized to the mean values of negative control (set as 0%
effect) and positive control (set as 100% effect) wells within the
plate. These calculations were performed in Microsoft Excel
(Microsoft Corporation, Redmond, WA). Data were transferred
to GraphPad Prism (GraphPad Software, La Jolla, CA), plotted
and fit to models to determine 50% inhibitory concentration
(IC50) values.

Table 1. Summary of CTCL patient characteristics

Patient

ID Sex

Age,

y

Therapy during experiment

time period Previous therapy

Experiment time

period

Most recent prior

treatment FISH

1 M 72 ECP, IFN-a, BEX None 5/2019- – Normal for screened genes

10/2019

2 M 78 ECP, BEX, N2M None 1/2019- – Normal for screened genes

8/2019

3 F 71 ECP, BEX ACIT 2/2019 – –

4 F 67 ROMI, BEX ECP 11/2018-
9/2019

– Amp: None

Del: TP53, ARID1A, ZEB1, DNMT3A, FAS

5 F 77 ECP, BEX MTX, VORI, ROMI 8/2019 VORI: 07/2019 Normal for screened genes

MTX, ROMI: 08/2019

6 F 41 EPOCH, ROMI, MOGA ECP, BEX, N2M, IMQ, BRENT 10/2018- BEX, N2M: 9/2018 –

9/2019 BRENT: 11/2018

7 M 83 ECP, BEX None 5/2019- – Amp: MYC

10/2019 Del: None

8 F 63 ROMI ECP, IFN-a, BEX 1/2019- BEX: 04/2017 Amp: MYC, STAT3

2/2020 Del: TP53, ZEB1, DNMT3A

9 M 69 ECP, NB-UVB None 3/2019- – Normal for screened genes

10/2019

10 M 56 ECP, BEX DUP, prednisone, topical
steroids

2/2020 DUP: 01/2020 Normal for screened genes

11 M 75 BEX None 5/2019- – Amp: None

10/2019 Del: DNMT3A, ATM,TP53, RB1, D9Z3,
ZEB1, FAS

12 F 83 ECP, BEX MTX 8/2018 MTX: 03/2018 Amp: MYC, STAT3

Del: TP53

13 M 80 ECP, NB-UVB, IFN-a, BEX NB-UVB 6/2018 ROMI: 2016 Amp: MYC, STAT3, CARD11

Del: TP53, ZEB1, DNMT3A, FAS

14 F 77 ECP, BEX None 7/2019 – Amp: MYC

15 M 85 ECP None 2/2020 – Amp: ARID1A, STAT3, ZEB1, DNMT3A,
CARD11, CDKN2A, D9Z3

16 M 81 ECP BRENT, BEX, MTX 11/2019 BRENT: 10/2018 Amp: MYC, CDKN2A, D9Z3

BEX: 03/2019 Del: DNMT3, FAS, ATM, RB1

MTX: 07/2019

17 M 70 ROMI ECP, MYCO, ACIT, MTX, DUP,
BEX, IFN-a

12/2018- MYCO,ACIT, MTX,
DUP: 5/2018

Amp: MYC, STAT3

10/2019 BEX: 2/2019 Del: ARID1A

18 F 67 ECP, BEX, IFN-g, IFN-a NB-UVB 11/2018- – Amp: MYC

2/2020 Del: ZEB1,TP53, CDKN2A, STAT3

19 M 75 ECP, IFN-a, BEX NB-UVB 9/2019- – –

10/2019

CTCL subtypes are subtypes at the time of diagnosis. Current therapy is defined as treatment at the time of experiment. Fluorescence in situ hybridization (FISH) panel20 screened genes
include: ATM, TP53, RB1, CDKN2A, MYC, ARID1A, ZEB1, STAT3, DNMT3A, CARD11, and FAS. ACIT, acitretin; BEX, bexarotene; BRENT, brentuximab; DUP, dupilumab; ECP,
extracorporeal photopheresis; EPOCH, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin; F, female; ID, identifier; IFN, interferon; IMQ, imiquimod; M, male; MOGA,
mogamulizumab; MTX, methotrexate; MYCO, mycophenolic acid; N2M, mechlorethamine; NB-UVB, narrow band UV-B; ROMI, romidepsin; VORI, vorinostat.
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Statistical analysis

The mean IC50 was determined by using GraphPad Prism version
8.2.0. Combination index values, fold potentiation values, and
standard errors were calculated by using the Chou-Talalay
method21 in Microsoft Excel.

Quantitative real-time reverse transcription

polymerase chain reaction

RNA was extracted and converted to complementary DNA, and
TaqMan assays (Thermo Fisher Scientific) were used to examine
gene expression differences relative to normal controls as pre-
viously reported.12,13

Caspase-3/7 assay and caspase-8 assay

Patient samples were incubated for 4, 12, and 24 hours as
described in the “Cell viability assay” section. Following incubation,
the Caspase-Glo 3/7 or Caspase-Glo 8 assay (Promega) was used
to quantitate caspase activity, as per the manufacturer’s protocol.
Plates were read by using a Victor X Light Luminescence Counter
(PerkinElmer, Waltham, MA).

Results

CTCL patient population and peripheral

blood analysis

To assess the potential of targeted agents for the treatment of
CTCL with blood involvement, peripheral blood samples were

obtained from 19 patients with MF/SS. Patient treatments
included extracorporeal photopheresis with/without adjunct
therapies (16 of 19), cytoreductive therapy (1 of 19), HDAC
inhibition with romidepsin or vorinostat (4 of 19), or retinoid alone
(1 of 19) (Table 1). Each patient was evaluated by using clinical
flow cytometry, including TCR-Vb usage, and for polymerase
chain reaction–based TCR gene rearrangement status (Table 2).
Seven patients (36.8%) were classified as B1, and 12 (63.2%)
were classified as B2 based on the International Society for
Cutaneous Lymphomas classification22 and the 2016 criteria of
Gibson et al.23

CTCL patient–derived samples, CTCL cell lines, and

normal control samples exhibit variable sensitivity to

JAK, BET, BCL2, HDAC, or proteasome inhibition

Malignant cells were purified from the peripheral blood of patients
with MF/SS and exposed to a panel of 8 putative therapies in vitro.
Agents tested (and their targets) included ruxolitinib (JAK1/2),
mivebresib (BET), venetoclax (BCL2), vorinostat (HDAC), and
bortezomib (proteasome), bexarotene (RXR), talazoparib (PARP),
or methotrexate (DHFR). These agents were also evaluated in 5
established CTCL cell lines (MyLa 2059, HH, Sez4, Hut78, and
SeAx), and in normal control CD41 T lymphocytes purified from the
blood of healthy individuals (Figure 1A).

As shown in Figure 1, CTCL patient–derived malignant cells were
more sensitive to BET inhibition with mivebresib than normal control
lymphocytes (P 5 .006). CTCL cell lines were more sensitive to

Table 2. Summary of CTCL patients’ peripheral blood flow cytometric parameters

Patient ID Sorted abnormal cell population Vb gene identified PCR of TCR CD4:CD8 ratio CD41CD7–, % CD41CD26–, % B stage

1 CD3–CD4–CD8var1CD7dim/–CD26var1 ND 1 1.99 4.3 6.3 B2

2 CD3dim1CD41CD7–CD26– ND 2 15.9 44.4 43.6 B1

3 CD3dim1CD4dim1CD7dim1CD26– ND 1 2.11 1.6 21.9 B1

4 CD31CD41CD71CD26– 20, 8 1 31.1 17 69.7 B2

5 CD3dim1CD41CD7–CD26– ND 1 10.08 47.4 76.5 B2

6 CD31CD41CD7–CD26– ND 1 8.36 64.4 66.3 B1

7 CD3dim1CD4dim1CD7–CD26– ND 1 7.14 27.3 38.5 B1

8 CD31CD41CD7–CD261/2 13.6 1 3.18 9.3 11.6 B2

9 CD3dim1CD41CD71CD26– 17 1 6.06 3.8 49.7 B1

10 CD31CD41CD71CD26– 1 1 6.48 18.3 60.1 B2

11 CD3dim1CD41CD7–CD26– 13.2 1/2 2.61 31.5 33.6 B1

12 CD3dim1CD41CD71CD26– ND 1 36.86 12.7 70.4 B2

13 CD3dim1CD41CD26-CD7– 12 1 57.4 71 80.3 B2

14 CD31CD41CD7–CD26– ND 2 5.32 71.6 79.5 B2

15 CD31CD41CD7–CD26– ND 2 1.53 31.9 37.2 B2

16 CD31CD41CD71CD26– ND 2 23.82 76.4 85.8 B2

17 CD31CD41CD7dim/–CD26– 22 1 2.76 24.7 36.1 B2

18 CD31CD41CD7–CD26dim/– 27 2 18.71 65.2 58.4 B1

19 CD3dim1CD4dim1CD7–CD26– 13.1 1 22.3 9.8 63.4 B2

Abnormal cell phenotype identified by flow cytometry as phenotypically atypical: TCR-Vb1 if .50% of the population of atypical cells express a single Vb, or by indirect evidence, if there is
,20% expression of the entire 27 Vb antibody panel. Polymerase chain reaction positive (PCR1) if $1 of 3 PCRs identifies a clone. B stage based on International Society for Cutaneous
Lymphomas classification and the 2016 criteria proposed by Gibson et al.23 Patients staged as B2 have elevated absolute CD31 or CD31CD41 cell counts, with the upper limits of normal
defined as .2245 cells/mL and .1612 cells/mL, respectively. CD41CD7– and CD41CD26– percent specifications are defined as percentage of peripheral blood mononuclear cells
(lymphocytes and monocytes). ID, identifier; ND, not distinguished.
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mivebresib than control samples (P 5 .016) and more resistant
to bortezomib than patient-derived malignant cells (P 5 .011).
Dose–response curves show that patient-derived CTCL cells
(Figure 1C) and CTCL cell lines (Figure 1D) exhibited a wide range
of sensitivities to bortezomib. Sensitivities to mivebresib, venetoclax,

and vorinostat reflected results previously published by our
group.12,13

At the wide range of concentrations tested, CTCL patient samples
and normal control samples showed consistent resistance to
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Figure 1. CTCL patient–isolated malignant cells and CTCL cell lines show variable sensitivity to a panel of targeted therapeutic agents. Isolated malignant cells

from patient samples (n 5 19), control samples (n 5 5), and established CTCL cell lines (n 5 5) were incubated with a range of concentrations of ruxolitinib, mivebresib, venetoclax,

vorinostat, or bortezomib for 72 hours, from which IC50 values and Hill slopes were calculated. (A) Comparison of IC50 values. CTCL patient samples, control samples, and CTCL cell

lines revealed statistically significant differences in response to mivebresib and bortezomib. (Bi) CTCL patient samples in order of IC50 of ruxolitinib. Patients were grouped as high-

responders and low-responders to ruxolitinib at an a priori cutoff of 1 mM. The median and mean IC50 for patient samples were 2.16 mM and 79.47 mM, respectively. (Bii) IC50

differences for B1 and B2 stage to ruxolitinib were found to be nonsignificant. (Biii) Hill slope differences of CTCL patient samples and CTCL cell lines to ruxolitinib. (C) Dose–response

curves for patient samples (C) and CTCL cell lines (D) for ruxolitinib (i), mivebresib (ii), venetoclax (iii), vorinostat (iv), and bortezomib (v). *P , .05; **P , .001. ns, not significant.
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cytotoxicity by bexarotene, talazoparib, and methotrexate: they
exhibited no decrease in cell viability at any concentration tested
in vitro. In contrast, the 5 CTCL cell lines showed variable sensitivity
to these 3 agents (supplemental Figure 1).

CTCL patient samples exhibited varied sensitivities to JAK inhibition
by ruxolitinib (Figure 1Bi). The IC50 for ruxolitinib ranged widely from
1.85 3 1025 mM to 934 mM (median, 2.16 mM; mean, 79.47 mM).
To better study the observed variation, we a priori delineated the
tested samples into high-responders (IC50 # 1 mM) and low-
responders (IC50 . 1 mM). Less than one-half of the CTCL patient
samples (7 of 19 [36.8%]) fell into the high-responder category,
with a group mean IC50 of 0.16 mM compared with the low-
responders (12 of 19 [63.2%]) with a group mean IC50 of 125.7
mM. IC50 values of low-responders were comparable to, and even
greater than, those of normal control lymphocytes (mean, 43.02
mM) and CTCL cell lines (mean, 7.107 mM). There was no
statistically significant difference in response to ruxolitinib between
patients classified as B1 and B2 (Figure 1Bii). The effect of
ruxolitinib was also assessed in 5 CTCL cell lines (Figure 1Di). The 5
CTCL cell lines exhibited variable sensitivity to ruxolitinib and
showed a significantly higher Hill slope to ruxolitinib treatment than
patient samples (P 5 .031) (Figure 1Biii).

Our results highlight the potential of JAK inhibition by ruxolitinib
against patient-derived malignant CTCL cells as a potentially
promising agent on preclinical assessment. We also show the lack
of consistency of sensitivities of CTCL cell lines to the targeting
agents tested, relative to both patient-derived and normal control
lymphocytes. These results strongly suggest that preclinical
analyses of drug responsivity are of limited value when only CTCL
lines are examined.

Baseline JAK2 gene expression predicts in vitro

sensitivity to ruxolitinib

To study the differences in response to ruxolitinib among both
primary patient-derived samples and CTCL cell lines, the baseline
gene expression of five JAK/STAT family members (JAK1, JAK2,
STAT3, STAT5B, and SOCS3) and six BCL2 family members
(BCL2, BCL2L1, MCL1, BCL2L11, BCL2L2, and MYC) was
measured by using quantitative reverse transcription polymerase
chain reaction and evaluated relative to their mean expression in
CD41 T cells from normal control samples (Figure 2A). CTCL
patient samples expressed ;36-fold higher levels of JAK2 (P 5
.0004). On average, ruxolitinib low-responders expressed 29-fold

greater JAK2, and high-responders expressed 45-fold greater JAK2
than normal controls; however, this difference was not statistically
significant (P 5 .25). Patient samples also expressed increased
STAT5B (64-fold greater; P 5 .0002) and BCL2L2 (11.3-fold
greater; P 5 .02). They expressed lower levels of BCL2 (18-fold
less, P 5 .12) than normal controls, consistent with previously
published findings.12 Ruxolitinib IC50 values were plotted as
a function of relative expression of JAK/STAT and BCL2 family
members. A moderate negative correlation was detected between
baseline expression of JAK2 and IC50 (Spearman r 5 20.66; P 5
.015) (Figure 2B). IC50 correlation was not seen with mRNA
expression levels of other JAK/STAT family members or BCL2
family members (supplemental Figure 2). These results suggest
a role for elevated JAK2 expression in the survival of malignant
CTCL cells.

Combination targeted inhibition results in improved

killing of patient-derived CTCL cells

To evaluate the efficacy of targeted combination inhibition in vitro,
14 patient-derived malignant CTCL samples and one peripheral
T-cell lymphoma sample were exposed to 3 3 3 concentrations (9
dose combinations) of each drug pair. For drugs to which the cells
were sensitive to monotherapy, synergy for drug pairs was also
calculated by using the Chou-Talalay method,21 with a combination
index ,1 indicative of a synergistic interaction.21,24 For drugs to
which samples were resistant to monotherapy, fold-potentiation for
combination drug pairs was determined. Fold-potentiation was
calculated as fold improvement in percent kill by the combination
drug pair relative to a single agent. Results were plotted as
a heatmap of combination indices and fold-potentiation for each
patient sample (supplemental Figure 3).

Representative heatmaps are shown for a patient sample that was
a high-responder to JAK inhibition (Figure 3Ai) and a low-responder
to JAK inhibition (Figure 3Aii). As previously reported by our
group,12,13 all CTCL patient samples tested consistently showed
synergy with combination inhibition of BCL2 plus HDAC, BCL2
plus BET, and HDAC plus BET. Of note, ruxolitinib in combination
with either venetoclax, vorinostat, or bortezomib showed increased
cytotoxicity relative to single drug exposure, regardless of single
agent sensitivity. Although principally acting as cytostatic agents,
bexarotene, methotrexate, and talazoparib exhibited weak to little
cytotoxic effects on CTCL cell viability as single agents; nonethe-
less, these drugs displayed the capacity to potentiate cytotoxicity
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Figure 3. Preclinical assessment of targeted drug combinations against CTCL patient–derived samples. CTCL patient cells were incubated with each of 5 targeted

agents (ruxolitinib, venetoclax, vorinostat, mivebresib, and bortezomib) individually to calculate single-agent IC50 values. Cells were then incubated with combinations of each

drug at 3 concentrations, and the combination index (CI) was calculated by using the Chou-Talalay method. Resulting CIs were plotted as heatmaps. (A) Representative heat

map of a high-responder to ruxolitinib (i) and a low-responder to ruxolitinib (ii). (Bi) The CI at 1% to 30% viability for patient-derived samples exposed to combinations of

ruxolitinib, venetoclax, vorinostat, and mivebresib. Strongest synergy was seen with venetoclax plus ruxolitinib and venetoclax plus mivebresib across patient samples. (Bii) The

fold improvement in cytotoxicity for the same concentrations was calculated and plotted for these CTCL patient–derived samples exposed to combinations of ruxolitinib,

venetoclax, vorinostat, and mivebresib. The highest fold potentiation was seen with the combination of ruxolitinib and venetoclax. Very strong synergy, CI , 0.1; strong synergy,

CI , 0.3; synergy, CI , 0.7; slight to moderate synergy, CI , 0.9; additive effect, 0.9 , CI , 1.1; slight to moderate antagonism, CI , 1.45; antagonism, CI , 3.3; strong

antagonism, CI , 10; and very strong antagonism, CI . 10. Adapted from Chou.21 Very strong potentiation, .10-fold; strong potentiation, two- to 10-fold; potentiation, 1.5- to

twofold; moderate antagonism, 0.6- to 0.8-fold; antagonism, 0.3- to 0.6-fold; strong antagonism, ,0.3-fold.
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induced by venetoclax, vorinostat, bortezomib, and mivebresib
when used in combination. Combination indices for the highest
percent kill achieved with each combination are presented in
Figure 3Bi. Ruxolitinib plus venetoclax and mivebresib plus
venetoclax consistently showed the strongest synergy, with
combination indices significantly better (lower) than 6 of 9 and
8 of 9 other combinations, respectively (P , .05 for each
comparison). For comparison, fold-potentiation for these same
combinations was also plotted (Figure 3Bii). The highest fold
improvement in CTCL cytotoxicity was again seen with ruxolitinib

plus venetoclax, on average a ;45-fold improvement compared
with venetoclax alone and significantly greater than 8 of 9 other
combinations tested (P , .05 for each comparison).

Because JAK inhibition alone resulted in differential responses
among patient-derived malignant CTCL cells, we sought to
investigate the degree to which combination approaches might
overcome this varied responsiveness. To visualize the extent to
which JAK1/2 inhibition in combination with BCL2, HDAC, or
proteasome inhibition potentiates malignant cell killing across all
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and combination indices (CIs) were calculated. (A) CIs were plotted as heatmaps for patient-derived samples (i); percent kill plotted for the same concentrations (ii). Very

strong synergy was seen with ruxolitinib and venetoclax across all 5 high-responder patients. Strong to very strong potentiation was seen among low-responders. (B) Repre-

sentative curves of combinations of ruxolitinib with venetoclax (i), vorinostat (ii), bortezomib (iii), and mivebresib (iv) for a high-responder. The most substantial synergy was

observed with ruxolitinib and venetoclax.

26 MAY 2020 x VOLUME 4, NUMBER 10 JAK INHIBITION IN CTCL 2221

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/4/10/2213/1731732/advancesadv2020001756.pdf by guest on 18 M

ay 2024



patient-derived samples and cell lines tested, heatmaps were
prepared (Figure 4). Patient-derived CTCL samples that were high-
responders to ruxolitinib consistently displayed moderate to very
strong synergy at the majority of combination concentrations tested.
Of note, those patient samples considered low-responders to
ruxolitinib also exhibited consistent potentiation of cytotoxicity by
agent pairs that included ruxolitinib, particularly when ruxolitinib was
used in combination with venetoclax or bortezomib. Although 2
samples tested exhibited antagonism with ruxolitinib when used
in combination with vorinostat, bortezomib, or mivebresib, these
samples were notably isolated from 2 atypical cases (peripheral
T-cell lymphoma not otherwise specified and CD81 MF), suggest-
ing a difference in action of these therapies on these isolates
compared with the more classic larger set of CD41MF/SS isolates.
By comparison, the CTCL cell lines were consistently more
resistant to all drug combinations tested, once again revealing
a major discrepancy between the responses of CTCL cell lines and
CTCL patient-derived isolates.

Representative dose–response curves of the CTCL patient sample
that was most sensitive to ruxolitinib are shown in Figure 4B. The
strongest synergy was consistently seen at all concentrations
tested for ruxolitinib and venetoclax as indicated by markedly low
combination index values (in the 10211 to 1027 range).

Combination BCL2 and JAK1/2 inhibition leads to

marked increases in apoptosis induction

To determine whether the observed dose-dependent decrease in
cell viability of CTCL cells exposed to combination therapy with

ruxolitinib and venetoclax was due in part to apoptosis induction,
caspase-3/7 and caspase-8 activation was measured in patient-
derived CTCL samples at 4-, 12-, and 24-hour time points after
exposure to ruxolitinib or venetoclax; this testing was conducted
alone or in combination across 5 concentrations (Figure 5).
Exposure to ruxolitinib or venetoclax alone independently induced
total and extrinsic caspase-dependent apoptosis, with a trend
toward higher apoptosis observed with venetoclax compared with
ruxolitinib. The combination of JAK1/2 inhibition and BCL2 inhibition
showed a striking increase in both caspase-3/7– and caspase-
8–dependent apoptosis compared with either JAK or BCL2
inhibition alone at each time point and concentration tested (P ,
.05). At the highest concentration tested at 12 hours, the mean
percent induction of caspase-3/7 and caspase-8 activity from
control was ;5000% and ;1700%, respectively.

BCL2 family member gene expression changes in

response to JAK1/2 inhibition

To gain insight into the mechanism of action of synergy/potentiation
of ruxolitinib and venetoclax, we incubated 9 patient-derived CTCL
samples for 24 hours with 1 mM ruxolitinib and 0.2 mM venetoclax
before isolation of RNA and measurement of the relative expression
of JAK/STAT and BCL2 family members (Figure 6). Four of the
CTCL patient–derived samples were high-responders to ruxolitinib,
and 5 were low-responders. After exposure to ruxolitinib, there
was a marked ;38-fold decrease in BCL2 expression in high-
responders and an average approximately fivefold decrease among
low-responders; this difference approached statistical significance

Drug concentration [uM]

Combo 

Ruxolitinib
Venetoclax

i

A

11.13.701.230.410.14

0

1000

2000

3000

4000

5000

Ca
sp

as
e 

3/
7 

ac
tiv

ity
(%

 c
on

tro
l)

[Ruxolitinib]

[Venetoclax]0.02 0.07 0.20 0.61 1.85

***
††***

†***
†††***

††***
†††

ii

11.13.701.230.410.14

0

1000

2000

3000

4000

5000

Drug concentration [uM]

Ca
sp

as
e 

3/
7 

ac
tiv

ity
(%

 c
on

tro
l)

[Ruxolitinib]

[Venetoclax]0.02 0.07 0.20 0.61 1.85

***
†††

***

***
†††

***
†††

***
†††

iii

11.13.701.230.410.14

0

1000

2000

3000

4000

5000

Drug concentration [uM]

Ca
sp

as
e 

3/
7 

ac
tiv

ity
(%

 c
on

tro
l)

[Ruxolitinib]

[Venetoclax]0.02 0.07 0.20 0.61 1.85

***
†

***

***
†††

***
†††

***
†††

B
i

11.13.701.230.410.14
0

1000

2000

3000

4000

5000

Drug concentration [uM]

Ca
sp

as
e 

8 
ac

tiv
ity

(%
 c

on
tro

l)

[Ruxolitinib]

[Venetoclax]0.02 0.07 0.20 0.61 1.85

***
†† *** ***

***
††

ii

11.13.701.230.410.14
0

1000

2000

3000

4000

5000

Drug concentration [uM]

Ca
sp

as
e 

8 
ac

tiv
ity

(%
 c

on
tro

l)

[Ruxolitinib]

[Venetoclax]0.02 0.07 0.20 0.61 1.85

*
††

***
†††

***
††

***
***

iii

11.13.701.230.410.14

0

1000

2000

3000

4000

5000

Drug concentration [uM]

Ca
sp

as
e 

8 
ac

tiv
ity

(%
 c

on
tro

l)

[Ruxolitinib]

[Venetoclax]0.02 0.07 0.20 0.61 1.85

***
†††

**
†††

***
†††

***
†††***

†††

Figure 5. Effects of JAK inhibition and synergy with BCL2 inhibition are mediated in part by induction of apoptosis by caspase-3/7 and caspase-8. (A)

Representative curves of caspase 3/7 activity at 4 hours (i), 12 hours (ii), and 24 hours (iii) shown for patient 9 after incubation with ruxolitinib and venetoclax. (B) Caspase-8

activity at 4 hours (i), 12 hours (ii), and 24 hours (iii) shown for patient 9 after incubation with ruxolitinib and venetoclax. Significant increase in caspase-3/7 activity reflecting

total apoptosis, and caspase-8 activity reflecting extrinsic apoptosis, was seen with combination therapy compared with either ruxolitinib or venetoclax alone at all concen-

trations and time points tested. *P , .05; **P , .01; ***P , .001 (P value against ruxolitinib). †P , .05; ††P , .01; †††P , .001 (P value against venetoclax).
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(P 5 .055). Nonetheless, combination exposure to ruxolitinib and
venetoclax did not affect gene expression differently than treatment
with ruxolitinib alone. Taken together, our findings show that JAK
inhibition efficiently induces apoptosis in CTCL patient–derived
cells in vitro and is potentiated by BCL2 inhibition regardless of JAK
inhibition sensitivity. This scenario suggests that this combination
therapy might benefit patients with advanced CTCL, including
those refractory to single-agent therapy.

Discussion

Informed by recent whole-exome sequencing data for CTCL,6 we
herein aimed to directly compare and prioritize 8 candidate agents,
FDA approved or in development for other malignancies or drug
class in development for CTCL, for assessment against CTCL
patient–derived cells, alone or in combination. Our group has
previously shown that single or combination exposure to BCL2,
BET, and HDAC inhibition substantially diminished viability of CTCL
cells in vitro.12,13 Our results herein extend these findings to show
sensitivity of patient-derived malignant CTCL cells to proteasome
and JAK1/2 inhibition, while providing a fuller preclinical analysis of
the potential for combination drug therapy to act synergistically and
overcome single-agent resistance.

Dysregulation of JAK-STAT signaling has been reported for myeloid
and lymphoid malignancies.25 Studies have suggested a role for the
JAK-STAT pathway in pathogenesis of CTCL, underscored by the
identification of several SNVs and GNCAs in this pathway.6 Further
encouraged by the published data showing the antiproliferative
and cytotoxic effects of ruxolitinib on CTCL cell lines,26 and our
identification herein of significantly elevated expression levels of
JAK2, STAT5B, and BCL2L2 in patient-derived malignant CTCL
cells, we sought to explore further the potential of JAK inhibition for

the treatment of CTCL and revealed a markedly varied response
to such by CTCL patient–derived samples. Our data indicate
that expression of JAK2 is moderately inversely correlated with
sensitivity to ruxolitinib, with higher expression levels portending
increased sensitivity. Although such biomarker-response associa-
tions have provided justification for personalized medicine
approaches to targeted cancer therapy, data have also suggested
that combination targeted drug therapy may provide consistent
efficacy across a wider variety of patients.27,28 Despite the known
genetic diversity among CTCL patient samples, we observed
a consistent synergy among combinations of JAK2 inhibition paired
with BCL2, HDAC, BET, or proteasome inhibitors. Furthermore, the
agents (eg, methotrexate, talazoparib, bexarotene) that showed
minimal cytotoxicity when tested alone nonetheless exhibited
potentiation of kill by BCL2, HDAC, BET, and proteasome inhibitors
when used in combination.

JAK inhibition showed consistent synergistic and/or potentiation
effects, regardless of single-agent sensitivity, when used in
combination with a BCL2, proteasome, BET, or HDAC inhibitor.
Furthermore, JAK inhibition in combination with BCL2 inhibition was
found to be consistently the most synergistic combination acting
against patient-derived malignant CTCL cells. Synergistic
effects were also observed by significantly increased activation
of caspase3/7–dependent apoptosis as well as caspase-
8–dependent apoptosis in the combination compared with
monotherapy. Caspase-8 initiates the extrinsic apoptosis pathway,
whereas caspase3/7 activity is a marker of total apoptosis, both
extrinsic and intrinsic. These data suggest a role for both FAS and
TNF-related apoptosis-inducing ligand–mediated extrinsic apopto-
sis, as well as intrinsic apoptosis associated with reductions in
antiapoptotic factors in combination therapy with ruxolitinib plus
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Figure 6. Alterations in JAK-STAT and BCL2 family member gene expression induced by ruxolitinib and venetoclax. Patient-derived malignant CTCL samples of

high-responders and low-responders were incubated with 1 mM ruxolitinib, 0.2 mM venetoclax, or combination for 24 hours. Results expressed as fold change from untreated

vehicle controls in high-responders (A) and low-responders (B). Notably, high-responders showed an average of ;38-fold decrease in BCL2 expression when incubated with

ruxolitinib alone or in combination, substantially greater than the fold decrease seen in low-responders (approximately fivefold).
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venetoclax. The JAK-STAT pathway is reportedly involved in the
regulation of BCL2 expression in T lymphocytes as well as
hematopoietic stem cells.27,28 We found a decreased expression
of BCL2 protein in JAK inhibition high-responders compared with
JAK inhibition low-responders. The major function of BCL2 is to
inhibit apoptosis via direct binding with BIM. BCL2 is downstream
of the JAK/STAT pathway. Upon exposure to ruxolitinib, JAK/STAT
pathway inhibition and resultant decreased expression of BCL2
may play a role in increased apoptosis of malignant CTCL cells.
Decreased BCL2 expression on exposure of ruxolitinib, combined
with direct inhibition of BCL2 protein function by venetoclax,
suggests a putative mechanism of cooperative activity of these 2
therapies by decreasing both the levels of BCL2 expression as well
as BCL2 activity, resulting in increased apoptosis.

In testing our candidate agents on 5 well-established CTCL cell
lines (MyLa 2059, HH, Sez4, Hut78, and SeAx) in vitro, we found
consistently divergent responses of these cell lines compared with
patient-derived malignant CTCL cells. This scenario was seen in
both single-agent and combination studies. These data highlight
the limitations of CTCL cell lines in recapitulating the behavior
of patient-derived CTCL cells in vitro, as well as their limited
applicability as preclinical models. CTCL is a heterogeneous
disease, with patient CTCL cells having a wide diversity of genomic
and cellular alterations driving their behavior. In contrast, the
majority of cell lines have certain driver mutations that may not
reflect the true diversity of disease in patients. Furthermore,
prolonged cell culture is likely to result in occurrence of genomic
and transcriptomic changes that are beneficial to survival in

culture.29 Indeed, it has been shown that under prolonged culture,
many cell lines, regardless of tissue of origin, behave more like each
other than like patient samples.30 Our data add to this literature,
showing the differences in response to targeted treatment in CTCL
cell lines and patient-derived samples.

A limitation of the current study is that we investigated the effect of
these targeted agents on patient-derived malignant CTCL cells
from patients who have received previous treatments (Table 1).
However, such patients reflect the heterogeneity of treatment
backgrounds of patients with advanced CTCL for whom we aim to
provide preclinical data. Despite this heterogeneity, the current
study nonetheless found combinations of targeted agents that
were successful in causing malignant cell apoptosis in vitro in the
majority of patient samples tested (ie, regardless of the prior/current
treatments of the patients from whom the cells were isolated).
These results highlight that our identified combinations may allow
for more generalized cytotoxic effects against the malignant cells
from patients with CTCL, regardless of their previous therapy. This
outcome also suggests that the pathways targeted may be essential
to the survival and malignant behavior of CTCL cells.

Taken together, our preclinical findings support the clinical
implementation of ruxolitinib as a novel therapy for leukemic CTCL
and further show the synergistic potential of combination of
ruxolitinib with BCL2, HDAC, BET, or proteasome inhibition. These
data also support the use of BCL2, HDAC, BET, or proteasome
inhibition, alone and in combination with each other or with RXR,
PARP, or DHFR inhibition. Based on our work herein and previous
studies,12,13 we note the fundamental intersections of these
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Figure 7. Altered pathways and their intersections within CTCL cells suggest multiple opportunities for single and combination therapeutic intervention.

Mutations in the JAK/STAT pathway (JAK1, JAK2, JAK3, STAT3, and STAT5B) and the NF-kB pathway (NFKB2) have been previously described in CTCL. The pathways

affected all ultimately inhibit both intrinsic and extrinsic apoptosis pathway activation. Inhibition of these pathways (eg, by the targeted agents assessed) overcomes resistance

to apoptosis and drives malignant CTCL cell death. (Created with biorender.com.)
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targetable pathways (Figure 7) to further highlight promising
combination drug approaches that warrant clinical assessment in
the treatment of patients with advanced CTCL.
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Genet. 2015;47(9):1056-1060.

8. McGirt LY, Jia P, Baerenwald DA, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015;126(4):508-519.

9. da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Genet. 2015;
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