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Key Points

• KIT exon 17 mutation is
a poor prognostic fac-
tor in AML patients with
RUNX1-RUNX1T1, but
not in those with
CBFB-MYH11.

•NRAS mutation is
a poor prognostic fac-
tor in AML patients with
CBFB-MYH11.

The prognostic impact ofKIT mutation on core-binding factor acute myeloid leukemia (CBF-

AML) remains controversial. We registered 199 newly diagnosed de novo CBF-AML patients,

aged 16 to 64 years, who achieved complete remission. They received 3 courses of high-dose

cytarabine therapy and no further treatment until hematological relapse. Mutations in

exons 8, 10-11, and 17 of the KIT gene were analyzed. Furthermore, we analyzed mutations

in 56 genes that are frequently identified in myeloid malignancies and evaluated minimal

residual disease (MRD). The primary end point was relapse-free survival (RFS) according to

KIT mutations. The RFS in KIT-mutated patients was inferior to that in unmutated patients

(hazard ratio, 1.92; 95% confidence interval, 1.23-3.00; P 5 .003). Based on subgroup

analysis, KIT mutations had a prognostic impact in patients with RUNX1-RUNX1T1, but not

in those with CBFB-MYH11, and only exon 17 mutation had a significant prognostic impact.

Multivariate Cox regression analysis with stepwise selection revealed that the KIT exon 17

mutation and the presence of extramedullary tumors in patients with RUNX1-RUNX1T1, and

loss of chromosome X or Y and NRAS mutation in patients with CBFB-MYH11 were poor

prognostic factors for RFS. MRD was evaluated in 112 patients, and it was associated with

a poorer RFS in the patients with CBFB-MYH11, but not in those with RUNX1-RUNX1T1.

These results suggested that it is necessary to separately evaluate AML with

RUNX1-RUNX1T1 or CBFB-MYH11 according to appropriate prognostic factors. This

study was registered at www.umin.ac.jp/ctr/ as #UMIN000003434.
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Introduction

Acute myeloid leukemia (AML) with RUNX1-RUNX1T1 or CBFB-
MYH11 is categorized into a favorable cytogenetic risk group, and
allogeneic hematopoietic stem cell transplantation (HSCT) is not
generally recommended during the first complete remission (CR).1

However, several prognostic factors, including genetic alterations,
have been demonstrated.2-8 In particular, KIT mutation has been
suggested to be associated with a poor prognosis in AML patients
with RUNX1-RUNX1T1 or CBFB-MYH11.3,5,9-12 Many types of
KIT mutations have been identified in cancer cells, but there are
3 mutation hot-spots (exon 8, exon 10-11, and exon 17) in
AML.3,10,12-14 Several groups previously reported that KIT mutation
was a poor prognostic factor for overall survival (OS), event-free-
survival, and/or relapse-free-survival (RFS) in AMLwithRUNX1-RUNX1T1
or CBFB-MYH11.3,10,12,15,16 On the other, some groups reported
thatKITmutationwas not associatedwith the long-term prognosis.1,17-19

This controversy may be caused by several study limitations such as
the prognostic relevance being mostly evaluated retrospectively,
not all types of KIT mutations being evaluated, and the analyzed
patient number being insufficient for statistical power. Furthermore,
the prognostic impact of recently identified recurrent mutations,
such asASXL1, ASXL2, and ZBTB7A, on AMLwithRUNX1-RUNX1T1
or CBFB-MYH11 remains unclear. We therefore conducted a pro-
spective, multicenter cooperative study (Japan Adult Leukemia Study
Group [JALSG] core-binding factor [CBF]-AML209-KIT) to evaluate
the prognostic impact of KIT mutation in AML patients with
RUNX1-RUNX1T1 or CBFB-MYH11 who were treated using
the same high-dose cytarabine (HiDAC) regimen. Furthermore,
we evaluated the frequency and clinical relevance of other gene
mutations and prognostic impact of minimal residual disease (MRD).

Methods

Patients

Patients aged 16 to 64 years old with newly diagnosed de novo
AML according to the World Health Organization 2008 classifica-
tion, and an Eastern Cooperative Oncology Group performance
status of 2 or lower were eligible for enrollment if they had a
RUNX1-RUNX1T1 orCBFB-MYH11 chimeric transcript and achieved
CR within 2 courses of standard induction therapy. All patients in
this study were registered in the JALSG registration study after
being diagnosed with AML and were treated using a standard dose
of idarubicin 1 cytarabine or daunorubicin 1 cytarabine for induction
therapy, as shown in supplemental Table 1. Other inclusion criteria
were: serum alanine aminotransferase or serum aspartate aminotrans-
ferase level up to 2.5 times the institutional upper limit of normal; serum
bilirubin up to 2.0 mg/dL; serum creatinine level up to 1.5 times the
institutional upper limit of normal; left ventricular ejection fraction
greater than 50% on ultrasound echocardiography; or PaO2 greater
than 60 Torr or SpO2 greater than 90% under room air. We excluded
patients with secondary AML, those with a history of hematological
abnormalities before registration, those with other types of malignant
tumors, those with a history of craniotomy, and those with a history
of receiving whole brain radiation to have a more uniform patient
background and to exclude safety concerns associated with
previous treatments.

We also excluded patients with cardiac dysfunction corresponding
to either of the following: Patients who need to use cardiac pacemakers,

those with a complete left bundle branch block, those with 2 branch
blocks, those with ventricular or atrial tachyarrhythmia requiring
treatment, those with a digestive tract ulcer of A2 stage or higher,
those with uncontrolled diabetes mellitus, those with a fasting
blood glucose level #200 that could not be maintained by insulin
administration, and those with active uncontrolled infections.
Written informed consent was received from all patients. The protocol
was approved by the ethics committees of all participating institutions.
This study was registered in the UMIN Clinical Trials Registry
(UMIN000003434, http://www.umin.ac.jp/ctr/).

Treatments

All patients received 3 courses of HiDAC therapy (2 g/m2 by 3-hour
infusion every 12 hours for 5 days), as previously reported.20,21 For
patients older than 60 years of age, 1 dose of cytarabine was reduced
to 1.5 g/m2. We recommended that patients be hospitalized in
the lower than NASA Class 10 000 clean room during treatment.
Best supportive care, including administration of antibiotics and
platelet transfusion, was performed if indicated. When patients
had life-threatening documented infections during neutropenia,
the use of granulocyte colony-stimulating factor was permitted.
Bone marrow (BM) examination was performed to confirm CR
before each course and at the end of the last course. After the
completion of 3 courses of HiDAC therapy, patients did not
receive further chemotherapy, immunotherapy, or HSCT until hema-
tological relapse was observed. If patients developed hematological
relapse, the best treatment, including HSCT, was applied at each
institute.

Cytogenetic and molecular analyses

Cytogenetic G-banding analysis was performed using standard
methods at each institute. Chimeric gene transcripts of RUNX1-
RUNX1T1 and CBFB-MYH11 were centrally quantified by the
real-time quantitative polymerase chain reaction (RT-qPCR) method
using BM or peripheral blood samples at diagnosis according to
a previous report.22 FLT3-ITD mutation was centrally examined by
the PCR method; genomic PCR was performed and the amplified
products were subjected to agarose gel electrophoresis as
previously reported.23 These results were immediately reported
to each institute. Residual DNA and RNA samples were
preserved at the JALSG sample storage center. Mutations in
exons 8, 10, 11, and 17 in the KIT gene were analyzed using the
preserved DNA extracted from AML cells at diagnosis, as
previously reported.24 We also analyzed mutations in FLT3,
NPM1, CEBPA, NRAS, TP53, WT1, and IDH1 genes, and partial
tandem duplication of the KMT2A gene (KMT2A-PTD) in 198
patients (supplemental Table 2). In addition, we analyzed mutations
in 49 other genes in 170 patients using the TruSight Myeloid
Sequencing Panel (Illumina, San Diego, CA), as previously reported
(supplemental Table 2).8,25

Assessment of MRD

The chimeric transcript level of RUNX1-RUNX1T1 orCBFB-MYH11
using BM samples was evaluated after the hematological recovery
from the third course of HiDAC therapy by RT-qPCR, as previously
reported.22 Because the lower detection limit of RUNX1-RUNX1T1
and CBFB-MYH11 transcripts was 50 copies/mg RNA in our
system, we defined MRD as positive if each transcript was
$50 copies/mg RNA. To avoid interfering with protocol treatment,
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the results of gene mutations and MRD levels were not disclosed to
institutes until 2 years after registration.

Definitions and study end points

Relapse after CR was defined as the presence of at least 1 of the
following: reappearance of leukemic blasts in the peripheral blood,
recurrence of more than 5% blasts in BM not attributable to any
other cause, such as BM regeneration after chemotherapy, and
development of extramedullary leukemia. We did not include
chimeric transcript levels of RUNX1-RUNX1T1 or CBFB-MYH11
in the definition of CR or relapse. OS was defined as the time
from the start date of induction therapy to death from any
cause or last follow-up. RFS was defined as the time from
the date of CR to relapse or death of any cause or the last
follow-up.

The primary end point was RFS in AML patients with RUNX1-
RUNX1T1 or CBFB-MYH11 according to KIT mutations.
Secondary end points were OS according to KIT mutations,
clinical relevance of the genetic alterations, prognostic impact
of known prognostic factors, and MRD levels after the completion
of therapy.

Statistical analysis

This study was prospectively powered to demonstrate a lower
RFS of AML patients with RUNX1-RUNX1T1 or CBFB-MYH11
harboring KIT mutations than in those without them. With a sample
size of 175 patients, the study had a power.90% at a 5% level of
significance by the log-rank test if the incidence of KITmutation in
AML with RUNX1-RUNX1T1 orCBFB-MYH11 was 25%, and the
2-year RFS of patients with and without KIT mutations was 35%
and 60%, respectively, according to previous reports.9,10,15,26

The RFS and OS were estimated by the Kaplan-Meier method;
differences in survival distributions were evaluated using the log-
rank test. Differences in continuous variables were analyzed by
the Mann-Whitney U test for distribution between 2 groups.
Analysis of frequencies was performed using Fisher’s exact test
for 2 3 2 tables or Pearson’s x2 test for larger tables. The
prognostic significance of the clinical variables was assessed
using the Cox proportional hazards model. We also attempted to
construct a prognostic factor model in CBF-AML by adding
a molecular type that stratifies the prognosis of CBF-AML.
Factors that independently affect disease-free survival were
narrowed down using the stepwise method and multivariate
analysis using the Cox proportional hazard model. Factors that
were candidates for model construction were factors whose P, .1
in the univariate analysis. Two-sided P , .05 was considered
significant. Analyses were performed using Stata version 13×1
(StataCorp, College Station, TX).

One planned interim analysis for the primary end point was to be
performed 1 year after the 100th patient was enrolled; this analysis
took place independently of the study secretariat in March 2014,
and the JALSG data and safety monitoring board made the decision
to continue this study. Significance for the primary end point
followed the O’Brien-Fleming method to maintain a 5% level of
significance. Allogeneic transplantation was performed during
the first remission period for 3 patients, and they were treated as
deviations and censored at the time of transplantation in RFS
analysis, including the multivariate analysis.

Results

Enrollment

Between May 2010 and September 2014, 203 patients from
85 institutes were enrolled. Four patients were excluded: 3 did not
fulfill the eligibility criteria and 1 received other treatment (Figure 1).
Thus, 199 patients consisting of 132 (66.3%) patients with
RUNX1-RUNX1T1 and 67 (33.7%) with CBFB-MYH11 were
included in the primary analysis.

KIT mutations and patient characteristics

KIT mutations were identified in 63 of the 199 patients (31.7%): 42
of 132 (31.8%) and 21 of 67 (31.3%) patients withRUNX1-RUNX1T1
and CBFB-MYH11, respectively (Table 1; supplemental Table 3).
A total of 68 mutations were identified in the 63 patients with KIT
mutations and mutation in exon 17 was the most frequently
identified (50/68, 73.5%), followed by that in exon 8 (14/68,
20.6%) and in exons 10-11 (4/68, 5.9%) (supplemental Table 4).
KIT mutation in exon 8 was more frequent in AML with CBFB-
MYH11 (9/24, 37.5%) than in that with RUNX1-RUNX1T1 (5/44,
11.4%) (P 5 .014). Although mutation at the N822 residue in exon
17 was identified in 13 of 44 (29.5%) KIT mutations of the patients
with RUNX1-RUNX1T1, no patient with CBFB-MYH11 had this
mutation (P 5 .008); however, mutation at the D816 residue was
equally identified in patients with RUNX1-RUNX1T1 (21/44, 47.7%)
andCBFB-MYH11 (13/24, 54.1%). Patient characteristics accord-
ing to KIT mutation are presented in Table 1 and supplemental
Table 4. The median BM blast percentage and white blood cell
(WBC) index27 in the patients with RUNX1-RUNX1T1 were higher
in the KIT-mutated patients than in the unmutated patients.
G-banding karyotype analysis was performed on 197 patients. An
additional cytogenetic abnormality was observed in 126 patients.
However, there was no significant difference in additional cytoge-
netic abnormalities between KIT-mutated and unmutated patients
(supplemental Table 5).

Landscape of gene mutations in CBF-AML

Identified gene mutations in analyzed AML patients are shown in
Figure 2A. KIT mutation (31.7%) was the most frequently identified,
followed by NRAS (21.7%), FLT3 (12.1%), and ASXL2 (11.8%)
mutations in AML with RUNX1-RUNX1T1 orCBFB-MYH11; however,
themutation status was different between AMLwithRUNX1-RUNX1T1
and CBFB-MYH11 (Figure 2B). ASXL2, ASXL1, RAD21, and
ZBTB7A mutations were more frequent in AML with RUNX1-
RUNX1T1 than in that with CBFB-MYH11. In contrast, NRAS,
KRAS, and FLT3-TKD mutations were more frequent in AML
with CBFB-MYH11 than in that with RUNX1-RUNX1T1 (Figure 2B).
Significantly overlapping mutations were observed between
KIT and ASXL2, NRAS and KRAS, and CSF3R and ASXL1.
Mutually exclusive mutations were observed between KIT and
NRAS and KIT and ZBTB7A (Figure 2C-E; supplemental
Figure 1).

Prognostic impact of KIT mutation

The median follow-up period was 1566 days (range, 356-2453),
and the 2-year RFS and OS in the entire cohort were 61.31% (95%
confidence interval [95% CI]: 54.11-67.72) and 85.79% (95% CI:
80.09-89.97), respectively. By chimeric transcripts, the RFS and
OS of patients withRUNX1-RUNX1T1were not significantly different
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from those of patients with CBFB-MYH11: the 2-year RFS rates
were 62.3% (95% CI, 53.3-70.0) and 59.6% (95% CI, 46.8-70.2)
for RUNX1-RUNX1T1 and CBFB-MYH11, respectively (P 5 .88)
(supplemental Figure 4).

The 2-year RFS rates were 48.6% (95% CI, 35.7-60.3) and 67.1%
(95% CI, 58.5-74.4) in KIT-mutated and unmutated patients,
respectively (hazard ratio [HR], 1.92; 95% CI, 1.23-3.00; P 5 .003
by log-rank test) (Figure 3A). Among the 3 types of KIT mutations,
only the mutation in exon 17 had a lower prognostic impact on the
RFS of CBF-AML patients (HR, 2.30; 95%CI, 1.45-3.64; P, .001)
(Figure 3B). Furthermore, mutations at D816 and N822 residues
had a significant prognostic impact, whereas the prognostic impact
of other mutations in exon 17 was unclear because of the small
number of patients (supplemental Figure 2).

Although there was no significant difference in RFS between the
patients with RUNX1-RUNX1T1 and CBFB-MYH11 (supplemental
Figure 3), based on subgroup analysis, KIT mutations had a
prognostic impact on RFS only in patients with RUNX1-RUNX1T1:
the 2-year RFS rates were 39.5% (95% CI, 24.7-53.9) and
72.8% (95% CI, 62.2-80.9) in KIT-mutated and unmutated
patients, respectively (HR, 3.27; 95% CI, 1.90-5.64; P , .001)
(Figure 3C). Furthermore, only the KIT exon 17 mutation had
a lower prognostic impact on the RFS of AML patients with
RUNX1-RUNX1T1 (HR, 3.82; 95% CI, 2.21-6.60; P , .001)
(Figure 3D). In contrast, no KIT mutations affected the RFS of
patients with CBFB-MYH11 (Figure 3E, F). KIT mutation was
also associated with a poorer OS for AML with RUNX1-RUNX1T1,
but not for that with CBFB-MYH11 (supplemental Figure 4), and
the prognostic impact of each KITmutation on OS was the same as
that on RFS.

Prognostic factors in CBF-AML

We examined prognostic factors for RFS in 199 patients who were
eligible for analysis of the primary end point. Multivariate Cox
regression analysis with stepwise selection demonstrated that
only the KIT exon 17 mutation was an independent poor
prognostic factor for RFS in CBF-AML patients (HR, 2.42; 95% CI,
1.52-3.85; P , .001).

By CBF-subtype, KIT exon 17 mutation (HR, 4.17; 95% CI,
2.38-7.34; P, .001) and the presence of extramedullary tumors
(HR, 3.85; 95% CI, 1.35-10.9; P 5 .011) in patients with
RUNX1-RUNX1T1, and loss of chromosome X or Y (HR, 5.79;
95% CI, 1.21-27.6; P 5 .03) and NRAS mutation (HR, 2.38;
95% CI, 1.03-5.53; P 5 .04) in those with CBFB-MYH11 were
identified as poor prognostic factors for RFS by multivariate
analysis (Table 2).

We also analyzed the prognostic impact of gene mutation in
170 patients in whom 56 gene mutations were examined. By
multivariate analysis, KIT mutation (HR, 3.56; 95% CI, 1.97-6.44;
P, .001) and TET2mutation (HR, 2.53; 95%CI, 1.37-11.5; P5 .01)
in patients with RUNX1-RUNX1T1, and NRAS mutation (HR, 2.36;
95% CI, 1.00-5.58; P 5 .05) in patients with CBFB-MYH11
were found to be poor prognostic factors for RFS (supplemental
Table 5).

MRD analysis

We evaluated the MRD level after the completion of 3 courses
of HiDAC therapy in 112 patients. MRD was positive in 32 of
75 (42.7%) and 16 of 37 (43.2%) patients with RUNX1-RUNX1T1
and CBFB-MYH11, respectively (Figure 4A). The RFS of patients

203 patients enrolled

200 analyzed for KIT mutations

3 excluded
3 did not meet eligibility criteria

1 excluded
1 recieved the other treatment

199 patients eligible for the primary endopoint analysis

170 analyzed for 56 genes mutations
28 analyzed for 11 genes mutations

1 not available the sample

87 not collected the sample for MRD
5 relapsed during the treatment
5 died during the treatment

112 patients analyzed for MRD

7 changed or stpped the treatment
70 unknown reason

Figure 1. CONSORT flow diagram. The primary end

point, relapse-free survival, was evaluated in 199 eligible

patients. Prognostic analysis of MRD was performed on 112

patients whose samples were collected.
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with MRD was lower than that of those without MRD (HR, 2.39;
95%CI, 1.24-4.61; P5 .009) (Figure 4B). Of note, the presence of
MRD was associated with a poorer RFS in patients with CBFB-
MYH11 (HR, 4.55; 95% CI, 1.20-17.2; P 5 .03), but not in those
with RUNX1-RUNX1T1 (P 5 .11) (Figure 4C-D). The presence
of MRD was significantly associated with KIT exon 17 mutation
in the patients with RUNX1-RUNX1T1 (supplemental Table 6).
Multivariate analysis of 112 patients demonstrated the presence of
MRD (HR, 5.49; 95% CI, 1.43-21.0; P 5 .01) and NRAS mutation
(HR, 3.93; 95% CI, 1.03-15.0; P 5 .05) to be poor prognostic
factors for RFS in patients withCBFB-MYH11. In contrast, WBC
count (.50 3 109/L) (HR, 5.57; 95% CI, 1.24-15.0; P 5 .03),
KIT exon17 mutation (HR, 3.71; 95% CI, 1.60-8.64; P 5 .002),
and FLT3-TKD mutation (HR, 3.39; 95% CI, 1.13-10.2; P5 .03)

were poor prognostic factors in patients with RUNX1-RUNX1T1
(supplemental Table 7).

Discussion

The prognostic impact of KIT mutation is a major clinical
concern in AML patients with RUNX1-RUNX1T1 andCBFB-MYH11
because controversial results were reported by several groups. In
this large prospective study, we demonstrated that the adverse
effects of KIT mutation were observed only in AML patients with
RUNX1-RUNX1T1 and not in AML patients with CBFB-MYH11,
although our study included a small number of patients with CBFB-
MYH11 compared with the previous study.3 Furthermore, there was
no significant difference in the RFS or OS between patients with

Table 1. Patient characteristics according to KIT mutation

Characteristic All patients (n 5 199) KIT unmutated (n 5 136) KIT mutated (n 5 63) P

Chimera transcript type, n (%) 1.00

RUNX1-RUNX1T1 132 (66) 90 (66) 42 (67)

CBFB-MYH11 67 (34) 46 (34) 21 (33)

Sex, n (%) .53

Male 125 (63) 81 (61) 42 (67)

Female 74 (37) 55 (39) 21 (33)

Age, y .72

Median 41 41 41

Range 16-64 17-64 16-64

WBC, 3109/L .12

Median 9.6 8.5 12.1

Range 0.80-287.0 0.80-287.0 1.84-192.4

BM blasts, % ,.001

Median 61.2 53.8 73.5

Range 10.8-97.0 10.8-96.5 26.1-97.0

WBC index* .002

Median 4.73 3.35 6.11

Range 0.35-41.3 0.35-41.3 0.93-29.6

Extramedullary tumor, n (%) 20 (10) 13 (10) 7 (11) .80

CD19 expression, n/N (%) 68/192 (35) 49/129 (38) 19/63 (30) .34

CD56 expression, n/N (%) 91/193 (47) 56/130 (43) 35/63 (56) .13

Induction therapy, n (%) .27

Daunorubicin base 68 (34) 43 (32) 25 (40)

Idarubicin base 131 (66) 93 (68) 38 (60)

Induction cycle, n (%) 1.00

1 course 187 (94) 128 (94) 59 (93)

2 courses 12 (6) 8 (6) 4 (6)

Additional cytogenetic abnormalities (n 5 197), n/N (%)

Loss of X/Y 78/197 (40) 55/135 (40) 23/62 (38) .64

Trisomy 8 7/197 (4) 4/135 (3) 3/62 (5) .68

Trisomy 22 18/197 (9) 11/135 (8) 7/62 (11) .60

del(9q) 14/197 (7) 12/135 (9) 2/62 (3) .23

del(7q)/-7 4/197 (2) 3/135 (2) 1/62 (2) 1.00

Complex 14/197 (7) 7/135 (5) 7/62 (11) .14

*WBC index calculated in patients with RUNX1-RUNX1T1.

70 ISHIKAWA et al 14 JANUARY 2020 x VOLUME 4, NUMBER 1

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/4/1/66/1550845/advancesadv2019000709.pdf by guest on 18 M

ay 2024



RUNX1-RUNX1T1 and CBFB-MYH11 in this study. Because the
results of mutation analysis were not reported to each institute until
the completion of the protocol therapy and any further intervention
was prohibited until hematological relapse, the present results are
sufficient to evaluate the clinical relevance of KIT mutations and
other molecular abnormalities in adult patients with CBF-AML
treated using HiDAC. Moreover, in the patients withCBFB-MYH11,
NRAS mutation was preferentially identified in KIT-unmutated
patients, and had an adverse effect on RFS, whereas NRAS

mutation did not affect the RFS of patients with RUNX1-RUNX1T1
(Table 2). The fusion transcripts RUNX1-RUNX1T1 and CBFB-
MYH11 are not sufficient for leukemia development and addi-
tional driver mutations, such as KIT, FLT3, and RAS mutations, are
required for its onset.28 However, the present study suggested
that the prognostic impact of these driver mutations differs between
patients with RUNX1-RUNX1T1 and CBFB-MYH11.

Several groups previously reported that the MRD level examined by
the chimeric transcripts using RT-qPCR was useful for predicting
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RUNX1-RUNX1T1 or CBFB-MYH11. (A) Identified

mutations in analyzed patients are shown. Gray

boxes indicate the patients whose samples were not

analyzed. (B) The frequency of recurrently mutated

genes by CBF-AML fusion type is shown. (C) Circos
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Figure 3. RFS according to KIT mutation. (A) Kaplan-Meier estimates of RFS according to KIT mutation in 199 CBF-AML patients. Kaplan-Meier estimates of RFS in
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the long-term prognosis of CBF-AML patients; however, there are
several opinions regarding thresholds and time points for MRD
assessment.1,19,29-32 Although we evaluated MRD after complet-
ing the 3-course consolidation therapy, MRD samples were not
collected from 87 patients for several reasons, including disease
progression (Figure 1). The RFS was significantly lower in the
sample-uncollected patients than the collected patients among
those with either RUNX1-RUNX1T1 or CBFB-MYH11. Therefore,

the present study evaluated the clinical significance of MRD
in patients who were able to maintain CR during consolida-
tion therapy. Although further studies are required to clarify
when MRD should be evaluated, our study demonstrated the
importance of MRD for evaluating the prognosis of AML
patients with CBFB-MYH11.

In conclusion, we clarified the prognostic impact of KIT mutation
and the MRD status in adult AML patients with RUNX1-RUNX1T1
or CBFB-MYH11 who were treated using HiDAC, refining the
concept of risk stratification of AML patients with RUNX1-RUNX1T1
and CBFB-MYH11. Other treatment strategies, including alloge-
neic HSCT during the first remission, or addition of gemtuzumab or
ozogamicin to chemotherapy, should be considered for patients
with a high risk of relapse identified by this study.33 The molecular
risk groups presented in this study are amenable to routine
diagnostic assessment, and provide a foundation for future clinical
trials and research.

Table 2. Multivariate analysis for RFFS

Variables
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