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Key Points

• Pre-HCT exposure to
ATG may have an
antirelapse effect,
whereas post-HCT
exposure may have a
prorelapse effect.

• Pre-HCT exposure may
have a proengraftment
effect; high post-HCT
exposure is associated
with less GVHD and
more fatal infections.

It remains unknown why rabbit antithymocyte globulin (ATG; Thymoglobulin) has not

affected relapse after hematopoietic cell transplantation (HCT) in randomized studies.

We hypothesized that high pre-HCT ATG area under the curve (AUC) would be

associated with a low incidence of relapse, whereas high post-HCT AUC would be

associated with a high incidence of relapse. Wemeasured serum levels of ATG capable of

binding to mononuclear cells (MNCs), lymphocytes, T cells, CD4 T cells, or CD33 cells.

We estimated pre- and post-HCT AUCs in 152 adult recipients of myeloablative

conditioning and blood stem cells. High pre-HCT AUCs of MNC- and CD33 cell–binding

ATG were associated with a low incidence of relapse and high relapse-free survival (RFS).

There was a trend toward an association of high post-HCT AUC of lymphocyte-binding

ATG with a high incidence of relapse and low RFS. High pre-HCT AUCs were also associated

with faster engraftment and had no impact on graft-versus-host disease (GVHD) or fatal

infections. High post-HCT AUCs were associated with a low risk of GVHD, seemed

associated with an increased risk of fatal infections, and had no impact on engraftment.

In conclusion, pre-HCT AUC seems to have a positive, whereas post-HCT AUC seems to

have a negative, impact on relapse.

Introduction

The 2 most important problems of allogeneic hematopoietic cell transplantation (HCT) are relapse
of leukemia and graft-versus-host disease (GVHD). GVHD incidence can be minimized by depleting grafts of
T cells or inhibiting T cells after transplantation with small-molecule drugs like cyclosporine. Unfortunately,
this may increase the incidence of relapse,1-9 probably because the ex vivo T-cell depletion or in vivo
T-cell inhibition interferes with graft-versus-leukemia (GVL) effect. Rabbit antithymocyte globulin
(ATG; Thymoglobulin) has been shown in 3 randomized trials to reduce the incidence of GVHD
without increasing the incidence of relapse.10-12 A potential reason for the nonincrease in relapse is
that ATG, despite being expected to impair GVL, has a direct antileukemic effect.13-18

Admiraal et al19 suggested that a high posttransplantation ATG area under the curve (AUC; an index of
ATG exposure) leads to a high incidence of relapse. We hypothesized that a high pretransplantation
AUC would lead to the opposite (a low incidence of relapse), given the direct antileukemic effect of
ATG13,14 and its overall neutral effect on relapse.10-12 Here we evaluated this hypothesis. We also
studied associations between pre- and posttransplantation AUCs and outcomes other than relapse,
because this could shed light on ideal ATG administration timing and dosing.

Submitted 20 December 2018; accepted 24 March 2019. DOI 10.1182/
bloodadvances.2018030247.

The medians and ranges of the ATG levels and AUCs for both pre- and
posttransplantation time points can be found in the supplemental data.
For any other data, please contact Rosy Dabas (rdabas@ucalgary.ca).

The full-text version of this article contains a data supplement.
© 2019 by The American Society of Hematology
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Methods

Patients, transplantation, and outcomes

Between 24 February 2011 and 15 December 2017, 390 patients
underwent first allogeneic HCT for hematologic malignancy in
Calgary, AB, Canada, using our typical myeloablative conditioning,
graft type, and GVHD prophylaxis combination (fludarabine plus
busulfan plus total-body irradiation plus filgrastim-mobilized blood
stem cells plus methotrexate plus cyclosporine).20 Of these, 152
patients agreed to participate in our study, and their sera from the
following time points were available: immediately before starting
graft infusion (pregraft), 30 minutes after finishing graft infusion
(postgraft), day 7, and day 28. Follow-up for all patients was until
31 July 2018. The study was approved by the Health Research
Ethics Board of Alberta, and written consent was obtained. Patient
characteristics are listed in Table 1.

Conditioning was with fludarabine (50 mg/m2 daily from day 26
to 22), busulfan (;3.2 mg/kg daily from day 25 to 22, pharma-
cokinetically [PK] adjusted to target AUC of 15 000 mmol 3
minute),21,22 and total-body irradiation (2 fractions of 2 Gy each on
day 21). For GVHD prophylaxis, patients received ATG (0.5 mg/kg
on day22, 2 mg/kg on day21, and 2 mg/kg on day 0 before graft
infusion), methotrexate (15 mg/m2 on day 11 and 10 mg/m2 on
days 13, 16, and 111), and cyclosporine (from day 21 to 156,
targeting trough plasma levels of 200-400 mg/L and then tapering
until day 184).

Supportive care included ursodiol until 3 months, fluconazole until
1 month, sulfamethoxazole-trimethoprim from engraftment until
6 months, and valacyclovir until 2 years after HCT.23 Cytomeg-
alovirus DNAemia was monitored, and valganciclovir or ganciclovir
was administered preemptively (when cytomegalovirus .25 000
IU/mL plasma).24 Epstein-Barr virus DNAemia was monitored, and
rituximab was administered therapeutically or preemptively (when
Epstein-Barr virus .300 000 IU/mL blood).25,26

aGVHD was graded according to the 1994 consensus criteria,27

and cGVHD was diagnosed and scored according to the National
Institutes of Health criteria.28 Unless otherwise stated, here aGVHD
refers to grade 2 to 4 aGVHD, and cGVHD refers to moder-
ate to severe cGVHD. Significant GVHD refers to grade 2 to 4
aGVHD or moderate to severe cGVHD. Significant GVHD was
treated with corticosteroids with or without other immunosup-
pressive drugs. Relapse was defined using standard criteria
(eg, .5% marrow blasts in the case of acute leukemia). Fatal
infection was defined as autopsy findings consistent with an
infection and detection of the pathogen in an autopsy specimen
or death after a definite infection29 judged to have caused
the death either directly (eg, pneumonia) or indirectly (eg, sepsis
with subsequent adult respiratory distress syndrome). Fatal
infections occurring after significant GVHD, relapse, graft failure
(GF), or second malignancy (except for posttransplantation lympho-
proliferative disorder, nonmelanoma skin cancer, and carcinoma in
situ) were discounted. Chronic GVHD- and relapse-free survival
(cGRFS) was defined as survival free of relapse and moderate to
severe cGVHD. Day of neutrophil engraftment was defined as the
first of 3 consecutive days on which absolute neutrophil count was
at least 0.5 3 109/L. Day of platelet engraftment was defined as
the first of 3 consecutive days on which platelet count was at least
20 3 109/L, with no platelet transfusion in the last 7 days.

Table 1. Patient characteristics

Characteristic N (%)

No. of patients 152

Patient age, y

Median 53

Range 18-71

Patient sex

Male 89

Female 63

Donor age, y

Median 31

Range 16-68

Donor sex

Male 101

Female 51

End of follow-up for all patients, d

Median 708

Range 53-2554

End of follow-up for surviving patients, d

Median 1077

Range 89-2554

Underlying disease

AML 78 (51.6)

ALL 24 (15.6)

Other acute leukemia 2 (1.3)

MDS 14 (9.1)

CML/CMML 7 (4.5)

MF 4 (2.6)

MPN 1 (0.6)

CLL/lymphoma 19 (12.4)

Other hematological malignancy 3 (1.9)

Disease risk*

Good 79 (52.2)

Poor 73 (47.7)

Donor type†

HLA-matched sibling 55 (35.9)

7-8/8 HLA-matched unrelated 97 (63.9)

CMV serostatus, recipient/donor

Positive/negative‡ 20 (13.7)

All other 131 (85.6)

Unknown 1 (0.6)

No. of patients developing relapse 30 (19.7)

No. of patients developing aGVHD, grade

2-4 39 (25.6)

3-4 7 (4.6)

No. of patients developing cGVHD

Moderate to severe 19 (12.5)

aGVHD, acute GVHD; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia;
cGVHD, chronic GVHD; CLL, chronic lymphocytic leukemia; CML, chronic myeloid
leukemia; CMML, chronic myelomonocytic leukemia; CMV, cytomegalovirus; MDS, myelo-
dysplastic syndrome; MF, myelofibrosis; MPN, myeloproliferative neoplasms.
*Good risk was defined as acute leukemia (AML, ALL, biphenotypic) in first remission,

CML in first chronic or accelerated phase, myelodysplasia with ,5% blasts in the marrow,
or aplastic anemia. All other diseases/disease stages were considered poor risk.
†Of the 97 donors, 30 were 7/8 HLA-matched unrelated donors, and 66 were 8/8

matched unrelated donors. This group also contains 1 7/8 HLA-matched related donor.
‡Poor-prognosis group.24
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Measurement of ATG levels

Blood was collected from patients at the following time points: the
end of the last ATG infusion (maximum serum concentration [Cmax]);
immediately pregraft infusion (pregraft); 30 minutes after the end of
graft infusion, by when equilibrium between free serum ATG
and ATG bound to infused cells has probably been established
(postgraft)30; and on days 7 and 28. Serum was separated from
the blood and stored in tightly sealed vials at 280°C until ATG
level determination.

Level (concentration) of functional ATG (capable of binding to an
immune cell subset) was determined using a flow cytometry–based
assay similar to those of Hoegh-Petersen et al31 and Jamani et al,30

improved as described in the supplemental material (supplemental
Figures 1 and 2; supplemental Tables 1 and 2). Levels of the following
ATG fractions (specificities) were determined: capable of binding
to mononuclear cells (MNCs; MNC-binding ATG), capable of binding
to lymphocytes (lymphocyte-binding ATG), capable of binding to
T cells (T cell–binding ATG), capable of binding to CD4 T cells (CD4
T cell–binding ATG), and capable of binding to CD331 cells (CD33
cell–binding ATG). The reason for measuring CD33 cell–binding
ATG was our hypothesis that high pre-HCT AUC of this fraction is
associated with a low incidence of relapse of myeloid malignancies.
The reason for measuring T cell–binding and particularly CD4
T cell–binding ATG was our hypothesis that high post-HCT AUCs
of these fractions are associated with a low incidence of GVHD31

and a high incidence of relapse, because GVHD may be a
surrogate for GVL effect.32 The levels were quantified in units of
equivalence (UE). One UE of an ATG fraction (capable of binding
to a cell subset) is the amount of ATG capable of binding to the
cell subset contained in 1 mg of total ATG.

Levels at the end of the last ATG infusion (Cmax) were estimated,
because the sera were available for only 76 of the 152 patients
(whereas pregraft, postgraft, day-7, and day-28 specimens were
available for all 152 patients). The Cmax for each patient was
extrapolated from the median population log/linear distribution phase
slope of Cmax to graft infusion start time. The median time from Cmax

to graft infusion start was 2.84 hours (range, 0.13-7.48 hours).
The validity of the estimation was assessed using the Spearman
correlation between the estimated Cmax vs the true (observed) Cmax

in the 76 patients. The correlation coefficient (r) was 0.656 for
MNC-binding ATG, 0.553 for lymphocyte-binding ATG, 0.610 for

T cell–binding ATG, 0.650 for CD4 T cell–binding ATG, and 0.566
for CD33 cell–binding ATG (supplemental Figure 3). We considered
r . 0.50 acceptable.

Pre- and post-HCT AUC calculation

Pre- and post-HCT AUCs were calculated by the trapezoidal rule,33

linear up, logarithmic down (given that after initial distribution, ATG
seems to be eliminated by first-order kinetics34-37; supplemental
Figure 4).

Pre-HCT AUC (hereafter pre-AUC) was calculated as the sum of the
corrected area of the triangle from the start of the first ATG infusion to
the end of the third ATG infusion (corrected AUCATG#1start-ATG#3end)
and the area of the trapezoid from the end of the third ATG infusion to
the start of the graft infusion (calculated by the logarithmic trapezoidal
method). Because the triangle from the start of the first ATG infusion
to the end of the third ATG infusion would be a crude estimate of the
AUCATG#1start-ATG#3end (crude AUCATG#1start-ATG#3end), in 10 pa-
tients, we also determined the true AUCATG#1start-ATG#3end, derived
from ATG levels measured before and after each of the 3 ATG
infusions. The goal was to generate a correction factor used for
the calculation of the corrected AUCATG#1start ATG#3end. The true
AUCATG#1start-ATG#3end was calculated as the sum of the areas of the
triangle from the start to the end of the first ATG infusion, the
trapezoid from the end of the first ATG infusion to the start of
the second ATG infusion, the trapezoid from the start to the end of
the second ATG infusion, the trapezoid from the end of the second
ATG infusion to the start of the third ATG infusion, and the trapezoid
from the start to the end of the third ATG infusion. The median ratio of
the true AUCATG#1start-ATG#3end/the crude AUCATG#1start-ATG#3end

(correction factor) was 0.781 for MNC-binding ATG, 0.787
for lymphocyte-binding ATG, 0.780 for T cell–binding ATG, 0.756
for CD4 T cell–binding ATG, and 1.206 for CD33 cell–binding ATG.
The corrected AUCATG#1start-ATG#3end for all 152 patients was
calculated as the crude AUCATG#1start-ATG#3end multiplied by the
correction factor.

Post-HCT AUC (hereafter post-AUC) was calculated as the sum of
the areas of the trapezoids from pregraft to postgraft, from
postgraft to day 7, and from day 7 to day 28 and the area of the
tail (the triangle from day 28 to infinity). For patients with day-28
ATG levels lower than the limit of quantitation, the area of the tail was
arbitrarily 0.

Table 2. Associations between high pre- or post-HCT ATG AUC and outcomes

Outcome

Pre-HCT AUC Post-HCT AUC

MNCs Lymphocytes T cells CD4 T cells CD33 cells* MNCs Lymphocytes T cells CD4 T cells CD33 cells*

Relapse ↓ ↓ ⇡ ⇡ ⇡
aGVHD (grade 2-4) ⇣ ↓↓ ↓↓↓ ↓↓ ↓↓

cGVHD (moderate to severe; NST) ↓ ↓ ↓

OS ⇡ ⇣
RFS ↑ ⇣
cGRFS ⇡ ⇡

Multivariate analysis was performed to determine the significance of the association between high (higher than median) pre- or post-HCT ATG AUC and each outcome. Only significant
associations (P , .05) and trends toward significant associations (P 5 .05 to .15) are shown. ↑ or ↓ denotes that high AUC was associated with high or low risk of the outcome, with
P value from .01 to ,.05, ↑↑ or ↓↓ with P value from .001 to ,.01, ↑↑↑ or ↓↓↓ with P value ,.001, ⇡ or ⇣ with P value from .05 to .15.
NST, needing systemic therapy.
*The association between AUC of ATG capable of binding to CD33 cells and relapse was determined in patients with acute myeloid leukemia/myelodysplastic syndrome/chronic

myeloid leukemia/chronic myelomonocytic leukemia. For other outcomes, the association was determined in all patients (with any malignancy).
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Statistics

The likelihood of binary outcome between patients with high (higher
than median) vs low (lower than or equal to median) ATG levels/
AUCs was analyzed using time-to-event (survival) analysis. Specif-
ically, competing-risk regression (according to Fine and Gray) was
used for the cumulative incidence of relapse, aGVHD, and cGVHD.
Cox regression was used for overall survival (OS), relapse-free
survival (RFS), and cGRFS. Covariates and competing risks used
in these analyses are shown in supplemental Table 3. In case of
Cox regression, the assumption of proportionality was tested using
the visual inspection of log-log survival curves, the visual
inspection of Kaplan-Meier and predicted survival curves, the
Schoenfeld residuals, and time-varying covariates (determining
the time-varying effect of the same covariates as in the base
model). In case of competing-risk regression, the assumption of
proportionality was tested using the time-varying covariates. The
assumption was not violated in any 1 of the presented results.
We used STATA IC software (version 15.1; StataCorp, College
Station, TX).

The analyses of the association between the levels/AUCs of ATG
capable of binding to CD331 cells and relapse were restricted only

to patients with acute myeloid leukemia, myelodysplastic syndrome,
chronic myeloid leukemia, and chronic myelomonocytic leukemia
(ie, myeloid malignancies typically expressing CD33; n 5 99).

Results

ATG levels and AUCs

The median levels of MNC-binding ATG were 15.2 UE/L at the end
of the last ATG infusion (Cmax), 11.3 UE/L pregraft, 9.8 UE/L
postgraft, 1.6 UE/L on day 7, and 0.15 UE/L on day 28 (supplemental
Figure 5). The medians and ranges for the levels and AUCs of all ATG
fractions measured are listed in supplemental Table 4. There was
a correlation between pre- and post-AUC; however, the correla-
tion was weak (r , 0.55; supplemental Table 5). This, together
with the fact that the patients were treated quite uniformly, allowed
us to evaluate whether pre-AUC is associated with different
outcomes than post-AUC.

Relapse

Pre-AUCs of MNC-binding and CD33 cell–binding ATG were
associated with relapse. Patients with high (higher than median)
pre-AUC of MNC-binding ATG had a lower cumulative incidence of

.4

.3

CI
 o

f r
ela

ps
e

.2

.1

0

0 500 1000

Days post-HCT
1500 2000 2500

SHR = 0.300

P=0.010

.4

.3

CI
 o

f r
ela

ps
e

.2

.1

0

0 500 1000

Days post-HCT
1500 2000 2500

SHR=0.436

P=0.032

Above median
Below median

Above median
Below median

AT
G

 c
ap

ab
le

 o
f b

in
di

ng
 to

C
D

33
+
 c

el
ls

AT
G

 c
ap

ab
le

 o
f b

in
di

ng
 to

M
N

C
s

Figure 1. CIR in patients with low (below median) vs high

pre-HCT AUC of ATG capable of binding to CD331 cells

(top) or MNCs (bottom).
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relapse (CIR) than patients with low AUC (subhazard ratio [SHR],
0.436; P 5 .032; analyzed using multivariate analysis in all 152
patients). Likewise, patients with high pre-AUC of CD33 cell–binding
ATG had a lower CIR than patients with low AUC (SHR, 0.300;
P 5 .010; analyzed in 99 patients with acute myeloid leukemia,
myelodysplastic syndrome, chronic myeloid leukemia, or chronic
myelomonocytic leukemia; Table 2; supplemental Table 6; Figure 1).

Post-AUCs of all ATG fractions were not significantly associated
with relapse. However, there was a trend toward higher CIR in
patients with high compared with low post-AUC of ATG capable
of binding to lymphocytes (SHR, 1.957; P 5 .068), T cells (SHR,
1.843; P 5 .108), and CD4 T cells (SHR, 1.879; P 5 .092;
Table 2; supplemental Table 6; Figure 2).

Analogous to the association between high pre-AUC and low CIR,
there were significant associations between high Cmax and pregraft
levels of CD33-cell binding ATG and low CIR (Cmax: SHR, 0.381;
P5 .025; pregraft: SHR, 0.429; P5 .049; supplemental Figure 6).
For MNC-binding ATG, the associations trended in the same
direction but were not significant (Cmax: SHR, 0.617; P 5 .226;
pregraft: SHR, 0.572; P 5 .191; supplemental Table 7).

Analogous to post-AUC, there were no significant associations
between postgraft, day-7, or day-28 levels of any ATG fraction and
relapse. However, there was a trend toward high day-7 or day-28
levels of some ATG fractions and high CIR (supplemental Table 8).

Acute GVHD

High post-AUCs of ATG capable of binding to MNCs, lymphocytes,
T cells, and CD4 T cells were associated with significantly lower
likelihoods of aGVHD (Table 2; supplemental Table 6; Figure 3).

In contrast, there was no significant association between pre-AUC
and aGVHD (Table 2; supplemental Table 6). The trend toward the
association between high MNC-binding ATG and low incidence
of aGVHD (SHR, 0.626; P 5 .148) in Table 2 and supplemental
Table 6 is a result of a correlation between pre-AUC and post-AUC.
The trend disappeared when both pre-AUC and post-AUC were
included as variables in the competing-risk regression (SHR,
0.858; P 5 .651).

There was no significant association of Cmax with aGVHD
(supplemental Table 7). There were significant associations of
pregraft, postgraft, day-7, and day-28 levels with aGVHD (supple-
mental Table 8). Interestingly, in the posttransplantation period,
the association between the levels and aGVHD was stronger for
postgraft and day-7 levels than for day-28 levels (supplemental
Table 8).

The association between high post-AUC and low incidence of
aGVHD may be due to the low ATG levels per se, which could be
improved by a higher pre-HCT dose or an additional post-HCT
dose, or due to rapid post-HCT ATG clearance, which could be a
surrogate of proliferation of alloreactive T cells and might not be
amenable to a change in ATG dosing. To evaluate the latter, we
determined whether there was an association between the relative
drop in ATG levels from postgraft to day 7 (postgraft level divided
by day-7 level) and aGVHD. We chose the first week post-HCT,
because the substantial proliferation of alloreactive T cells in
patients destined to develop GVHD is expected in the first week,
based on animal models of aGVHD.38,39 We evaluated this for
the lymphocyte-binding ATG fraction, because post-AUC of that
fraction was most strongly associated with aGVHD (supplemen-
tal Table 6). A high (higher than median) drop was associ-
ated with a high incidence of aGVHD (SHR, 2.392; P5 .010). To
determine whether the postgraft ATG level and the drop were
associated with aGVHD independent of each other, we included
both as variables in the multivariate competing-risk regression.
High drop was significantly associated with high incidence
of aGVHD (SHR, 2.066; P 5 .040), whereas only a trend was
observed for the association between high postgraft level and
low incidence of grade 2 to 4 aGVHD (SHR, 0.609; P 5 .162).
This suggests that the rapid post-HCT ATG clearance (possibly
due to alloreactive cell proliferation) could be a more important
factor than the postgraft level in the association between high
post-AUC and low aGVHD incidence.

Chronic GVHD

High post-AUC of MNC-binding ATG, lymphocyte-binding ATG,
and CD33 cell–binding ATG was significantly associated with low
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incidence of moderate to severe cGVHD in multivariate analysis
(Table 2; supplemental Table 6; Figure 4). In contrast, there was no
such association for pre-AUC.

As expected, Cmax and pregraft levels mirrored pre-AUC (Table 2;
supplemental Table 7). Postgraft and day-7 levels, but not day-28
levels, mirrored post-AUC (Table 2; supplemental Table 8).

There was no significant association between the relative drop of
MNC-binding ATG from postgraft to day 7 and the incidence of
cGVHD. Analyzing the drop from postgraft to day 28 or from day
7 to day 28 would be meaningless, because day-28 levels were
typically very low (near the quantitation limit). Therefore, the
drop from postgraft to day 28 would virtually equal the postgraft
level, and the drop from day 7 to day 28 would virtually equal the
day-7 level.

Fatal infection

Only 6 patients died as a result of an infection not related to GVHD
or relapse (supplemental Table 9). This number was too small for a
meaningful Fine-Gray multivariate analysis. Instead, we compared
AUCs in patients who did vs did not die as a result of an infection,
using the univariate Mann-Whitney U test. Post-AUC, but not pre-
AUC, was significantly higher in the patients who did vs did not

die as a result of an infection. This applied to MNC-binding ATG,
lymphocyte-binding ATG, T cell–binding ATG, and CD4 T cell–
binding ATG (supplemental Figure 7).

Engraftment

No GF occurred in our cohort. We analyzed correlations between
AUCs and the day of neutrophil or platelet engraftment (supple-
mental Tables 10-12).

For neutrophils, there was an inverse correlation between
pre-AUC and engraftment day (MNC-binding ATG: r 5 20.278;
P 5 .005; lymphocyte-binding ATG: r 5 20.202; P 5 .012).
There was no such correlation for post-AUC (supplemental
Table 10; Figure 5 top).

For platelets, similarly, there was a trend toward an inverse
correlation between pre-AUC of MNC-binding ATG and engraft-
ment day (r 5 20.155; P 5 .055) and a significant inverse
correlation between pre-AUC of lymphocyte-binding ATG
and engraftment day (r 5 20.181; P 5 .025). There was no
such correlation for post-AUC (supplemental Table 10; Figure 5
bottom).

To ensure that the remission status was not a confounding
factor, we performed a separate analysis of the pre-/post-AUC
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and engraftment correlation, restricted to patients with good-risk
disease (acute leukemia in complete remission or myelodyspla-
sia with ,5% blasts). For neutrophils, the results were similar to
those in the whole cohort (ie, a significant inverse correlation
between pre-AUC, but not post-AUC, and engraftment day; pre-
AUC of MNC-binding ATG: r520.267; P5 .017; supplemental
Table 11). For platelets, there was no significant correlation
between pre- or post-AUC and engraftment day (supplemental
Table 11).

Furthermore, to ensure that the day 22 MNC count was not a
confounding factor, we performed a separate analysis of the
pre-/post-AUC and engraftment correlation, restricted to patients
with 0 or near-0 day 22 MNC counts (#0.2 per mL). Similar
to the whole cohort, there was significant inverse correlation between

pre-AUC, but not post-AUC, and neutrophil engraftment (pre-
AUC of MNC-binding ATG: r 5 20.287; P , .001; supple-
mental Table 12). For platelets, there was no significant correlation
between pre- or post-AUC and engraftment day (supplemental
Table 12).

In summary, the association between high pre-AUC and faster
engraftment is true for neutrophils, whereas further evaluation is
needed for platelets.

OS, RFS, and cGRFS

High pre-AUC of MNC-binding ATG was significantly associated
with high RFS (HR, 2.229; P 5 .011; Table 2; supplemental
Table 6; Figure 6). A similar trend existed for OS and cGRFS
(Table 2; supplemental Table 6; Figure 6).

For post-AUC, there was no significant association with OS, RFS,
or cGRFS. There was a trend toward an association between high
post-AUC of CD4 T cell–binding ATG and low OS as well as low
RFS (Table 2). There was also a trend toward an association
between high post-AUC of CD33 cell–binding ATG and high
cGRFS (Table 2).

As expected, Cmax and pre-graft levels mirrored pre-AUC (Table 2;
supplemental Table 7), and day-7 and day-28 levels mirrored post-
AUC (Table 2; supplemental Table 8). Notably, there was an
association between high Cmax of MNC-binding ATG and high RFS.
In contrast, there was the trend toward an association between high
day-7 or day-28 level of MNC-binding ATG or CD4 T cell–binding
ATG and low RFS (supplemental Table 8).

A caveat to these analyses of the association between ATG AUCs/
levels and relapse, GVHD, OS, RFS, or cGRFS is the assumption
that the higher/lower the AUC/level, the higher/lower the likelihood
of the outcome. This would be invalid for outcomes that are
more (or less) likely to occur when the AUC/level is high or low
compared with intermediate. To determine whether such a relation
applies to any of our AUC-outcome combinations, we split patients
into quintiles according to pre-AUC and post-AUC. For each
AUC-outcome combination, we determined whether quintile 1
was significantly different from quintile 2, 3, or 4 and whether
quintile 5 was significantly different from quintile 2, 3, or 4. If
quintile 2, 3, or 4 was significantly different from both quintiles 1
and 5, we concluded that the assumption that the higher/
lower the AUC, the higher/lower the likelihood of the out-
come is invalid. This was the case only for the AUC-outcome
combination of post-AUC of CD33 cell–binding ATG and
aGVHD (supplemental Figures 8-12). Therefore, we conclude
that the caveat probably applies only to this 1 AUC-outcome
combination.

It is known that the levels/AUCs of lymphocyte-binding ATG or
Jurkat T cell–binding ATG are strongly influenced by the absolute
lymphocyte count (ALC) before the first ATG infusion.30,40,41

Consistent with this, we observed a significant correlation
between day 22 ALC and both pre-AUC and post-AUC
of lymphocyte-binding ATG (supplemental Table 13). Analo-
gously, there was also a significant correlation between day 22
absolute MNC count and both pre-AUC and post-AUC of
MNC-binding ATG. There was no significant association be-
tween day-28 ALC or absolute MNC count and the respective
pre-AUC or post-AUC (supplemental Table 13).
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Discussion

We investigated the differential effect of pre- vs post-AUC on
relapse. On the basis of the multivariate analysis results, we
propose that higher pre-AUC had a positive effect on CIR and
RFS and possibly OS. The opposite seemed to apply to post-
AUC (ie, high post-AUC had a negative effect on CIR, RFS, and
OS). The opposite effect of pre- vs post-AUC could be the
reason why randomized trials have reported a neutral effect of
ATG on relapse.10-12 The association between high pre-AUC and
low CIR suggests that the direct antileukemic effect of ATG
described in vitro13,14 is operational in vivo. In contrast, after HCT,
the direct antileukemic effect may be overshadowed by ATG
inhibiting GVL effect. We propose this because of the trend toward
the association between high post-AUC and high CIR and the
strong association between high post-AUC and low incidence of
GVHD, which may be a surrogate for GVL effect.5,42,43

The differential effect of pre- vs post-AUC on outcomes was
evaluated to our knowledge in only 2 published studies, by Admiraal
et al44 and Jamani et al.30 Regarding relapse, no association with
pre-AUC was found. This is likely due to differences in the ATG
fractions measured. Admiraal et al measured Jurkat T cell–binding
ATG, and Jamani et al measured lymphocyte-binding ATG. In our
study, the low CIR was associated with pre-AUC of MNC-binding
ATG and CD33 cell–binding ATG, but not lymphocyte-binding

ATG. The latter is consistent with the studies by both Admiraal et al
and Jamani et al. Regarding our finding of the trend toward the
association between high post-AUC of lymphocyte-binding ATG
and high CIR, similar trends appeared in both Admiraal et al and
Jamani et al studies. In the Admiraal et al study, the evidence was
indirect. High post-AUC was associated with poor CD4 T cell
reconstitution, which was associated with high relapse-related
mortality. It is reassuring that another study, which focused only on
post-AUC,19 also found a significant association between high
post-AUC and high relapse-related mortality.

GVHD in the Admiraal et al44 study of the differential effect of pre-
vs post-AUC was associated with both pre- and post-AUC in
univariate analysis. However, in multivariate analysis, GVHD was
associated only with pre-AUC.44 The reason for the discrepancy
between this and our finding is unclear. However, there are multiple
differences between the studies that could play a role (eg, pediatric
vs adult patients, patients with mostly nonmalignant vs malignant
diseases, marrow or cord blood grafts vs blood stem cells, early
[starting on day29 or25] vs late [starting on day22] administration
of ATG, measurement of ATG levels capable of binding to Jurkat
T cells vs MNCs/MNC subsets, or calculation of AUCs based on a
population PK model vs trapezoidal rule in the Admiraal et al study vs
our study, respectively). The findings of Jamani et al30 on GVHDwere
more similar to those of our study, because high post-AUC in the
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Jamani et al study was significantly associated with low incidence
of aGVHD, whereas there was only a trend toward an association
between the low incidence of aGVHD and high pre-AUC.

Our observation of post-AUC (and not pre-AUC) being higher in
patients who died as a result of an infection is consistent with the
Admiraal et al44 study, which showed that high post-AUC (and not
pre-AUC) was associated with poor CD4 T-cell reconstitution,
which was associated with high nonrelapse mortality mostly result-
ing from infections. It is also consistent with the Jamani et al30 study,
which showed that non–GVHD-associated nonrelapse mortality
(presumably because of infections) was associated with high post-
AUC (and not pre-AUC).

Inconsistent data exist in the literature on the effect of ATG on
engraftment. The Admiraal et al44 study showed an association
between high pre-AUC (and not post-AUC) of ATG and low
incidence of GF. In contrast, the randomized study by Soiffer et al45

of rabbit anti-Jurkat T-cell globulin (Grafalon) vs placebo in adult

recipients of blood stem cells showed that the study drug was
associated with a higher incidence of GF. In 2 of 3 randomized
studies of ATG and 4 of 4 randomized studies of rabbit anti-Jurkat
T-cell globulin vs no or low-dose ATG, delayed engraftment of
neutrophils and/or platelets was noted, with no impact on GF,
except in the Soiffer et al study.11,45-49 Per our study, high pre-AUC
seems to accelerate engraftment, particularly neutrophil engraft-
ment, whereas post-AUC seems to have no impact on engraftment.

Whether the ATG level at a certain time point vs the AUC containing
that time point is more strongly associated with an outcome is a
matter of debate. The data generated in this study favor AUC, but
they are inconclusive (Table 2; supplemental Tables 7 and 8). For
example, pre-AUC showed a stronger association with relapse than
Cmax, both for MNC-binding ATG (SHR, 0.436 vs 0.617; P5 .032 vs
.226) and CD33 cell–binding ATG (SHR, 0.300 vs 0.381; P5 .010
vs .025). As another example, post-AUC of lymphocyte-binding ATG
or T cell–binding ATG showed a stronger association with grade 2 to
4 aGVHD than day-7 levels (lymphocyte-binding ATG: SHR, 0.275 vs
0.287; P, .001 vs .001; T cell–binding ATG: SHR, 0.316 vs 0.337;
P 5 .001 vs .002). In contrast, post-AUC of MNC-binding ATG,
CD4 T cell–binding ATG, or CD33 cell–binding ATG showed a
weaker association with grade 2 to 4 aGVHD than day-7 level (MNC-
binding ATG: SHR, 0.391 vs 0.308; P 5 .007 vs .001; CD4
T cell–binding ATG: SHR, 0.366 vs 0.344; P5 .004 vs .003; CD33
cell–binding ATG: SHR, 0.766 vs 0.424; P 5 .408 vs .013).

Our study has limitations. (1) Because of the unavailability of serum
specimens for all 152 patients from the end of ATG infusion (Cmax),
we estimated the ATG levels from the median population log/linear
distribution phase slope of Cmax to graft infusion time, assum-
ing a completed distribution, which was an unknown. Although
we demonstrated that the estimation was reasonably accurate
(supplemental Figure 3), this could bring an element of inaccuracy.
(2) The AUCs were calculated using the trapezoidal rule, because
serum for ATG level determination was collected at only 4 or 5 time
points, which precluded building a compartmental population PK
model. (3) The low incidence of fatal infections (only 6 patients died
as a result of an infection) did not allow for multivariate analysis
for the association between pre-/post-AUC and fatal infections.
Likewise, only 7 patients developed grade 3 to 4 aGVHD. This did
not allow for multivariate analysis for the association between pre-/
post-AUC and grade 3 to 4 aGVHD.

Barring these limitations, our study suggests that high pre-AUC has
only beneficial effects (antirelapse and proengraftment), whereas
high post-AUC has both beneficial (anti-GVHD) and deleterious
effects (prorelapse and proinfection; Figure 7).

This suggests that CIR could be further improved without negatively
affecting GVHD, engraftment, or posttransplantation infections
through administration of high-dose ATG early in conditioning. The
goal would be to achieve a higher-than-conventional pre-AUC and a
similar-to-conventional post-AUC. To reach this goal, knowledge
of factors influencing ATG PKs, partly elucidated by the Utrecht
group,41,44 needs to be further refined (eg, expanded to ATG
fractions other than Jurkat T cell–binding ATG or to HCT settings
[eg, conditioning-graft-GVHD prophylaxis combinations] other
than those studied by the Utrecht group). Given the high
interindividual variability in ATG PKs, individualized and/or PK-
adjusted dosing may be needed. If the goal of achieving an ideal
high (higher-than-conventional) pre-AUC and ideal (possibly
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similar-to-conventional) post-AUC is reached, it should lead to
improved RFS and could lead to improved OS. This should be
studied in a clinical trial.
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