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Key Points

• The products of the
cholesterol synthesis
pathway regulate RBC
development during
primitive erythropoiesis.

• Isoprenoids regulate
erythropoiesis by mod-
ulating the expression
of the GATA1 tran-
scription factor.

Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects

in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an

established mediator of RBC development. However, the upstreammechanisms that regulate

the expressionofGATA1 are not completely characterized. Cholesterol is 1 potential upstream

mediator of GATA1 expression because previously published studies suggest that defects in

cholesterol synthesis disrupt RBC differentiation. Here we characterize RBC development in a

zebrafish harboring a single missense mutation in the hmgcs1 gene (Vu57 allele). hmgcs1

encodes thefirst enzyme in the cholesterol synthesis pathway andmutation of hmgcs1 inhibits

cholesterol synthesis.We analyzed the number of RBCs in hmgcs1mutants and their wild-type

siblings. Mutation of hmgcs1 resulted in a decrease in the number of mature RBCs, which

coincides with reduced gata1a expression. We combined these experiments with pharma-

cological inhibition and confirmed that cholesterol and isoprenoid synthesis are essential for

RBC differentiation, but that gata1a expression is isoprenoid dependent. Collectively, our

results reveal 2 novel upstream regulators of RBC development and suggest that appropriate

cholesterol homeostasis is critical for primitive erythropoiesis.

Introduction

Erythropoiesis is the process of producing and replenishing the number of circulating red blood cells
(RBCs). There are 2 unique waves of erythropoiesis: the primitive and the definitive. Erythropoiesis is tightly
controlled and regulated by a balance of cell proliferation, differentiation, and survival.1,2 The overproduction
of RBCs or lack of RBCs can cause human disease. Diamond-Blackfan anemia and sickle cell anemia
are 2 examples of rare congenital anomalies that arise from defects in the production of RBCs,3 and
polycythemia occurs as a consequence of too many RBCs.4-6 Genetic disorders of RBCs have revealed
critical mediators of erythropoiesis,7-11 many of which include transcription factors. For example, Diamond-
Blackfan anemia can result from mutations in the transcription factorGATA1.12-14 GATA1 is the founding
member of the GATA family of zinc finger transcription factors15 that interacts with a multitude of other
proteins such as Friend of GATA, EKLF, SP1, p300, and PU.1 to promote erythropoiesis.16

Cholesterol is 1 known regulator of RBC function because it maintains the structure and integrity
of the RBC membrane and aids in the protection against oxidative stress.17-22 But both in vitro and
in vivo studies have raised the possibility that cholesterol biosynthesis regulates the differentiation
of RBCs.23,24 Knockdown of OSC/LSS, which catalyzes the cyclization of monoepoxysqualene
to lanosterol, decreased the self-renewing capacity of K562 cells in vitro and caused increased
cell death of progenitor like cells. Follow-up in vivo assays have reinforced this premise as reduced
cholesterol synthesis was associated with deficits in terminal RBC development.24 These data provide
strong evidence that cholesterol’s function in RBCs is not restricted to membrane fluidity.
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The cholesterol synthesis pathway (CSP) begins with synthesis of
HMG-CoA from aceto-acetyl-CoA, which then undergoes several
transformations to produce farnesyl pyrophosphate. Farnesyl pyro-
phosphate represents a branch point in the pathway, ultimately
resulting in the production of cholesterol or isoprenoids.25-27 Both
classes of lipids have diverse functions spanning membrane fluidity,
protein prenylation, and precursors to various different types of mol-
ecules including vitamin D3. Cholesterol homeostasis has been
previously linked to hematopoietic stem cell (HSC) differentiation,28,29

and we confirmed that cholesterol synthesis is essential for RBC
development.24 The function of isoprenoids is less clear because
isoprenoids give rise to diverse molecules, which themselves are
critical for cell differentiation.30-33

Here we show that the products of the CSP are essential for RBC
development. We show that defects in cholesterol and/or isoprenoids
results in deficient numbers of RBCs, but that each lipid regulates
RBC development by unique mechanisms. We show that inhibition
of isoprenoid synthesis disrupts the number of Gata11 cells produced,
but the inhibition of cholesterol has no effect on gata1 expression
or the number of Gata11 cells. Thus, we demonstrate an essential
function for the CSP during RBC specification and primitive
erythropoiesis.

Methods

Zebrafish care

For all experiments, embryos were obtained by crossing ABwild-type,
Tupfel Long Fin wild-type, Tg(gata1a:dsRed)34 or hmgcs1Vu57.35

All embryos were maintained in embryo medium at 28°C and all
experiments were performed according to protocol 811689-5
approved by The University of Texas El Paso Institutional Animal
Care and Use Committee. Genotyping was performed as previously
described.36

Drug treatments and morpholino injection

Atorvastatin (pharmaceutical grade; Sigma, St. Louis, MO), lonafarnib
(Sigma), and Ro 48 8071 (Santa Cruz Biotechnology, Santa Cruz,
CA) were each dissolved in 100% dimethyl sulfoxide (DMSO). Treat-
ment was initiated at the sphere developmental stage (;4-5 hours
postfertilization [hpf]) and fresh drug was added every 18 to 24 hours
until the harvest time points indicated in the figure legends. Drug
concentrations were determined using a gradient of each drug
(supplemental Figure 1) and the concentration selected was based
on working conditions from previous literature. We selected a maxi-
mum tolerated sublethal dose producing a consistent phenotype
according to a Fisher’s exact test as previously described in
Quintana et al.36 Drugs were diluted in DMSO to make working
solutions at the following concentrations: 2.0 mM atorvastatin,35-37

8 mM lonafarnib,35,38 and 1.5 mM Ro 48 8071. Final concentration
of DMSO was,0.01% in all samples and vehicle control treatment.
Ro 48 8071 specificity for oxido-squalene synthesis has been
previously described.24,39,40 The specificity of lonafarnib has been
previously described as a farnesyl protein transferase inhibitor.41

For morpholino injections, antisense hmgcs1 morpholinos (AAT-
CATATAACGGTGTTGGTTCGTG) were injected (0.025 mM) at
the single-cell stage and fixed at the indicated time points within
the figure legend. For all treatment groups (drug treatment and
morpholino) statistical significance was obtained using a Fisher’s
exact test.

o-dianisidine staining

o-dianisidine (Sigma) staining was performed as previously described
by Paffett-Lugassy and Zon.42 Briefly, embryos were harvested at the
desired time point and stained in the dark for 15 minutes at room
temperature with o-dianisidine (Alfa Aesar,WardHill, MA) (0.6 mg/mL),
0.01 M sodium acetate (Fisher,Waltham, MA), 0.65%H2O2 (Fisher),
and 40% ethanol (Fisher). Stained embryos were fixed with 4%
paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) for 1
hour at room temperature and bleached using 3% H2O2 and 2%
potassium hydroxide (Fisher) for 12 minutes. Embryos were washed
with phosphate buffered saline (PBS) and stored in 4°C. Embryos
were imaged with Zeiss Discovery Stereo Microscope fitted with
Zen Software.

Hemoglobin quantification

For hemoglobin quantification, larvae (numbers indicated in each
figure) were homogenized with a pestle in purified water at 4 days
postfertilization (dpf). Hemoglobin was measured with the Hemoglobin
Assay Kit (Sigma-Aldrich) according to manufacturer’s protocol.
For analysis of the Vu57 allele, larvae were separated via distinct
phenotypic hallmarks described previously.35,36 The control contained
both homozygous wild-type and heterozygous individuals harboring
the Vu57 allele. Experiments were performed in aminimumof biological
duplicate. For drug treatment assays, wild-type embryos were treated
as described before assaying for hemoglobin concentration. Statistical
significance was determined using a Student t test.

Whole mount in situ hybridization and quantitative

real-time polymerase chain reaction

Whole mount in situ hybridization was performed as described by
Thisse and Thisse.43 Briefly, embryos were harvested and dechor-
ionated at the indicated time point and fixed in 4% paraformaldehyde
(Electron Microscopy Sciences) for 1 hour at room temperature.
Embryos were dehydrated using a methanol:PBS gradient and
stored in 100% methanol overnight in 220°C. Embryos were
rehydrated using PBS:methanol gradient, washed in PBS with
0.1% Tween 20, and permeabilized with proteinase K (10 mg/mL)
for the time indicated by Thisse and Thisse.43 Permeabilized embryos
were prehybridized in hybridization buffer (HB) (50% deionized
formamide (Fisher), 5X SSC (Fisher), 0.1% Tween 20 (Fisher),
50 mg/mL heparin (Sigma), 500 mg/mL of RNase-free tRNA
(Sigma), 1M citric acid (Fisher) (460 mL for 50 mL of HB) for 2 to
4 hours and then incubated overnight in fresh HB with probe
(gata1a 75 ng, hbbe1.1 75 ng, alas2 150 ng) at 70°C. Samples
were washed according to protocol, blocked in 2% sheep serum
(Sigma), 2 mg/mL bovine serum albumin (Sigma) for 2 to 4 hours
at room temperature, and incubated with anti-DIG Fab fragments
(1:10 000) (Sigma) overnight at 4°C. Samples were developed
with BM purple AP substrate (Sigma) and images were collected
with a Zeiss Discovery Stereo Microscope fitted with Zen Software.
Statistical analysis was performed using a Fisher’s exact test. For
quantitative polymerase chain reaction (qPCR), RNA was isolated
from embryos at the indicated time point using Trizol (Fisher)
according to manufacturer’s protocol. Reverse transcription
was performed using iScript (Bio-Rad, Redmond, WA) and total
RNA was normalized across all samples. PCR was performed in
technical triplicates for each sample using an Applied Biosystem’s
StepOne Plus machine with Applied Biosystem’s software. Sybr
green (Fisher) based primer pairs for each gene analyzed are as
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follows: gata1a fwd GTTTACGGCCCTTCTCCACA, gata1a rev
CACATTCACGAGCCTCAGGT, hbbe1.1 fwd TGAATCCAGCACC-
CATCTGA, hbbe1.1 rev CTCCGAGAAGCTCCACGTAG, rpl13a fwd
TCCCAGCTGCTCTCAAGATT, rpl13a rev TTCTTGGAATAGCG-
CAGCTT. Analysis performed using 2DDct. Statistical analysis of
messenger RNA (mRNA) expression was performed using a Student
t test. All qPCR was performed in biological duplicate or triplicate.

Confocal imaging

Embryos were fixed at the given time point and then mounted in
0.6% low-melt agar in a glass bottom dish (Fisher). Imaging was
performed on a Zeiss LSM 700 at 203 magnification. Images
were restricted to the caudal hematopoietic tissue. For each fish,
a minimum of 12 to 20 z-stacks were collected. Statistical significance
was obtained using a Student t test.

Results

Mutations in hmgcs1 disrupt RBC development

Based on previous data,24 we sought to determine the number of
mature RBCs in a zebrafish harboring mutations in the hmgcs1
gene (Vu57). The Vu57 allele introduces a single missense mutation
(H189Q) in the hmgcs1 gene, which encodes the first enzyme in
the CSP. The Vu57 allele abrogates cholesterol synthesis, causing
a multiple congenital anomaly syndrome characterized by defects
in myelination, myelin gene expression, cardiac edema, pigment
defects, and craniofacial abnormalities.35,36 We first detected the
number of hemoglobinized RBCs in Vu57 homozygous mutants
(hmgcs1 2/2) or their wild-type siblings with o-dianisidine at 4 dpf.
Over the first 4 days of development, all of the circulating RBCs
are derived from primitive erythropoiesis; therefore, analysis of
hemoglobinized RBCs at day 4 accurately depicts deficiencies
in primitive erythropoiesis.44 Wild-type siblings had adequate
numbers of hemoglobinized RBCs throughout development and, at
4 dpf, the RBCs lined the ventral head vessels of the neck and face
(Figure 1A). Homozygous carriers of the Vu57 allele had a reduced
number of cells populating the ventral head vessels with some de-
tectable circulating RBCs near the base of the yolk sac in a select
number of individuals (Figure 1A-B).

We next quantified the decrease in circulating RBCs in homozygous
mutants and their siblings. We performed a quantitative measure of
total hemoglobin content using a colorimetric assay in which endog-
enous hemoglobin can be measured quantitatively at a wavelength of
400 nm.45 To measure the levels of hemoglobin in siblings and Vu57
carriers, homozygous Vu57 larval were separated according pheno-
type at 3 dpf35 and the total hemoglobin content of homozygous
carriers was compared with the hemoglobin content of wild-type
and heterozygous siblings at 96 hpf. Phenotypic hallmarks of
the Vu57 allele include craniofacial abnormalities and cardiac
edema.35 As shown in Figure 1C, we detected a moderate,
but consistent and statistically significant 20% decrease in
total hemoglobin content (P , .05). Taken together, these data
suggest that mutation of hmgcs1 disrupts RBC development.

Mutation of hmgcs1 disrupts the expression of

markers associated with RBC differentiation

One possible explanation for the decrease in total hemoglobin
content observed in larvae carrying the Vu57 allele could stem

from an inability to produce globin mRNA. To determine whether
mutations in hmgcs1 interfere with globin expression, we performed
whole mount in situ hybridization (ISH) at 26 hpf with an anti-hbbe1.1
riboprobe. hbbe1.1 was expressed in the caudal intermediate
cell mass (ICM) of wild-type siblings and the onset of circulation
was readily apparent as hbbe1.1 mRNA was detected over the
yolk sac (Figure 2A). hbbe1.1 expression was upregulated in Vu57
embryos with expression that localized throughout the entire
ICM and was not restricted to the most caudal region (Figure 2B,
arrowhead). In addition, hbbe1.1 expression over the yolk sac was
increased relative to wild-type siblings at 26 hpf (Figure 2A-B).

We next measured the expression of alas2, which encodes the first
enzyme in heme biosynthesis.46 Wild-type siblings expressed appro-
priate alas2 expression in the caudal ICM at 26 hpf (Figure 2C),
but the level of alas2 in embryos with the Vu57 allele was spatially
disrupted spanning the entire ICM (Figure 2D, arrowhead) and
increased relative to wild-type siblings. These data are consistent
with the level and spatial expression of hbbe1.1 because alas2
is known to modulate the levels of globin.47 We attempted to
validate our collective expression analysis at 26 hpf by detect-
ing hemoglobinized RBCs with o-dianisidine; however, we did
not consistently or accurately detect hemoglobinized RBCs at
24-26 hpf (n 5 20) in wild-type individuals (data not shown).
These data are consistent with previous studies demonstrating
that very few heme containing RBCs enter circulation before 30
hpf.48,49 However, our mRNA expression analysis demonstrates
that mutant embryos maintain the expression of globin and some
of the enzymes necessary for heme synthesis.

gata1a expression is decreased in hmgcs1
mutant embryos

Given the abnormal expression of globin (hbbe1.1), we hypoth-
esized that the mutation of hmgcs1 disrupts the expression of
GATA1, a known regulator of globin expression. We measured
the expression of gata1a, the zebrafish ortholog of GATA1 using
ISH and qPCR at 18 somites and 26 hpf in mutants and their wild-
type siblings. At 18 somites, wild-type siblings expressed gata1a
in the caudal ICM (Figure 3A, dorsal view), but the Vu57 allele
resulted in decreased gata1a expression (Figure 3A-B, arrowheads).
This decrease in gata1a persisted through the onset of circulation;
we observed reduced gata1a expression at 26hpf (Figure 3C-D,
arrowhead). We next quantified the expression of gata1a by qPCR.
We quantified the expression of gata1a in embryos injected with an
hmgcs1 morpholino because genotyping of mutant larvae before
RNA isolation could not be consistently achieved without rapid
decay in total RNA quality. Microinjection of hmgcs1 morpholinos
accurately phenocopied the RBC deficits observed with the Vu57
allele (supplemental Figure 2) and QPCR confirmed a near 70%
reduction in gata1a expression in morphants (Figure 3A-D,I, P, .05).

We next measured gata1a expression in wild-type embryos treated
with 2 mM atorvastatin (ATOR), a drug that inhibits the rate-limiting
step of the CSP,50 and should mimic the effects of mutations in
hmgcs1. gata1a expression was decreased in ATOR-treated embryos
relative to vehicle control (Figure 3E-F, arrowheads; P5 .0001) and
qPCR confirmed that ATOR treatment caused a significant reduction
in gata1a expression (Figure 3J, P, .05). We next confirmed these
results by treating Tg(gata1a:dsRed) larvae with 2 mM ATOR or
vehicle control. Treatment with ATOR caused ;50% decrease in
the number of dsRed positive cells (Figure 3G-H,K,P5 7.25273e-07).
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Collectively, these data suggest that the Vu57 allele results in decreased
numbers of Gata1a1 cells during primitive erythropoiesis.

Cholesterol and isoprenoids regulate

RBC development

Mutation of hmgcs1 disrupts the first enzyme of the CSP,35 effectively
interfering with the production of both cholesterol and isoprenoids.
Recent evidence suggests that each of these 2 lipids can regulate
the same biological process, but by independent molecular and
cellular mechanisms.35,36,38 We hypothesized that the defects
observed in mutant larvae are cholesterol dependent. We treated
wild-type embryos with either vehicle control (DMSO), 1.5 mM Ro
48 8071, to inhibit cholesterol, but not isoprenoids, and 8 mM
lonafarnib, to inhibit farnesylated isoprenoids, but not cholesterol
or 2 mM ATOR, a control to mimic the Vu57 allele. According to
o-dianisidine, vehicle-treated embryos (DMSO) exhibited the appropri-
ate number and spatial organization of RBCs in the ventral head vessels
at 4 dpf (Figure 4A). Notably, treatment with ATOR induced a cerebral
hemorrhage that was not consistent with the Vu57 allele (Figure 4B).
Embryos treated with 1.5 mM Ro 48 8071 or 8 mM lonafarnib had
visibly fewer RBCs (Figure 4A-D, P 5 .0001), suggesting that
cholesterol synthesis is required for RBC development. Cerebral

hemorrhages were not observed on treatment with Ro 48 8071
or lonafarnib. We further quantified the total hemoglobin content from
larvae treated with each drug or vehicle control. As shown in Figure 4E,
treatment with each drug resulted in a statistically significant
decrease in total hemoglobin content. Drug treatment resulted in
a more marked decrease in hemoglobin concentration relative
to larvae harboring the Vu57 allele (Figure 1). This can likely be
attributed to the fact that we performed a comparison between
homozygous carriers of the Vu57 allele with a pool of heterozygous
and wild-type homozygous individuals, suggesting that hetero-
zygous individuals demonstrate some degree of deficits in RBC
development. Taken together, these data raise the possibility that
the synthesis of cholesterol and isoprenoids is essential for RBC
development/differentiation.

gata1a expression is isoprenoid dependent

The Vu57 allele results in decreased gata1a expression and increased
hbbe1.1 expression. Therefore, we measured the expression of each
gene in wild-type embryos treatedwith vehicle control (DMSO), 1.5 mM
Ro 48 8071, or 8 mM lonafarnib using ISH at 26 hpf. hbbe1.1
expression was localized to the caudal most region of the ICM and
over the yolk sac in vehicle control embryos (Figure 5A). Inhibition of
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cholesterol or isoprenoids caused a statistically significant increase
in hbbe1.1mRNA (Figure 5G, P, .05) that was visible over the yolk
sac (Figure 5A-C, P 5 .0001). The level and spatial expression

of hbbe1.1 is consistent with those observed in embryos carrying
the Vu57 allele (Figure 2). Interestingly, the expression of gata1a
was not affected by treatment with 1.5 mM Ro 48 8071, but
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was significantly decreased when isoprenoid synthesis was
inhibited (Figure 5D-F,H,P, .05). The decrease in gata1a expression
was consistent with a decrease in the number of Gata11 cells as
demonstrated by the Tg(gata1a:dsRed) (Figure 5I, P 5 2.7125e-07).
Collectively, these data suggest that isoprenoids regulate RBC
differentiation in a gata1a dependent manner.

Discussion

Here we show that cholesterol and isoprenoids regulate erythro-
poiesis using a zebrafish harboring mutations in the hmgcs1 gene
(Vu57 allele). Mutations in human HMGCS1 have not been
associated with disease, but there are 8 congenital anomalies
that occur as a consequence of mutations within other enzymes
of the CSP.5-11,13,51 These congenital anomalies are charac-
terized by diverse phenotypes,7,21,51-53 and mutations in the
zebrafish hmgcs1 gene mimic these disorders, resulting in a multiple
congenital anomaly syndrome. Therefore, zebrafish with mutations
in hmgcs1 have the potential to reveal novel cellular and molecular
mechanisms underlying individual phenotypes across multiple
genetic disorders.

Cholesterol represents approximately one-half the weight of
an RBC membrane and governs membrane fluidity, transport,
reversible deformations, and survival in response to oxidative
stress.54,55 In addition, cholesterol is a precursor for multiple
molecules including bile acid, vitamin D, and steroid hormones.
Moreover, deficiencies in cholesterol synthesis interfere with
proper RBC development.23,24 Based on these data, we hypoth-
esized that mutation of hmgcs1 would disrupt erythropoiesis in vivo.
We found that homozygous mutation of hmgcs1 causes a decrease
in the number of hemoglobinized RBCs and total hemoglobin
content, consistent with previous work,24 demonstrating that
defects in RBC number can be rescued by the exogenous in-
jection of water-soluble cholesterol. Our study using the Vu57
allele establishes that the products of the CSP are essential for
proper RBC homeostasis; however, the mechanisms by which
the CSP exerts these effects is yet to be elucidated. Given the
role of cholesterol in the RBC membrane, it is plausible that
cholesterol regulates cell survival. However, the function of the
CSP might not be limited to cell death or stress mechanisms
because previously published work has indicated a regulatory
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*P 5 .000381218, **P 5 2.20098e-05, ***P 5 1.42e-05.
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function for cholesterol and its derivatives at the level of cellular
differentiation.56-63 Future work that analyzes both primitive and
definitive hematopoiesis at unique stages of differentiation in
different model systems is likely to identify the exact cellular
mechanisms underlying the phenotypic alteration we describe.
The closely related zebrafish mutant of hmgcrb will be of great utility
because we hypothesize that mutation of hmgcrb37 will produce
overlapping phenotypes with the Vu57 allele.

The GATA family of transcription factors are essential mediators
of erythropoiesis. Specifically, the expression of GATA1 signals the
commitment of a common myeloid progenitor toward an erythroid
fate. Numerous studies have confirmed that the expression ofGATA1
is at the center of at least 2 axis-governing cell fate decisions.
The expression of GATA1 represses the expression of GATA2, a
second member of the family whose expression promotes a
progenitor cell fate.15,64 GATA1 expression also antagonizes the

expression of SPI-1, which promotes myeloid differentiation.65,66

Here we demonstrate for the first time that the expression of
gata1a, the zebrafish ortholog of GATA1, is linked to the CSP.
Moreover, we establish that expression of gata1a is isoprenoid
dependent. These data are supported by previously published
studies by Quintana et al, which demonstrate that defects in
cholesterol synthesis disrupt RBC differentiation without disrupt-
ing early gata1a expression.24 Despite reduced expression of
gata1a in hmgcs1 mutants, differentiating RBCs maintain their
ability to initiate and maintain globin and alas2 expression. The
inhibition of the CSP did not cause the excessive accumulation
of mature RBCs to other bodily regions except for in the pres-
ence of atorvastatin treatment, where cerebral hemorrhages are
observed. This phenotype is not consistently observed with the
Vu57 allele or larvae treated with lonafarnib or Ro 48 8071, but
has been reported in hmgcrb mutants.37 Despite the presence of
cerebral hemorrhages in atorvastatin-treated embryos, we still

ga
ta

1a

D

45

Vehicle
hb

be
1.

1
A

45

2.5

*
*

Re
lat

ive
   

   
   

   
m

RN
A 

ex
pr

es
sio

n
hb

be
1.1

2

1.5

1

0.5

0
Vehicle Ro-48 Lonafarnib

G

E

30/39

Ro-48
B

36/53

Re
lat

ive
   

   
   

  m
RN

A 
ex

pr
es

sio
n

ga
ta

1a

H
1.4

1.2

1.0

0.8

0.2

0
Vehicle Ro-48 Lonafarnib

0.4

0.6

*

F

39/51

Lonafarnib
C

37/48

Pe
rc

en
ta

ge
 o

f G
at

a1
+ 

ce
lls

/e
m

br
yo

I
120

100

80

20

0
Vehicle Ro-48 Lonafarnib

40

60
#

Figure 5. Isoprenoids regulate RBC development in a gata1a-dependent manner. (A-F) Embryos were treated at sphere stage with Ro-48 to inhibit cholesterol,

lonafarnib to inhibit isoprenoids, or vehicle control (DMSO). At 26 hpf, whole mount ISH was performed to detect hbbe1.1 (n 5 45 DMSO, n 5 53 Ro-48 [P 5 .0001], and

n 5 48 lonafarnib [P 5 .0001]) (A-C) or gata1a (D-F) expression (n 5 45 DMSO, n 5 39 Ro-48 [NS], and n 5 51 lonafarnib; [P 5 .0001]). Total embryos were obtained with

a minimum 3 biological replicates. Images were taken with a 103 optical lens at 6.33 objective zoom. P value designates statistical significance relative to vehicle control

according to a Fisher’s exact test. Total RNA was isolated from embryos treated with vehicle control (DMSO), Ro-48, or lonafarnib; qPCR was performed to detect the

expression of hbbe1.1 (G) or gata1a (H). All samples were performed in technical triplicate and error bars represent the standard deviation of technical triplicates. *P , .05.

(I) Tg(gata1a:dsRed) embryos were treated at sphere stage with Ro-48 to inhibit cholesterol, lonafarnib to inhibit isoprenoids, or vehicle control (DMSO). Fluorescence was

visualized using a confocal microscope. The number of cells/Z-stack was quantified using ImageJ. #P 5 2.7125e-07.
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observe a statistically significant decrease in total hemoglobin
content in these larvae. Thus, suggesting that inhibition of the CSP
reduces total hemoglobin content, which is consistent with an
accumulation of globin and alas2 RNA. These results are further
supported by in vitro studies of GATA1 deletion where GATA1
negative cells undergo developmental arrest, but maintain expression
of GATA target genes, including globin.67

Our data establish that isoprenoid synthesis is essential for appropriate
gata1a expression. These effects are likely to be indirect because
isoprenoids are a large class of molecules with diverse functions.
Retinoids are an isoprenoid derivative68 and retinoic acid is 1 potential
regulator of blood cell differentiation because previous studies have
established that retinoic acid signaling increases the number of
HSCs30,31,33 and mediates the formation of HSCs from the
mesoderm.69 However, these mechanisms are likely to be complex
and stage specific because retinoic acid has been shown to decrease
the expression of gata1 in zebrafish.70 Thus, retinoic acid is only 1
potential mediator of erythropoiesis.

Here we demonstrate that cholesterol and isoprenoids, 2 products
of the CSP modulate RBC differentiation in vivo. The cholesterol
independent mechanisms disrupt gata1a expression and the number
of Gata1a1 cells produced. This is notable as GATA1 regulates at
least 2 axis-regulating lineage fate decisions, but it is not clear if there
are hematopoietic defects before onset of gata1a expression. The
presence of cerebral hemorrhages in atorvastatin-treated embryos
may shed some light on this question because HSCs and endothelial
cell progenitors both arise from a common bipotent progenitor
during primitive hematopoiesis.71,72 Thus, defects in both lineages
could indicate early defects in the formation or differentiation of
cells from mesoderm. Future studies that define the mechanisms by
which cholesterol and isoprenoids regulate all stages of differen-
tiation, including early HSCs and myeloid cells, are warranted.

Our study focuses on the regulation ofGATA1 expression, primarily
in the context of isoprenoids. Given the role of isoprenoids in devel-
opment and signaling, it is likely that they are positive upstream
regulators of gata1a. Therefore, future work in this area may identify
novel therapeutic targets for various disorders. For example, mutation
of mevalonate kinase causes mevalonate kinase deficiency.73,74

Mevalonate kinase is central to the CSP and converts mevalonate
to 59phosphomevalonate, which is the substrate for future enzymatic
reactions that culminate with the creation of cholesterol and

isoprenoids and therefore mutations in this kinase disrupt the
synthesis of both cholesterol and isoprenoids. Patients with
mevalonate kinase deficiency exhibit hematological deficiencies
and extramedullary hematopoiesis,75 but the mechanisms underlying
these phenotypes are not fully characterized. However, mutations
in mevalonate kinase are likely to be recapitulated in zebrafish with
mutations in hmgcs1 or hmgcrb. Therefore, our system has the
potential to understand the mechanisms governing GATA1 expres-
sion, a central transcriptional regulator of primitive hematopoiesis.
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