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Key Points

•Machine-learning ap-
proaches identified a
parsimonious gene-
expression signature
that predicts risk in
newly diagnosed AML.

• The 3-gene PI could
be used to refine the
accuracy of patient
stratification and
outcome prediction in
routine clinical practice.

Acute myeloid leukemia (AML) is a genetically heterogeneous hematological malignancy

with variable responses to chemotherapy. Although recurring cytogenetic abnormalities

and genemutations are important predictors of outcome, 50% to 70%ofAMLsharbornormal

or risk-indeterminate karyotypes. Therefore, identifying more effective biomarkers

predictive of treatment success and failure is essential for informing tailored therapeutic

decisions.We applied an artificial neural network (ANN)–based machine learning approach

to a publicly available data set for a discovery cohort of 593 adults with nonpromyelocytic

AML. ANN analysis identified a parsimonious 3-gene expression signature comprising

CALCRL, CD109, and LSP1, which was predictive of event-free survival (EFS) and overall

survival (OS). We computed a prognostic index (PI) using normalized gene-expression levels

and b-values from subsequently created Cox proportional hazards models, coupled with

clinically established prognosticators. Our 3-gene PI separated the adult patients in each

European LeukemiaNet cytogenetic risk category into subgroups with different survival

probabilities and identified patients with very high–risk features, such as those with a high

PI and either FLT3 internal tandem duplication or nonmutated nucleophosmin 1. The PI

remained significantly associated with poor EFS and OS after adjusting for established

prognosticators, and its ability to stratify survival was validated in 3 independent adult

cohorts (n5 905 subjects) and 1 cohort of childhood AML (n5 145 subjects). Further in silico

analyses established that AML was the only tumor type among 39 distinct malignancies for

which the concomitant upregulation of CALCRL, CD109, and LSP1 predicted survival.

Therefore, our ANN-derived 3-gene signature refines the accuracy of patient stratification

and the potential to significantly improve outcome prediction.

Introduction

Acute myeloid leukemia (AML) is characterized by bone marrow (BM) and tissue infiltration by
proliferative clonal abnormally differentiated cells of hematopoietic origin.1 Prognosis is largely
determined by cytogenetic abnormalities and AML-specific molecular lesions.2 Although AML can
be cured in 35% to 40% of adult patients aged,60 years with multiagent chemotherapy and often
hematopoietic stem cell transplantation (HSCT), chemorefractory disease is common, and relapse
represents a major cause of treatment failure.3 Investigation of new molecularly targeted agents for
children and adults with high-risk AML remains a high priority.4,5
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Genomic data are being translated into precision medicine-based
therapeutic approaches for categorizing and treating patients with
AML and are driving a deeper evaluation of new therapies targeting
specific genetic lesions.6-8 Several studies have used unsupervised
clustering algorithms to risk stratify patients with AML and to identify
subgroups of AML with different prognoses.9-12 For example, a
gene-expression profile associated with Wilms tumor-1 (WT1) expres-
sion has been shown to predict adverse prognosis.13 In this
study, antigen presentation by MHC class II was identified as the
most relevant biological pathway that was downregulated in the
WT1high set of AMLs. A 66-gene prognostic score developed
using an unbiased approach has been shown to correlate with
event-free survival (EFS), relapse-free survival (RFS), and overall
survival (OS) and to provide additional prognostic information
after adjusting for molecular features, such as FLT3 internal
tandem duplication (ITD) status and nucleophosmin 1 (NPM1)
mutation status, in 2 independent cohorts of patients with
cytogenetically normal (CN) AML.14 Finally, a 17-gene leukemia
stem cell (LSC17) score predicted poor OS and EFS and was
independent of known prognosticators, such as patient age,
presenting white blood cell (WBC) count, cytogenetic risk group,
type of AML (de novo vs secondary), and the presence of FLT3
ITD and NPM1 mutations.15

Machine learning–based data-mining strategies are increasingly
being used for the in silico identification of diagnostic markers
and molecular drivers of disease.16 These approaches encom-
pass the nonlinearity and fluidity of biological systems, the interaction
of molecular entities in pathways, and the need for consistency
across multiple data sets. Herein, we used a well-established artificial
neural network (ANN), a form of machine learning capable of
accurately modeling biological systems,17 for the identification of
predictive and prognostic biomarkers across multiple transcriptomic
platforms and AML data sets. We then computed a 3-gene
prognostic index (PI) that accurately stratified survival and could
be used to generate predictions that are personally tailored to the
individual patient and are beyond the current capabilities of single
molecular markers.

Materials and methods

Data sources

The first data series (E-MTAB-3444), hereafter referred to as
“discovery series,” was retrieved from Array Express and encom-
passed 3 independent cohorts of adults (#60 years with de novo
AML, consisting of 277, 256, and 129 cases; N 5 662). Clinical
and pathological characteristics for 641 cases were kindly provided
by Peter J. M. Valk (Department of Hematology, Erasmus Univer-
sity Medical Centre, Rotterdam, The Netherlands). BM and blood
samples were collected at diagnosis and were analyzed on an
Affymetrix Human Genome U133 Plus 2.0 Array.9,18 Patients
were treated with curative intent, according to Dutch-Belgian
Hematology-Oncology Cooperative Group and the Swiss Group
for Clinical Cancer Research (HOVON/SAKK) AML-04, AML-04A,
AML-29, AML-32, AML-42, AML-42A, AML-43, or AML-92 proto-
col (available at http://www.hovon.nl; Tables 1-3).

The second data series, hereafter referred to as “the German series,”
was retrieved from the National Center for Biotechnology Infor-
mation Gene Expression Omnibus and consisted of adult patients
with newly diagnosed AML (n 5 562; GSE37642) who were

enrolled and treated in the German AML Cooperative Group
1999 trial.14 Samples were characterized on an Affymetrix Human
Genome U133 Plus 2.0 Array.

The third data series, hereafter referred to as “The Cancer Genome
Atlas (TCGA) series,” consisted of RNA-sequencing data (Illumina
HiSeq 2000) from 128 adults with nonpromyelocytic AML with
complete cytogenetic, immunophenotypic, and clinical annotation
who were enrolled in Cancer and Leukemia Group B treatment
protocols 8525, 8923, 9621, 9720, 10201, and 19808. This series
included patients with survival and immunophenotypic data.19

RNA and clinical data were retrieved from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/tcgadownload.jsp).

The fourth data series, hereafter referred to as the “Therapeutically
Applicable Research to Generate Effective Treatments (TARGET)
AML series,” consisted of RNA-sequencing data (Illumina HiSeq
2000) from 145 children, adolescents, and young adults with de
novo AML enrolled into biology studies and clinical trials CCG-
2961, AAML03P1, or AAML0531 managed through the Children’s
Oncology Group.20,21 RNA expression, cytogenetic, and clinical
data were retrieved from the Office of Cancer Genomics’ portal
(https://ocg.cancer.gov/programs/target/data-matrix).

The fifth data series (Beat AML) was retrieved using the Vizome
user interface (http://www.vizome.org/aml/) and consisted of RNA-
sequencing data from primary specimens from 242 AML patients
with detailed clinical annotations, including diagnostic information,
treatments, responses, and outcomes.22

ANN analysis and derivation of a PI

To identify predictors of patient outcomes, our clinical-class
question, we applied an ANN modeling–based data-mining
approach, as previously described.16,23 Briefly, we used a supervised
learning approach (for which patient outcomes were the predicted
parameters) with multilayer perceptron architecture with a sigmoidal
transfer function, in which weights are updated by a back-propagation
algorithm.23 ANNs first assess the prognostic potential of each gene
transcript individually in a univariate procedure, and then by adding
additional genes in a sequential multivariate stepwise manner to
improve upon the classification accuracy.23 In contrast to conven-
tional statistical approaches, such as hierarchical clustering, principal
component analysis, or linear regression, ANNs are not limited by
linear functionality, thus providing an improved representation of
biological features.16,17

For the discovery of gene probes associated with patient survival,
transcriptomic array data (n 5 54 675 probe IDs) were used as
an input, and length of patient survival (,20 months [code 0]
or .20 months [code 1]) was chosen as an output, based on
the inflection point in the gradient of the Kaplan-Meier curve
(supplemental Figure 1A-B). We then evaluated the ability of the
top-10 ranked probes to predict survival in univariate analysis.
The potential prognostic impact of each gene identified by the
10 probe IDs ranked by P values (supplemental Table 1) was
initially verified using an on-line resource linking TCGA survival
data to messenger RNA (mRNA) expression levels, which were
dichotomized based on the median value (http://www.oncolnc.org/).
Only genes that separated the patients into groups with
statistically significant differences in survival probabilities (calci-
tonin receptor-like receptor [CALCRL], log-rank P 51.24 3 1024;
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lymphocyte-specific protein 1 [LSP1], log-rank P 5 4.99 3 1025;
and CD109, log-rank P 5 1.86 3 1022) were taken forward for
all subsequent analyses. When combined, CALCRL, LSP1, and
CD109 exerted the most significant effect on survival. We then

generated a PI using b values from Cox regression analyses of
CALCRL, LSP1, and CD109 gene expression (normalized to a
score between 0 and 1) and patient survival according to a
previously published formula16:

Table 1. AML patient series with biological and clinical characteristics

Patient series

HOVON German TCGA TARGET Beat AML

Patients, n 593 535 128 145 242

Males/females, n 306/287 N.A. 70/58 74/71 109/133

Median follow-up, y 8.34 8.61 3.25 6.78 1.27

Age group, n

0-14 y 0 0 0 114 10

15-39 y 188 93 25 31 36

40-59 y 327 185 41 0 64

$60 y 78 257 60 0 132

N.A. 0 0 2 0 0

WHO category

AML with minimal differentiation/without maturation 161 N.A. 41 N.A. 6

AML with t(8;21)(q22;q22) 46 N.A. 7 21 9

AML with inv(16)(p13;q22) 49 N.A. 9 28 17

AML with biallelic mutations of CEBPA 28 N.A. N.A. 7 17

AML with mutated NPM1 183 N.A. N.A. 5 64

AML with t(9;11)(p22;q23) 21 N.A. 7 36 8

AML with inv(3)(q21q26)/t(3;3)(q21;q26) 15 N.A. N.A. 0 4

Acute myelomonocytic leukemia 112 N.A. 18 N.A. 13

Acute monoblastic/monocytic leukemia 139 N.A. 13 N.A. 11

Pure erythroid leukemia 9 N.A. N.A. N.A. 1

AML with myelodysplasia-related changes N.A. N.A. N.A. N.A. 45

AML, not otherwise specified N.A. N.A. N.A. N.A. 27

Median presenting WBC count (range), 3109/L N.A. N.A. 15 (1-224) 45.3 (1.3-519) 24.2 (0.5-427)

Median percentage of BM blasts (range) 73 (0-98) N.A. 72 (30-100) 73 (14-100) 71 (1-98)

ELN cytogenetic risk group, n (%)

Favorable 201 (34) N.A. 18 (14) 60 (41) 73 (30)

Intermediate 263 (44) 223 76 (59) 69 (48) 80 (33)

Adverse 126 (21) N.A. 32 (25) 8 (5.5) 89 (37)

N.A. 3 (1) 0 2 (2) 8 (5.5) 0

HSCT, n

Autologous 95 N.A. 4 N.A. 0

Allogeneic 181 N.A. 55 N.A. 75

WHO performance status, n

0 254 N.A. N.A. N.A. N.A.

1 270

2 53

3 12

4 0

N.A. 4

Gene-expression platform Affymetrix Human Genome
U133 Plus 2.0 Array

Affymetrix Human Genome
U133 Plus 2.0, U133A/B Array

RNA sequencing RNA sequencing RNA sequencing

N.A., not available; TARGET, Therapeutically Applicable Research to Generate Effective Treatments; TCGA, The Cancer Genome Atlas; WHO, World Health Organization.
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PI ¼ ð1:7343CALCRLÞ1 ð1:0923 LSP1Þ1 ð0:8263CD109Þ

Finally, we divided the PI values into 3 groups that provided the
optimal (lowest) OS log-rank P value. PI scores, 1 were defined as
low, PI scores between 1 and 1.5 were defined as intermediate, and
PI scores . 1.5 were defined as high.

We used X-tile, a software package developed at Yale School of
Medicine, for the identification of the optimal PI cut-point parsing
the patient populations in the validation data sets into subgroups
with statistically significant differences in survival probabilities
across gene-expression platforms (https://medicine.yale.edu/lab/
rimm/research/software.aspx).24

Real-time polymerase chain reaction and

western blotting

The evaluation of mRNA and protein expression in leukemia cell
lines and primary patient samples was carried out as detailed in

supplemental Materials and methods. Patients provided written
informed consent. The investigations were conducted in accor-
dance with the Declaration of Helsinki and were approved by
the Institutional Review Board of Studien-Allianz Leukämie (SAL;
Germany).

Statistical analyses

Gene-expression values were normalized using the min-max
approach. For genes with multiple probe sets (transcripts),
the average expression value for a given gene was used in all
analyses. The relationship of our 3-gene signature to standard
prognostic variables was assessed in compliance with the Reporting
Recommendations for Tumor Marker Prognostic Studies criteria.25,26

In particular, hazard ratios with CIs and survival probabilities were
computed for all variables analyzed in the model. Kaplan-Meier plots
were used to assess the effect of our signature genes on time-to-
event outcomes. We also calculated the estimated effects with CIs
from multivariate analyses in which the markers and standard
prognostic variables were included, regardless of their statistical
significance in univariate analyses. OS was computed from the
date of diagnosis to the date of death. EFS was measured from the
date of diagnosis to the date of failure to achieve complete
remission (CR), relapse, or death. RFS was measured from the
date of CR to the date of relapse or death. Subjects lost to
follow-up were censored at their date of last known contact. The
log-rank (Mantel-Cox) test was used to compare survival distribu-
tions. A 2-tailed P , .05 was considered to reflect statistically
significant differences.

Binary logistic regression and multinomial logistic regression
were used to ascertain the relative contribution of the 3-gene PI
and other independent predictor variables selected a priori based

Table 2. Predictive ability of the 3-gene PI in univariate and

multivariate Cox regression analyses (AML discovery series)

Variable HR (95% CI) P b coefficient

Univariate Cox proportional hazard (OS)

t(8;21)(q22;q22) 0.440 (0.277-0.699) .001 20.821

inv(16)(p13q22) 0.417 (0.262-0.662) .000 20.875

KMT2A rearrangement (11q23) 1.317 (0.912-1.900) .142 0.275

t(9;11)(p22;q23) 0.963 (0.554-1.674) .894 20.038

inv(3)(q21q26)/t(3;3)(q21;q26) 3.200 (1.899-5.392) .000 1.163

NPM1 mutation 0.811 (0.650-1.012) .063 20.210

FLT3 ITD 1.561 (1.264-1.930) .000 0.446

CEBPA biallelic mutations 0.437 (0.246- 0.777) .005 20.828

Age 1.017 (1.009-1.025) .000 0.017

Cytogenetic risk group (ELN) 1.678 (1.481-1.902) .000 0.518

PI 2.718 (2.205-3.351) .000 1.000

WHO performance status 1.004 (0.936-1.077) .903 0.004

Multivariate Cox proportional hazard (OS)

t(8;21)(q22;q22) 0.545 (0.262-1.131) .103 20.607

inv(16)(p13q22) 0.334 (0.161-0.695) .003 21.095

KMT2A rearrangement (11q23) 2.342 (1.171-4.680) .016 0.851

t(9;11)(p22;q23) 0.695 (0.337-1.435) .325 20.364

inv(3)(q21q26)/t(3;3)(q21;q26) 2.256 (1.138-4.471) .020 0.813

NPM1 mutation 0.508 (0.282-0.912) .023 20.678

FLT3 ITD 1.893 (1.078-3.324) .026 0.638

CEBPA biallelic mutations 0.374 (0.177-0.790) .010 20.984

Age 1.014 (1.006-1.023) .000 0.014

ELN cytogenetic risk group 0.790 (0.467-1.335) .379 20.236

PI 2.002 (1.542-2.601) .000 0.694

WHO performance status 1.041 (0.969-1.119) .270 0.041

The following categorical and continuous variables were evaluated in univariate Cox
proportional hazard models for outcome: age, cytogenetic risk group (1 5 favorable,
2 5 intermediate, 3 5 adverse), prognostic chromosomal abnormalities and molecular
lesions, performance status, and PI. HRs . 1 or HRs , 1 indicate, respectively, higher
or lower risk of event for higher values of continuous variables and for first category
listed for categorical variables in OS models. Bold type denotes statistically significant
P values.
CI, confidence interval; ELN, European LeukemiaNet; HR, hazard ratio.

Table 3. Biological and clinical characteristics of patients with CN

AML in the German AML series (GSE12417)

CN-AML series

Patients, n 223

Males/females, n N.A.

Median follow-up, y 8.84

Age group, n

0-14 y 0

15-39 y 46

40-59 y 79

$60 y 98

Median presenting leukocyte count, 3109/L N.A.

ELN cytogenetic risk group, n

Favorable 0

Intermediate 223

Adverse 0

N.A. 0

PI group, n

Low (#1.0) 63

Intermediate (1.0 , PI , 1.5) 92

High ($1.5) 68

Gene-expression platform Affymetrix Human Genome
U133 Plus 2.0, U133A/B Array
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on known clinical relevance, such as the European LeukemiaNet
(ELN) risk group and patient age at diagnosis, toward the predicted
likelihood of response to induction chemotherapy, AML relapse, and
patient death (dependent variables). IBM SPSS Statistics (version 24)
and GraphPad Prism (version 7) were used for statistical analyses.

Results

ANNs identify powerful predictors of survival in

nonpromyelocytic AML

We initially applied our ANN approach to the identification of
genes associated with prolonged patient survival in the HOVON
discovery series (593 cases).9CALCRL, LSP1, andCD109 showed
the strongest association with our clinical-class question based on
b-coefficients, and their expression levels (dichotomized as,median
or .median) could individually stratify patients with longer
and shorter OS (Figure 1A-D). The interindividual variation of

gene-expression levels in the 5 independent cohorts assessed in
our study is shown in Figure 1E, and the distribution of PI groups
is summarized in Figure 2A. Transcript levels for CD109, a
glycosylphosphatidylinositol-linked surface antigen expressed by
CD341 AML cell lines,27 were significantly and positively correlated
with leukemic burden (R2 5 0.25; P , .0001). Adult patients in
the PIhigh group predominantly had AML with minimal differentiation
or without maturation (Figure 2B). The underlying genomic features
of this patient subgroup are shown in supplemental Figure 1C.

Prognostic interactions among the ANN 3-gene PI,

common cytogenetic alterations, and clinical factors

A high PI was significantly associated with adverse cytogenetic
features and with more advanced age at presentation (Figure 2C-D),
but not with patient sex (supplemental Figure 1D) and whether
patients received autologous or allogeneic HSCT (Figure 2E).
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Figure 1. CALCRL, LSP1 and CD109 expression levels (median split) stratify survival in adult patients with AML (discovery series). (A-C) Kaplan-Meier

estimates of EFS and OS. Survival curves were compared using a log-rank (Mantel-Cox) test. (D) Median PI values within each 0.5 PI value range plotted against

probability of survival to time point X, with plot of best-fit by second-order polynomial function. (E) CALCRL, LSP1, and CD109 gene expression levels (raw data)

in patients with AML.
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As shown in Figure 2F, AML patients with adverse cytogenetic features
had a shorter EFS and OS compared with patients with intermediate
and favorable cytogenetic risk, thus confirming the overall trends of
well-established ELN risk groups.28 Importantly, the 3-gene PI alone
separated the patients into 3 distinct risk groups, with significant
differences in EFS and OS (Figure 2G). In particular, the median OS
of PIlow, PIint, and PIhigh patients was undefined, 1.49 years, and
0.74 years, respectively (P , .0001). Using the area under receiver
operator characteristic (AUC) curve, we demonstrate that the 3-gene
PI allows the prediction of death at prespecified time points with good
accuracy (Figure 3A). When tested in a multinomial logistic regression
model incorporating patient age and ELN cytogenetic risk, the 3-gene
PI significantly and independently predicted whether patients experi-
enced relapse and whether they responded to induction chemother-
apy. In contrast, the 3-gene PI was unable to assist in the prediction of
nonleukemic deaths (supplemental Table 2). Our 3-gene PI displayed
similar prognostic power when tested against the LSC17 score
derived from phenotypically defined leukemia stem cell populations
(with LSC17: AUC, 0.72 vs 0.69), but it showed stronger prognostic
power when tested against the 66-gene expression score derived from
bulk mononuclear cells from BM or peripheral blood (with PI: AUC,
0.69 vs 0.61) (supplemental Figure 2).14,15

We next determined whether the 3-gene PI could further stratify
patients classified into the ELN favorable, intermediate, or adverse-
risk group. When the core-binding factor (CBF) AMLs were
considered, 13 of 49 (27%) patients with inv(16) AML were
classified as PIlow, with the remaining patients being PIint (n5 31) or
PIhigh (n 5 5). Furthermore, 42 of 46 (91%) patients with AML with
RUNX1-RUNXT1 fusions from t(8;21) were classified as PIlow,
whereas the remaining 4 patients were PIint. The altered risk
imparted by the PI category could not be accounted for by FLT3 ITD
status or by recurrent mutations in NRAS, KRAS, KIT, IDH1, IDH2,
ASXL1, and DNMT3A (supplemental Figure 3). As shown in
Figure 3B, a subset of patients belonging to the ELN favorable-risk
stratum and classified as PIhigh (n 5 17) showed a significantly
shorter OS (.30-percentage point decrease) compared with the
remaining ELN favorable-risk patients classified as PIint (n5 95) and
PIlow (n5 89; P5 .0003). Similarly, patients with ELN intermediate
cytogenetic risk classified as PIlow (n 5 33) had longer OS compared
with the remaining ELN intermediate-risk patients belonging to the PIint

(n 5 127) and PIhigh groups (n 5 103; P 5 .0065; Figure 3B). An
intermediate or high PI also dichotomized survival in patients with ELN
adverse cytogenetic risk. EFS and OS were particularly dismal in a
subgroup of PIhigh patients (n5 56) within the adverse ELN stratum
(2% and 7%, respectively; Figure 3B).

We then sought to investigate whether the 3-gene PI provides
additional prognostic value to established molecular lesions. Among
29 patients withCEBPA double mutations, 17 patients were classified
as PIlow (59%), whereas the remaining patients were PIint (n 5 11) or
PIhigh (n 5 1). Again, FLT3 ITD status and recurrent mutations in
NRAS, KRAS, KIT, IDH1, IDH2, ASXL1, and DNMT3A could not

explain differences in risk associated with the 3 PI categories
(supplemental Figure 4).

A high or intermediate PI identified a subgroup of NPM1-mutated
FLT3 wild-type patients (otherwise classified as having low-risk
disease29) with less favorable clinical outcomes compared with
PIlow NPM1-mutated patients (20% and 31% EFS in PIhigh and
PIint patients vs 49% EFS in PIlow patients [P 5 .0027] and 22%
and 35% OS in PIhigh and PIint patients vs 62% in PIlow patients
[P , .0001]; Figure 4A). Patients with wild-type NPM1 also had
significantly different survival probabilities based on the PI category.
Patients with FLT3 ITD and a high or an intermediate PI had sig-
nificantly shorter EFS and OS compared with patients with a low PI
(EFS: 9% and 21% vs 41%, respectively [P 5 .0002]; OS: 13%
and 25% vs 47%, respectively [P5 .001]; Figure 4B). Similarly, the
PI stratified patients with wild-type FLT3 into subgroups with signifi-
cantly different clinical outcomes. Finally, KMT2A rearrangement
correlates with monocytic or myelomonocytic phenotypes and is
an established adverse prognosticator in some studies.28,30 Although
the number of patients with KMT2A rearrangements in the HOVON
cohort was low (n 5 46), those classified as PIint or PIhigh had a
trend toward shorter EFS and OS (Figure 4C).

In a multivariable Cox regression model, the PI remained a powerful
predictor of patient outcome after controlling for common clinical
covariates, and it outperformed risk classification based upon advanced
patient age, ELN risk group, and clinically validated molecular lesions.
Importantly, a high PI was associated with shorter OS, irrespective of
whether patients received chemotherapy alone (0.71 years vs
0.99 years and 11.0 years in PIint and PIlow patients, respectively;
P, .0001; Figure 4D) or chemotherapy followed by HSCT (1.67 years
vs 2.8 years and undefined in PIint and PIlow patients, respectively;
P 5 .0006; Figure 4E). As shown in supplemental Figure 5, allogeneic
HSCT had no significant impact on OS for PIlow patients but was
associated with superior OS probability for PIint and PIhigh patients.
Forest plots summarizing HRs and CIs from univariate and multivariate
analyses are shown in Figure 5A. In multivariate logistic regression
models that also considered cytogenetic risk and patient age at
diagnosis (supplemental Table 3), the inclusion of the 3-gene PI
significantly improved the predictive ability of the ELN category
(AUC, 0.729 vs 0.679; model x2 test5 102.22 vs 70.38; increased
specificity 5 8%; decreased false negative rate 5 8%).

The ANN 3-gene PI provides prognostic power in

independent validation sets

The clinical validity of the 3-gene PI was confirmed across 3 indepen-
dent adult AML data sets (N 5 905 cases in total). Figure 5B-E
show that the 3-gene PI stratified survival in AML patients in TCGA
and in the German series. A detailed analysis of TCGA data allowed
us to detect a correlation among the expression of our signature
genes, ELN cytogenetic risk, and molecular lesions (supplemental
Figure 6A-B), and it showed significantly shorter survival in PIhigh

Figure 2. A 3-gene PI stratifies survival in adult patients with AML (discovery series). (A) Distribution of AML patients from 5 independent cohorts by PI group.

(B) Distribution of AML patients with low, intermediate, and high PI by World Health Organization category.2 (C) Distribution of AML patients with low, intermediate, and

high PI by ELN cytogenetic risk categories. Comparisons were performed using the x2 test. (D) Distribution of AML patients with low, intermediate, and high PI by age groups.

Comparisons were performed using the x2 test. (E) Distribution of AML patients with low, intermediate, and high PI by treatment received. Comparisons were performed using

the x2 test. (F) Kaplan-Meier estimates of EFS and OS in AML patients stratified based on ELN cytogenetic risk. Survival curves were compared using a log-rank (Mantel-Cox)

test. (G) Kaplan-Meier estimates of EFS and OS in AML patients stratified based on our 3-gene PI. NS, not significant.
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cases compared with the intermediate- and low-PI categories
(Figure 5D). The German series (N 5 535 cases in total; Table 1)
also included adults with CN AML (n5 223; Table 3); namely, the
largest subset of AML patients falling into the intermediate cytogenetic
risk group. Current molecular classifications do not fully capture the
heterogeneity in outcome of these patients. As shown in Figure 5C,
the PI separated patients with CN AML into subgroups with
different survival probabilities.

Finally, we calculated PI scores for 242 adults with AML from
Beat AML (Table 1; RNA sequencing data are available at http://
www.vizome.org).22 As shown in Figure 5E, the 3-gene PI also
stratified survival in this cohort of adult AML patients. In multivariate
logistic regression models that also considered cytogenetic risk and
WBC count at diagnosis, inclusion of the 3-gene PI improved the
predictive ability (AUC, 0.650 vs 0.597; increased specificity5 19%;
decreased false negative rate 5 9.3%; supplemental Table 4).
Interestingly, the 3-gene PI, but not the ELN risk category, predicted
treatment response (Wald x2 test for PI 5 16.37, P 5 .000; AUC 5
0.707, sensitivity 5 91%, specificity 5 31%, false positive rate 5 28%,

false negative rate 5 37%; Wald x2 test for ELN risk category 5
0.154, P 5 not significant). However, the 3-gene PI was unable to
stratify survival in the small subgroup of patients with CBF AML
(n 5 26) (supplemental Figure 6C).

A recent comprehensive molecular characterization of pediatric
AML has provided evidence for age-specific molecular landscapes,
including differences in mutational and structural alterations.20 The
majority of patients in the TARGET AML cohort (128 of 145) were
classified as PIlow, and differences in survival did not attain statistical
significance (median OS 5 undefined, 2.99 years, and 2.29 years
in PIlow, PIint, and PIhigh cases, respectively; x2 test 51.39, P 5 not
significant), implying that the PI categories established with adult
AML cases from the HOVON series may be unable to assist in
the risk stratification of childhood AML. In light of the recently
reported lack of prognostic power for the LSC17 score in childhood
CBF AML,31 we excluded CBF cases (n 5 49; 34% of the
TARGET-AML cohort) from our analysis. After dichotomizing the
3-gene PI into above-median and below-median scores, we found
that high PI scores significantly predicted shorter OS (Figure 5F).
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Figure 3. A 3-gene PI stratifies survival in adult AML patients with different ELN cytogenetic risk (discovery series). (A) AUC curves quantify the ability of our

3-gene PI to predict outcome in individual patients (specificity and sensitivity) within the first 48 months of treatment initiation. AUC 5 1.0 would denote perfect prediction, and

AUC 5 0.5 would denote no predictive ability. (B) Kaplan-Meier estimates of EFS and OS in AML patient subgroups (discovery series) with specific ELN cytogenetic risk.

Survival curves were compared using a log-rank (Mantel-Cox) test.
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Figure 4. A 3-gene PI stratifies survival in

adult AML patients (discovery series) with

clinically established molecular lesions.

(A-C) Kaplan-Meier estimates of EFS and OS.

Kaplan-Meier estimates of OS in AML patients

who received chemotherapy alone (D) or chemo-

therapy followed by allogeneic HSCT (E). Survival

curves were compared using a log-rank

(Mantel-Cox) test.
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The estimate of OS in pediatric CBF cases (n5 49) split by median
PI scores is shown in supplemental Figure 6D.

We also aimed to assess the impact of CALCRL, LSP1, and
CD109 expression on AML outcomes using PRECOG (PREdiction
of Clinical Outcomes from Genomic profiles; http://precog.stanford.
edu), a publicly available curated and integrated meta-analysis of
expression signatures from;26000 human tumors. This online resource
includes OS outcomes, encompassing 166 cancer-expression data sets
across 39 distinct malignancies, including AML (N 5 1261 cases
overall; 255 patients from TCGA,19 182 patients from GSE10358,32

178 patients from ca00119,12 248 patients from GSE12417,14

163 patients from GSE8043,33 137 patients from GSE1427, and
98 patients from GSE1446834). Gene-expression levels were
dichotomized based on medians. In 5 of 8 AML series analyzed,
patients with high expression of CALCRL, LSP1, and CD109,
individually or in combination, experienced shorter OS (supple-
mental Table 5). However, CALCRL, LSP1, and CD109 mRNA
levels were not predictive of clinical outcomes in the GSE1427
series, in which purified CD1331 populations were used for gene-
expression profiling.

To assess the applicability of our 3-gene PI to a “real-life” clinical setting,
we used reverse-transcription–polymerase chain reaction to measure
CALCRL, LSP1, and CD109 mRNA expression in a panel of
commercially available AML cell lines (Figure 6A) and in BM samples
from 38 adult patients with AML (SAL series; Figure 6B; supplemental

Table 6). As shown in Figure 6C, LSP1 and CD109 were also
expressed at the protein level in primary blasts. In contrast, CALCRL
protein expression was mostly low to undetectable. We then computed
a PI that, given the small sample size, was dichotomized into above-
median and below-median scores before being correlated with clinical
features. Median age at diagnosis, WBC count at presentation,
percentage of BM blasts, and ELN cytogenetic risk categories
were not significantly different in PIlow and PIhigh patients (data
not shown). A cutoff of 10% BM blasts on day 16 (ie, 1 week after
the end of induction chemotherapy) was identified as a major
predictor of response and long-term outcomes in the German
AML Cooperative Group 1992 trial.35 Interestingly, patients with
early blast clearance (,10% blasts on day 16) were signifi-
cantly more likely to belong to the PIlow subgroup compared with
patients with$10% blasts (x2 test5 7.26; P5 .0071; Figure 6D),
suggesting that a PCR-based 3-gene PI could be broadly applica-
ble as a biomarker of therapeutic response. Finally, matched BM
samples (diagnosis–relapse) were available in a subgroup of 9 SAL
patients. Figure 6E shows thatCALCRL, LSP1, andCD109mRNA
levels were significantly higher at the time of relapse compared with
disease onset.

Prognostic significance of CALCRL, LSP1, and CD109
expression across different cancer types

PRECOG allows the evaluation of commonalities in prognostic genes
across a large number of human malignancies.36 The associations
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Figure 4. (Continued).
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Figure 5. A 3-gene PI stratifies survival in

AML patients (discovery and validation se-

ries). (A) Forest plot displaying hazard ratios and

95% CIs from univariate and multivariate analyses

of PI, standard prognosticators, and molecular

lesions predictive of survival (discovery series).

(B-F) A 3-gene PI stratifies survival in adult

nonpromyelocytic AML patients (German, TCGA,

and Beat AML validation series; N 5 905 in total)

and in childhood AML (TARGET series; n 5 145).

We used X-tile for the identification of the optimal

PI cut-point parsing the patient populations into

subgroups with statistically significant differences

in survival probabilities across gene-expression

platforms (https://medicine.yale.edu/lab/rimm/

research/software.aspx). For the German and

TARGET series, PI scores ,1.0 were defined as

low, PI scores between 1.0 and 1.5 were defined

as intermediate, and PI scores .1.5 were defined

as high. For the TCGA and Best AML series,

PI scores ,1.4 were defined as low, PI scores

between 1.4 and 2.0 were defined as intermedi-

ate, and PI scores .2.0 were defined as high.

Kaplan-Meier estimates of OS in adults and

children with AML from 5 independent validation

series. Patients were stratified by low, intermedi-

ate, or high PI (German series, TCGA, and Beat

AML series) or by median PI values (TARGET

AML series). We used X-tile, a bioinformatics tool

for outcome-based cut-point optimization, for the

identification of the optimal PI values parsing the

patient populations into subgroups with statistically

significant differences in survival probabilities.24

Survival curves were compared using a log-rank

(Mantel-Cox) test. (B) Kaplan-Meier estimates

of OS in 535 adult patients (German series).

(C) Kaplan-Meier estimates of OS in a subgroup

of 223 adult patients with CN AML (German

series). (D) Kaplan-Meier estimates of OS in

128 adult patients with nonpromyelocytic AML

(TCGA series). (E) Kaplan-Meier estimates of

OS in 242 adult patients with nonpromyelocytic

AML (Beat AML series). (F) Kaplan-Meier

estimates of OS in 96 children with non-CBF

AML from TARGET.
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between gene-expression levels and outcome are assessed by
z-scores, which represent the number of standard deviations
from the mean of a normal distribution and are directly related to
P values, encoding the directionality and robustness of statis-
tical associations.36 Figure 7A summarizes survival z-scores by
cancer subtype and shows that AML was the only tumor type
among 39 distinct malignancies in PRECOG in which CALCRL,
LSP1, and CD109 expression (z-scores5 7.10, 3.53, and 6.35,
respectively) was concordantly upregulated and predicted
shorter OS. This observation suggests that CALCRL, LSP1,
and CD109 expression captures AML-specific nonredundant
functional elements or biological programs that might underpin
leukemia development and/or progression, ultimately impacting
on patient survival.

Interaction networks of PI genes and their expression

in healthy tissues

The Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database (http://string-db.org) provides a critical assessment
and integration of protein–protein interactions, including direct
(physical) and indirect (functional) associations.37 We used STRING
to interrogate the interaction networks of CALCRL, LSP1, and
CD109. A detailed list of significantly enriched gene ontology
processes and Kyoto Encyclopedia of Genes and Genomes
pathways is provided as supplemental Tables 7 and 8. Figure 7B
shows protein network analysis and predicted functional partners
of CALCRL, LSP1, and CD109 with highest-confidence interaction
scores (.0.900). Molecules known to be involved in adrenomedullin
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Figure 6. A reverse transcription polymerase chain reaction (RT-PCR)–based 3-gene PI is a biomarker of therapeutic response in AML (SAL series). (A) Detection

of CALCRL, LSP1, and CD109 mRNA by quantitative RT-PCR in leukemia cell lines. Bars denote mean 6 standard error of the mean (duplicate measurements). (B) Detection of

CALCRL, LSP1, and CD109 mRNA by RT-PCR in BM samples from the SAL series (38 adults with newly diagnosed AML; clinical characteristics in supplemental Table 6). The PI
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samples from the SAL series. (D) Correlation between PI category (median split) and response to induction chemotherapy in the SAL series. Early blast clearance, a major independent

predictor of therapy response and long-term outcomes, was defined as having ,10% leukemia blasts on day 16 (1 week after the end of the first cycle of induction chemotherapy),

as previously described.35 (E) CALCRL, LSP1, and CD109 mRNA levels (duplicate measurements) in matched BM samples from 9 patients in the SAL series who later developed

leukemia relapse. The analysis of variance test for paired determinations was used for statistical comparisons between gene expression at diagnosis and time of relapse.

23 APRIL 2019 x VOLUME 3, NUMBER 8 MACHINE LEARNING AND PROGNOSIS OF AML 1341

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/3/8/1330/1554930/advances030726.pdf by guest on 04 June 2024

http://string-db.org


B

Inhibition

Binding

Catalysis

Phenotype

Reaction

Transcriptional regulation

C

KEGG pathwaysBiological processes

CALCRL

LSP1

34

1 2

0
0

0

CALCRL CD109CD109

LSP1

33 2

1

0
0

0

A
A

M
L

B
-A

LL

B
L

C
LL

D
LB

C
L

FL M
C

L

M
M

A
st

ro
cy

to
m

a

G
lio

bl
as

to
m

a

G
lio

m
a

M
ed

ul
lo

bl
as

to
m

a

M
en

in
gi

om
a

N
eu

ro
bl

as
to

m
a

B
re

as
t c

an
ce

r

G
er

m
 c

el
l t

um
or

s

H
ea

d 
an

d 
ne

ck
 c

an
ce

r

H
yp

op
ha

ry
ng

ea
l c

an
ce

r

O
ra

l S
C

C

Li
ve

r c
an

ce
r

Li
ve

r c
an

ce
r (

pr
im

ar
y)

P
an

cr
ea

tic
 c

an
ce

r

C
ol

on
 c

an
ce

r

G
as

tr
ic

 c
an

ce
r

E
so

ph
ag

ea
l c

an
ce

r

A
dr

en
oc

or
tic

al
 c

an
ce

r

Lu
ng

 a
de

no
ca

rc
in

om
a

La
rg

e-
ce

ll 
lu

ng
 c

an
ce

r

S
qu

am
ou

s-
ce

ll 
lu

ng
 c

an
ce

r

S
m

al
l-c

el
l l

un
g 

ca
nc

er

M
el

an
om

a

M
el

an
om

a 
(m

et
as

ta
tic

)

M
es

ot
he

lio
m

a

E
w

in
g 

sa
rc

om
a

O
st

eo
sa

rc
om

a

O
va

ria
n 

ca
nc

er

P
ro

st
at

e 
ca

nc
er

K
id

ne
y 

ca
nc

er

B
la

dd
er

 c
an

ce
r

id

7.10 1.70 -1.74 -2.53 -0.91 1.51 3.26 0.76 4.76 0.59 -1.36 0.54 -1.72 0.24 0.56 0.81 -0.06 3.11 1.34 0.42 0.09 6.07 -0.87 0.56 0.65 1.51 0.06 0.00 -0.20 -0.47 2.33 -2.18 4.60

6.35 -1.33 0.47 -0.98 -1.56 0.38 1.32 -4.35 -1.69 -4.10 -0.16 -1.49 -4.78 -2.75 -0.42 -0.22 0.60 -0.97 1.03 -1.35 0.25 1.10 -0.54 0.09 -0.54 -1.68 -0.44 -1.98 -1.27 -0.13 -0.89 -0.97 -0.87 0.54 1.82 2.77 -0.84

3.53 0.76 0.80 1.74 -2.50 -2.59 1.13 0.20 3.38 1.78 3.76 -0.18 -1.22 -1.01 -2.86 -0.94 0.76 -1.28 -0.30 -0.02 -0.23 -0.17 1.27 -0.52 -0.85 0.16 0.68 -0.98 -0.91 -3.96 1.20 0.47 -0.85 -2.00 0.86 0.37 -3.20

CD109

CALCRL

LSP1

id

0

1 0.10.0110
-3

10
-5

10
-7

10
-10

10
-15

10
-20

10
-23

1 2 3 4 5 6 7 8 9 10

P value

Z score

D

0 3 6 9 12

BM HSCs
Early HSCs

CMP
GMP
MEP

Promyelocytes
Myelocytes

PMN
Monocytes

B cells
CD4
CD8

NK
mDCs
pDCs

CALCRL (log2 expression)
0 3 6 9 12

BM HSCs
Early HSCs

CMP
GMP
MEP

Promyelocytes
Myelocytes

PMN
Monocytes

B cells
CD4
CD8

NK
mDCs
pDCs

LSP1 (log2 expression)
0 3 6 9 12

BM HSCs
Early HSCs

CMP
GMP
MEP

Promyelocytes
Myelocytes

PMN
Monocytes

B cells
CD4
CD8

NK
mDCs
pDCs

CD109 (log2 expression)

Figure 7. In silico validation of the prognostic implication of CALCRL, LSP1, and CD109 expression in patients with a variety of hematopoietic and solid

tumors. (A) Survival z-scores by cancer subtype were retrieved from PRECOG (http://precog.stanford.edu).36 Heat maps of z-scores were built using Morpheus (Broad

Institute, Cambridge, MA). Red nodes denote a correlation between high gene expression and shorter OS, whereas blue nodes indicate a correlation between high gene

expression and longer OS. (B) Analysis of functional protein association networks using STRING (https://string-db.org/). Top 10 molecules interacting with CALCRL, LSP1,

and CD109 are shown together with their predicted mode of action (highest confidence interaction scores .0.900). Network nodes (query proteins) represent proteins

produced by a single protein-coding gene locus. White nodes represent second shells of interactors. Empty and filled nodes indicate proteins of unknown or partially known

3-dimensional structure, respectively. Edges represent protein–protein associations. Line shapes denote predicted modes of action. (C) Venn diagrams showing biological

processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to CALCRL, LSP1, and CD109 expression. (D) Expression of transcripts for CALCRL,
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signaling, such as receptor activity modifying proteins 1-3, and
adrenomedullin-2, a calcitonin gene-related peptide, featured prom-
inently in the functional enrichment network for CALCRL. The
interaction network for LSP1 primarily included molecules implicated
in MAPK signaling. CD109 interacted with cell surface integrin
complexes, such as CD36 (thrombospondin receptor), integrin b-3
precursor (ITGB3), and integrin subunit a-2b (ITGA2B, CD41),
which mediate platelet degranulation and release of bioactive
mediators.38 The lack of interactions and functional associations
among genes within this signature, as illustrated in the Venn diagrams
in Figure 7C, suggests that these proteins are likely to contribute to a
different biological purpose in AML.

We then assessed CALCRL, LSP1, and CD109 expression at the
mRNA level in normal hematopoiesis using BloodSpot.39 As shown
in Figure 7D, CALCRL was uniformly expressed at various stages of
hematopoietic differentiation and in immune cells. LSP1 was broadly
and more highly expressed in cells of the adaptive and innate immune
system, including neutrophils and dendritic cells, and was detected at
lower levels in early hematopoietic stem cells (HSCs). In contrast,
CD109 was highly expressed in BM-derived early HSCs, progres-
sively declined in progenitor cells differentiating along the granulo-
cytic and monocytic lineages, and then retained intermediate
expression in myeloid and plasmacytoid dendritic cells.

CALCRL, LSP1, and CD109 are cell surface antigens and, thus, could
serve as potential molecular therapeutic targets for patients with AML.40

Supplemental Figure 7 summarizes the expression of mRNA tran-
scripts for CALCRL, LSP1, and CD109 in healthy tissues. CALCRL
showed amore restricted expression pattern but higher expression levels
in lung, endothelial cells, and adipose tissues. LSP1 was highly and
almost exclusively expressed in blood-derived cells and in the spleen.
Finally, CD109 was expressed at very low levels in a variety of healthy
tissues, including lung, skin, gastrointestinal mucosa, and adipose tissue.

Discussion

Current prognosticators, such as the simplified 2017 ELN genetic
risk stratification adopted in our study and in that of other investigators,41

classify patients with AML as being at low, intermediate, or high risk
for shorter remission duration or life expectancy.28 A reanalysis of
genetic data from 1540 patients with AML has convincingly shown
that one third of the patients may have survival predictions that
deviate.20% from their ELN risk category.42 Thus, considerable
efforts are underway to garner further insights into the mutational
landscape of such a diverse constellation of patients, with the aim
to refine the accuracy of stratification algorithms and to integrate
genomics findings into transformative therapeutic approaches,
especially for patients with high-risk disease.4

By interrogating public transcriptomic data from large independent
cohorts of adult and pediatric AML patients (N5 1643 in total), we
developed a powerful 3-gene predictor of clinical outcomes.CALCRL
is a receptor for adrenomedullin, which stimulates cell growth and
inhibits apoptosis in a variety of solid tumors, including prostate43

and breast cancer.44 LSP1 encodes an intracellular F-actin binding
protein expressed in lymphocytes, neutrophils, macrophages, and
endothelial cells and has not been previously reported in prognostic
signatures for AML.13,15,41,45 The third gene in our PI, CD109,
encodes a cell surface antigen protein that is a negative regulator of
TGF-b and STAT3 signaling and has previously been identified in
AML gene signatures with prognostic relevance,13,14 including in
patients with CN AML andRUNX1mutations.46 CD109 is also under
evaluation as a potential target for antibody-based therapeutics.40,47

Our findings in the HOVON cohort were further validated in silico
using data from 1261 AML cases available through PRECOG,
which also allowed us to identify AML as the only tumor type among
39 distinct malignancies showing concordant upregulation ofCALCRL,
LSP1, and CD109 expression. When combined, CALCRL, LSP1,
and CD109 predicted survival in AML, but not in other hematolog-
ical and solid tumors. It is tempting to speculate that our signature
genes might reflect the activation of AML-specific biological programs
with a strong impact on patient outcome.

Patients classified as PIhigh in the discovery series, as well as in the
TCGA cases with ELN risk-classification information, had a greater
probability of harboring adverse-risk ELN cytogenetic features. The
3-gene ANN PI separated the patients in each ELN stratum into
subgroups with different survival probabilities. Importantly, a recent
analysis of 934 patients with de novo AML showed that the LSC17
score does not stratify survival in younger adults (,60 years) with
intermediate ELN risk, but it retains prognostic impact within the
favorable and adverse ELN categories.48 Furthermore, the LSC17
score is unable to assist in the prediction of survival in older patients
(.60 years) with intermediate- and adverse-risk cytogenetic features.48

Our 3-gene PI remained significantly associated with poor EFS
and OS in multivariate Cox regression models after adjusting for
common clinical factors. These findings strongly suggest that our
signature genes were not merely a surrogate marker for cytogenetic/
molecular abnormalities with established prognostic relevance, but
rather were capturing biological pathways and/or currently unknown
genetic alterations associated with poor survival in AML.

As shown by our analysis of the German CN AML series, the PI
could also have supported a more accurate prognostic stratification
and the allocation of optimal treatment in CN AML patients who may
or may not benefit from more intensive approaches. We also
observed that the PI had a differential predictive value in the 2 CBF
AMLs, constituting subgroups with favorable prognosis, with 91%
of cases with t(8;21), but only 32% of cases with inv(16), being
classified as PIlow. Previous studies identified subclasses of CBF AML
with different gene-expression programs and survival probabilities.10

Extensive mutational profiling by high-throughput sequencing of
215 patients with CBF AML also suggests that diverse cooperating
mutations may underpin the different pathophysiology and clinical
behavior of t(8;21) vs inv(16).49 Importantly, the LSC17 signature,
which was initially developed in non-CBF AML,15 failed to distinguish
outcome between patients with low and intermediate scores in the
ELAM02 and TARGET cohorts of childhood AML, which included

Figure 7. (continued) LSP1, and CD109 in normal hematopoietic tissues was assessed using a public database of mRNA expression profiles (http://servers.binf.ku.dk/bloodspot/).

Mean and standard deviation of gene expression (batch-corrected data) in each HSC subset were plotted. B-ALL, B-cell acute lymphoblastic leukemia; BL, Burkitt lymphoma;

CLL, chronic lymphocytic leukemia; CMP, common myeloid progenitor; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; GMP, granulocyte-macrophage

progenitor; MCL, mantle cell lymphoma; mDCs, myeloid dendritic cells; MEP, megakaryocyte-erythroid progenitor; MM, multiple myeloma; NK, natural killer;

pDCs, plasmacytoid dendritic cells; PMN, polymorphonuclear; SCC, squamous cell carcinoma.
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28% and 34% CBF cases, respectively.31 In contrast, our 3-gene PI
also captured the inherent heterogeneity of CBF-AML, in children and
in adults; therefore, it could improve the identification of subgroups of
patients within these cytogenetically defined AMLs who differ with
respect to clinical outcome. Importantly, the PI stratified survival in
specific subgroups of patients with prognostic molecular abnormalities,
such as FLT3 ITD,NPM1mutations, and KMT2A rearrangements, and
it identified individuals with particularly poor prognoses, such as those
with nonmutated NPM1 or FLT3 ITD combined with a high PI. In
contrast with the above findings in adult patients, survival in children
with AML in the TARGET dataset was not stratified by our 3-gene PI
when the CBF cases were included in the analysis, further reinforcing
the knowledge that AML is a disease with age-dependent biological
peculiarities, including differences in mutated genes, structural variants,
and DNA methylation patterns.20,21 Finally, our study also showed that
predictions of leukemia relapse and survival are less encouraging in
patients with low ELN cytogenetic risk and a high PI, approaching
estimates usually observed in patients with intermediate ELN
cytogenetic risk. Therefore, the former patients, who would not be
assigned to allogeneic HSCT in first CR a priori under current clinical
recommendations,28 could be reclassified into the intermediate-risk
group and offered more aggressive induction/consolidation
strategies, including allogeneic HSCT when the expected incidence
of relapse is.35% to 40%50 or participation in early-phase clinical
trials with novel investigational drugs, if unfit to receive intensive
chemotherapy. In contrast, patients with intermediate cytogenetic
risk and a low PI had a better prognosis compared with patients with
intermediate cytogenetic features and an intermediate/high PI.
Importantly, a high PI predicted shorter OS, irrespective of whether
patients received chemotherapy alone or chemotherapy followed by
HSCT. Furthermore, allogeneic HSCT did not affect OS probabil-
ities for PIlow patients, but it was associated with better OS for PIint

and PIhigh patients.

Prospective studies should determine whether the PI model to
predict outcome that we developed and validated herein will be
useful in clinical practice for allocating AML patients to risk-adapted
induction chemotherapy or postremission treatments,51 as well as
generate predictions that are personally tailored to the individual
patient that are beyond the current capabilities of single molecular
markers.
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