
REGULAR ARTICLE

Role of CYP3A4 in bone marrow microenvironment–mediated protection
of FLT3/ITD AML from tyrosine kinase inhibitors

Yu-Ting Chang,1,2 Daniela Hernandez,1 Salvador Alonso,1 Minling Gao,2 Meng Su,1,2 Gabriel Ghiaur,1 Mark J. Levis,1 and Richard J. Jones1,2

1Sidney Kimmel Comprehensive Cancer Center and 2Graduate Program in Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD

Key Points

• The bone marrow micro-
environment provides
protection against FLT3
TKIs.

• Stromal CYP3A4 con-
tributes to bone marrow
microenvironment–
mediated FLT3 inhibitor
resistance in FLT3/ITD
AML.

An intriguing aspect of the clinical activity of FMS-like tyrosine kinase 3 inhibitors

(FLT3 TKIs) is their apparent higher activity against peripheral blasts from FLT3/internal

tandemduplication (ITD) acutemyeloid leukemia thanmarrow disease in the same patients.

Accordingly, studies showed that the bone marrow microenvironment plays a role in FLT3

TKI resistance, although the underlying mechanisms are unclear. We recently identified a

previously undescribed mechanism by which the bone marrow microenvironment can

contribute to drug resistance: expression of cytochrome P450 enzymes (CYPs). In fact, bone

marrow stromal cells (BMSCs) expressed most CYPs, including CYP3A4. Because hepatic

CYP3A4 plays a role in the inactivation of several FLT3 TKIs, we explored the potential role

of CYP3A4 in bone marrow microenvironment–mediated FLT3 TKI resistance. We found

that CYP3A4 plays a major role in BMSC-mediated inhibition in the activity of 3 different

FLT3 TKIs (sorafenib, quizartinib, and gilteritinib) against FLT3/ITD acute myeloid leukemia

(AML). Furthermore, clarithromycin, a clinically active CYP3A4 inhibitor, significantly

reversed the protective effects of BMSCs. We show, for the first time, that bone marrow

stromal CYP3A4 contributes to FLT3 TKI resistance in the bone marrow. These results

suggest that combining FLT3 TKIs with CYP3A4 inhibitors could be a promising strategy

toward improving the activity of FLT3 TKIs.

Introduction

FMS-like tyrosine kinase 3 (FLT3) mutations are among the most frequent genetic alterations in acute
myeloid leukemia (AML), occurring in up to one-third of cases.1 Activating FLT3 mutations in AML occur
in 2 major forms: internal tandem duplications (ITDs) and tyrosine kinase domain (TKD) point mutations.
Whereas TKD mutations are less common and their prognostic relevance is controversial,2-5 the more
frequent ITD mutations generally convey an unfavorable prognosis.6-10 Of note, ITD mutations have little
adverse impact on initial rates of complete remission but rather are associated with a high risk of relapse
and lower overall survival. Moreover, although FLT3/ITD may only be present in a fraction of the AML
cells at diagnosis, the FLT3/ITD clone generally predominates at relapse. FLT3/ITD therefore represents
a crucial target in the war against AML.

Since the early 2000s, several small molecule FLT3 tyrosine kinase inhibitors (FLT3 TKIs) have been
introduced into clinical trials to target AMLs with mutant FLT3.11-13 In general, FLT3 TKIs as single agents
are well tolerated and display encouraging activities in killing circulating blasts. However, FLT3 TKIs fail to
induce durable responses,11,13-17 suggesting that minimal residual disease responsible for relapse exhibits
resistance to FLT3 TKIs. Many mechanisms of resistance to FLT3 TKIs have been proposed, and most
seem to play important roles in at least some patients. These mechanisms include the following: (1) plasma
protein binding that renders free FLT3 TKI levels insufficient to bind to targets11,18-20; (2) high intrinsic
FLT3 ligand levels that interfere with FLT3 inhibition21; (3) the emergence of TKD point mutations that
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interfere with the binding of specific FLT3 TKIs with FLT322-24; (4) the
activation of FLT3 downstream or alternative signaling pathways that
can maintain the survival and growth of blasts25,26; and (5) the loss of
FLT3/ITD due to clonal evolution.27,28

There is increasing evidence that specialized microenvironments or
niches also play important roles in drug resistance.29-31 Consistent
with data showing that FLT3 TKIs seem to be more effective in
clearing peripheral blood blasts than bone marrow disease, several
studies have found that the bone marrow microenvironment can
protect FLT3/ITD AML from FLT3 TKIs.32-35 Both physical interac-
tions and soluble factors have been implicated in niche-mediated
chemoprotection, although the exact mechanisms remain unclear.

We previously reported that the bone marrow microenvironment
expresses a variety of cytochrome P450 enzymes (CYPs), which
seem to play important roles in the local metabolism of endoge-
nous factors such as retinoids as well as chemotherapeutic
agents.36-39 Moreover, we found that CYP3A4, which is responsi-
ble for the hepatic metabolism of many of the drugs currently in
use,40-42 contributes to the chemoprotection of both non-FLT3
AML and multiple myeloma by the bone marrow microenviron-
ment.38 Because hepatic CYP3A4 has also been shown to inac-
tivate essentially all TKIs, including FLT3 TKIs,43-47 we hypothesized
that CYP3A4 plays a role in protecting FLT3/ITD AML against FLT3
TKIs in the bone marrow microenvironment. The present study
found that CYP3A4 apparently contributes to microenvironment-
mediated resistance to FLT3 TKIs. Importantly, inhibiting CYP3A4
can overcome this component of stromal-mediated resistance to
FLT3 tyrosine kinase inhibition.

Methods

Cell lines

F/STRO48 cells were cultured in DMEM (Thermo Fisher Scientific,
Waltham, MA) with 10% fetal bovine serum (FBS; MilliporeSigma,
Burlington, MA), 2 mM L-glutamine (Thermo Fisher Scientific), and
100 U/mL penicillin with 100 mg/mL streptomycin (Thermo Fisher
Scientific) at 33°C in 5% carbon dioxide (CO2). For clonogenic
assay and conditioned media experiments, F/STRO were subjected
to 20 Gy of irradiation before seeding on gelatinized well plates.
Human FLT3/ITD1 AML cell lines, MV4-11 and Molm14, were
obtained from Deutsche Sammlung von Mikroorganismen und
Zellkulturen (Braunschweig, Germany). Both MV4-11 and Molm14
were cultured in RPMI 1640 (Thermo Fisher Scientific) with 10%
FBS, 2 mM L-glutamine, and 100 U/mL penicillin with 100 mg/mL
streptomycin at 37°C in 5% CO2.

Primary bone marrow stroma

Human primary bone marrow stromal cells (BMSCs) were derived
from normal bone marrow transplant donor harvests and processed
as previously described.39 All normal donors provided informed
consent under a Johns Hopkins Medicine Institutional Review
Board–approved protocol according to the Declaration of Helsinki.
Human primary BMSCs were cultured in gelatinized plates with
IMDM (Thermo Fisher Scientific) containing 15% FBS, 5% horse
serum (MilliporeSigma), 100 U/mL penicillin with 100 mg/mL
streptomycin, 1024 M b-mercaptoethanol (MilliporeSigma), and
1025 M hydrocortisone 21-hemisuccinate (MilliporeSigma) at 33°C
in 5% CO2.

Drugs

Sorafenib and quizartinib were obtained from LC Laboratories
(Woburn, MA). Gilteritinib was obtained from Astellas Pharma
US, Inc. (Northbrook, IL). Clarithromycin was purchased from
MilliporeSigma. All compounds were dissolved in dimethyl sulfoxide
(DMSO) as stock solutions. Working solutions were prepared by
diluting stock solutions in RPMI 1640. The final concentration of
DMSO in experiments was no more than 0.2%.

CYP3A4 knockdown

As previously published,38 lentiviral vectors expressing CYP3A4-
targeting short hairpin RNA (shRNA; The RNAi Consortium, Broad
Institute, Cambridge, MA), empty lentiviral vectors pGIPZ (Open
Biosystems, Lafayette, CO), or nontargeting control lentiviral
vectors pLKO.1-puro eGFP shRNA (obtained through the Johns
Hopkins Genomics Resources in the HiT Center from Open
Biosystems, Huntsville, AL) were transfected together with pCMV-
dR8.9 and vesicular stomatitis virus G–expressing plasmids
into 293T cells using Lipofectamine 2000 (Thermo Fisher
Scientific) for lentiviral supernatant production. BMSCs were
incubated with the viral supernatant and 8 mg/mL polybrene
(MilliporeSigma) for transduction. After at least 48 hours, cells
were treated with 6 mg/mL of puromycin (MilliporeSigma) to
select for positive clones. The knockdown of CYP3A4 was
confirmed.

Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (PCR) was
performed as previously described.38 In brief, total RNA was
extracted by using the RNeasy Mini Kit (Qiagen, Valencia, CA), and
complementary DNA was synthesized by using the iScript cDNA
Synthesis Kit (Bio-Rad, Hercules, CA). Quantitative real-time PCR
was conducted by using sequence-specific primers (CYP3A4
forward: 59-GCCTGGTGCTCCTCTATCTA-39 and reverse:
59-GGCTGTTGACCATCATAAAAG-39; GAPDH forward: 59- ACCC-
AGAAGACTGTGGATGG-39 and reverse: 59-TCTAGACGGCA-
GGTCAGGTC-39), the Radiant Green Lo-ROX qPCR Kit (Alkali
Scientific, Fort Lauderdale, FL), and the CFX96 real-time PCR
detection system (Bio-Rad).

Clonogenic assays

Clonogenic assays were performed as previously described.37,38

Briefly, after 72 hours of drug treatment, cells were collected,
counted, and resuspended at a density of 500 cells/mL in
methylcellulose-based media containing 1.41% methylcellulose
(MilliporeSigma), 30% FBS (MilliporeSigma), 1% bovine serum
albumin (MilliporeSigma), 10% RPMI 1640, 2 mM L-glutamine,
100 U/mL penicillin with 100 mg/mL streptomycin, and 1024 M
b-mercaptoethanol in IMDM. The cell suspensions were then
plated in 35 mm culture dishes in triplicates at 500 cells/dish. After
10 to 14 days of incubation at 37°C in 5% CO2, the recovery of
colony-forming units was determined by colony counting under
bright-field microscopy. A cell aggregate composed of .50 cells
was defined as a colony.

FLT3 phosphorylation

FLT3/ITD AML cells were incubated with 1 mL of FLT3 TKI–
containing medium that was conditioned by BMSCs at room
temperature for 1 hour. Protein lysates of the cells were obtained
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and immunoprecipitated with anti-FLT3 antibody (sc-480; Santa
Cruz Biotechnology, Dallas, TX) and Protein A agarose beads
(MilliporeSigma). The immunoprecipitants were separated on an
8% sodium dodecyl sulfate polyacrylamide gel and transferred
to an Immobilon membrane (MilliporeSigma). The membranes
were incubated with anti-phosphotyrosine antibody (4G10;
MilliporeSigma), then stripped and reprobed with anti-FLT3
antibody (Santa Cruz Biotechnology) to measure total FLT3.
Proteins were visualized by using chemiluminescence (Clarity
Western ECL Substrate; Bio-Rad), exposed on autoradiographic
films (LabScientific, Highlands, NJ), and scanned by using a densi-
tometer (Bio-Rad). Quantification of band volumes was conducted
by using Image Lab software (Bio-Rad).

Xenograft mouse model

For generating luciferase-expressing Molm14, pLenti-CMV-LUC-
Puro lentiviral vectors (Addgene, Cambridge, MA) were transfected
into 293T cells as described earlier for lentiviral supernatant
production. Molm14 cells were then incubated with the lentiviral
supernatant and 8 mg/mL polybrene for transduction. After at least
48 hours, cells were selected by using 0.5 mg/mL puromycin. The
correspondence of cell number to bioluminescence signal was
verified.

For each tumor, 2.5 3 105 luciferase1 Molm14 cells with 5 3 105

control or shCYP3A4 primary human BMSCs were resuspended
within RPMI 1640 (Thermo Fisher Scientific) containing 50%
Matrigel Matrix (Corning, Corning, NY). Before injection, NOD/
SCID/IL2g2/2 (NSG) male mice (The Jackson Laboratory, Bar
Harbor, ME) at least 8 weeks old were anesthetized and shaved on
both sides of the flank region. For each mouse, the cell suspensions
containing control and shCYP3A4 BMSCs were injected sub-
cutaneously into the left and right flank, respectively, to establish
xenograft tumors.

After the tumors engrafted, mice were given 10 mg/kg sorafenib
(LC Laboratories) by intraperitoneal injection 3 times per week. IVIS
Spectrum In Vivo Imaging System (PerkinElmer, Waltham, MA) was
used to obtain tumor bioluminescence signals. Before imaging,
mice were anesthetized with isoflurane and injected intraperitone-
ally with 150 mg/kg D-luciferin (PerkinElmer). Signals were quantified
by using Living Image Software (PerkinElmer). All animal studies
were conducted under a protocol approved by the Johns Hopkins
University Animal Care and Use Committee.

Flow cytometry

F/STRO cells were trypsinized and washed with cold phosphate-
buffered saline. Cells were then fixed and permeabilized in Cytofix/
Cytoperm Solution (BD Biosciences, San Jose, CA) for 20 minutes
at 4°C. After being washed twice with Perm/Wash Buffer (BD
Biosciences), cells were stained with rabbit anti-human CYP3A4
antibody (ab135813; Abcam, Cambridge, MA) or normal rabbit
immunoglobulin G (sc-3888; Santa Cruz Biotechnology) as isotype
control for 1 hour 25 minutes at 4°C. After the primary antibody
staining, cells were washed with Perm/Wash Buffer and stained with
phycoerythrin-conjugated anti-rabbit immunoglobulin G antibody
(sc-3739; Santa Cruz Biotechnology) for 40 minutes at 4°C in the
dark. Cells were then washed twice, resuspended in Perm/Wash
Buffer, and analyzed by using a FACSCalibur flow cytometry (BD
Biosciences). Data were analyzed by using FlowJo software
(FlowJo, Ashland, OR).

Quantification of quizartinib

Culture media (RPMI1 10% FBS1 2mM L-glutamine1 100U/mL
penicillin with 100 mg/mL streptomycin) supplemented with 100 nM
quizartinib were incubated with F/STRO monolayer at 37°C in
5% CO2. The conditioned media were then collected and stored
at 280°C until analysis. Samples were analyzed for quizartinib by
using liquid chromatography with tandem mass spectrometry
by the Sidney Kimmel Comprehensive Cancer Center Analytical
Pharmacology Core. The analyte was extracted from 25 mL of cell
culture media with 100 mL of acetonitrile containing internal
standard (sunitinib-d10). Samples were centrifuged, and the top
layer was transferred to an autosampler vial for liquid chroma-
tography with tandem mass spectrometry analysis. Chromato-
graphic separation was achieved with a Cortecs C18 analytical
column (2.1 3 50 mm, 2.7 mm; Waters Corporation, Milford, MA)
at 40°C with a gradient. Mobile phase A was water containing
0.1% formic acid, and mobile phase B was acetonitrile containing
0.1% formic acid. The gradient started with mobile phase B held at
20% for 0.5 minute and increased to 100% over 0.5 minute; 100%
mobile phase B was held for 2 minutes and then returned back
to 20% mobile phase B and allowed to equilibrate for 2 minutes.
The total run time was 4 minutes, with a flow rate of 0.4 mL/min.
The column effluent was monitored by using a Sciex 4500 triple
quadrupole mass spectrometer with electrospray ionization oper-
ating in positive mode. The mass spectrometer was programmed
to monitor the following multiple reaction monitoring transitions:
561.3→421.0 for quizartinib and 409.1→283.2 for sunitinib-d10.
The calibration curve was computed by using area ratio peak of the
analyte to the internal standard by using a quadratic equation with a
1/x2 weighting function over the range of 10 to 1000 ng/mL.

Statistical analyses

Statistical analyses were performed by using GraphPad Prism
(GraphPad Software, La Jolla, CA). For mouse xenograft experi-
ments, statistical significance was calculated by using the paired
2-tailed Student t test. Otherwise, an unpaired 2-tailed Student
t test was performed to evaluate statistical significance.

Results

CYP3A4 contributes to BMSC-mediated FLT3 TKI

resistance in vitro

To investigate if CYP3A4 plays any role in the previously de-
scribed32,33 protection of FLT3/ITD AML cells by BMSCs, the
activity of 3 different clinically active FLT3 TKIs (sorafenib,
quizartinib, and gilteritinib) was studied against FLT3/ITD AML
cells cultured with CYP3A4 knockdown (shCYP3A4) or control
(empty lentiviral vectors pGIPZ) BMSCs. The 50% inhibitory
concentration (20 nM sorafenib, 0.5 nM quizartinib, and 20 nM
gilteritinib) were chosen because they gave sufficient kill to allow
manipulations to show differences in activity. The effective
knockdown of CYP3A4 in BMSCs was confirmed (supplemental
Figures 1 and 2). In addition, CYP3A4 expression was non-
detectable in FLT3/ITD AML cell lines (supplemental Figure 3). As
expected, all 3 TKIs inhibited the clonogenic growth of both FLT3/
ITD AML lines but had little activity when cocultured with BMSCs
(Figure 1; supplemental Figure 4). Moreover, the BMSC-mediated
resistance was largely abrogated by CYP3A4 knockdown of
BMSCs.
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To further study the role of CYP3A4 in the protection against FLT3
TKIs by BMSCs, sorafenib, quizartinib, and gilteritinib were incu-
bated with CYP3A4 knockdown BMSCs, control (empty lentiviral
vectors pGIPZ) BMSCs, or just medium for 72 hours. The condi-
tioned medium was then removed and incubated with FLT3/ITD
AML Molm14 cells for 1 hour, and FLT3 phosphorylation was
assessed in AML cells. In this setting, any effect of BMSCs on
FLT3 TKI activity would have to be a direct effect on drug activity.
Whereas the control BMSCs inhibited the activity of all 3 FLT3
TKIs, CYP3A4 knockdown eliminated the protection provided by
the BMSCs (Figure 2). Moreover, CYP3A4 knockdown limited the
FLT3 TKI clearance by BMSCs (supplemental Figure 5).

CYP3A4 contributes to stromal-mediated FLT3 TKI

resistance in vivo

To further study the role of microenvironment CYP3A4 in FLT3 TKI
resistance in an in vivo model, we developed a xenograft model of
human FLT3/ITD AML–BMSC interactions, which allowed us to
show the local effect of BMSCs on FLT3/ITD AML cells in vivo.
Human primary BMSCs were transduced with lentivirus encoding
shRNA that targets CYP3A4 or control vectors. The effective
knockdown of CYP3A4 in primary BMSCs was confirmed by using
quantitative real-time PCR (supplemental Figure 6). Luciferase1

FLT3/ITD AML Molm14 cells were combined with the control
BMSCs or CYP3A4 knockdown BMSCs, and the AML/BMSC
tumors were implanted subcutaneously into NSG mice. Each
mouse carried FLT3/ITD AML cells1 control stroma in the left flank

and AML 1 CYP3A4 knockdown stroma in the right flank. After
4 days, the mice were given an intraperitoneal sorafenib injection
(10 mg/kg) 3 times a week for 4 weeks. There was no difference
in tumor growth before initiation of sorafenib. However, while the
FLT3/ITD AML continued to grow exponentially with the control
stroma, the AML with CYP3A4 knockdown stroma exhibited a
significant response to treatment (Figure 3; supplemental Figure 7).
This finding suggested that bone marrow stromal CYP3A4 also
protected FLT3/ITD AML from FLT3 TKIs in vivo.

Clinically applicable CYP3A4 inhibition overcomes

stromal-mediated FLT3 TKI resistance

We next examined whether a CYP3A4-inhibiting agent is able to
block CYP3A4-mediated chemoprotection. Clarithromycin (Biaxin),
a macrolide antibiotic, also acts as a potent CYP3A4 inhibitor by
forming a metabolic intermediate that can covalently link to CYP3A4
irreversibly.49 We previously showed that it can overcome stromal-
mediated resistance by inhibiting CYP3A4 in vitro, the mechanism
potentially responsible for the clinical activity of the BiRd (Biaxin,
lenalidomide [Revlimid], and dexamethasone) regimen in multiple
myeloma.38 MV4-11 and Molm14 FLT3/ITD AML cells were cultured
in the presence or absence of F/STRO BMSCs, with or without
clarithromycin and the 3 different FLT3 TKIs (sorafenib, quizartinib,
and gilteritinib) for 72 hours. Inhibition of CYP3A4 by clarithromycin
reversed the stromal-mediated protection of both MV4-11 and Molm14
FLT3/ITD AML cells to all 3 FLT3 TKIs (Figure 4). Clarithromycin had no
effect on the TKIs’ anti-FLT3/ITD AML activity in the absence of stroma.
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Figure 1. Knockdown of CYP3A4 in BMSCs reversed the stromal-mediated FLT3 TKI resistance of FLT3/ITD AML cells. Clonogenic recovery of MV4-11 (A) and

Molm14 (B) cells when cultured without F/STRO (Liq), with control F/STRO (CT Stro), or with shRNA CYP3A4 knockdown F/STRO (KD Stro) after treatment with 3 different

FLT3 TKIs (20 nM sorafenib, 0.5 nM quizartinib, and 20 nM gilteritinib) for 72 hours. Data represent mean 6 standard error of the mean (SEM) of 3 to 4 independent

experiments. *P , .05, **P , .01, ***P , .001. CFU, colony-forming unit.
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Discussion

As previously discussed, the basis for the limited activity of FLT3
TKIs seems to be multifactorial.11,18-26 Although substantial pre-
clinical data suggest a role for the bone marrow microenviron-
ment in clinical FLT3 TKI resistance, the mechanisms responsible
for this role are unclear and also likely multifactorial. In this study,
we confirmed that BMSCs are able to protect FLT3/ITD AML from
FLT3 TKIs. Furthermore, we showed, for the first time, that CYP3A4
in the AML microenvironment plays an important role in this process
(Figures 1-4).

CYP3A4 inactivates a wide range of exogenous compounds, in-
cluding many of the most commonly used chemotherapy drugs.
The contributions of CYP3A4 expression to systemic (by hepatic
inactivation)50-53 and, in cancer cells, intrinsic drug resistance have
been well studied.54-57 More recently, we showed that bone marrow
stromal CYP3A4 protectedAML andmultiplemyeloma from standard
chemotherapy in both in vitro and in vivo models.38 Given the appar-
ent multifaceted role of CYP3A4 in therapeutic resistance, inter-
fering with CYP3A4 activity has the potential for improving the
activity of a variety of anticancer agents, including FLT3 TKIs.
Although FLT3/ITD mutations may not be the first leukemogenic
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cellular contact. (A) Expression of phosphorylated FLT3 (P-FLT3) and

total FLT3 (T-FLT3) in Molm14 cells by western blotting after 1 hour

of incubation with 3 different FLT3 TKIs (20 nM sorafenib, 20 nM
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bone marrow stroma for 72 hours. The left 3 control lanes are conditioned

media without TKIs (just DMSO). (B) Quantification of phosphorylated

FLT3 in Molm14 cells. Data are the mean 6 SEM of 4 (sorafenib) and
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was performed once. ***P , .001. CT Stro, control F/STRO; KD Stro,
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hit, the FLT3/ITD clone tends to dominate at relapse.58,59 Thus, being
able to better eliminate FLT3/ITD clones, perhaps by overcoming
the protective properties of the microenvironment against FLT3
TKIs, might help prevent the persistence of these clones.

Drug-metabolizing enzymes expressed in the tumor microenviron-
ment could represent biochemical barriers between plasma and
unique malignant cell niches, resulting in potential sanctuary sites
from drugs. Pharmacokinetic parameters such as affinity and ve-
locity constants may allow CYPs to play complementary roles in
the systemic (hepatic) and local (microenvironmental) inactivation
of drugs.60 It is noteworthy that in addition to the bone marrow,
the liver and intestine are the major organs expressing CYP3A4.
Clearly, a major role of CYP3A4 in these organs is to provide
systemic protection against toxic insults. In this study, we devel-
oped a xenograft model of AML-BMSC interactions, which plainly
showed that stromal CYP3A4 contributes to drug resistance in vivo.
A limitation of our xenograft mousemodel is that it does not represent
the human CYP3A4 system. When hepatic and intestinal CYP3A4
are involved, it is unclear how substantial the effect of bone marrow
stromal CYP3A4 is in relation to hepatic and intestinal CYP3A4.
A genetically modified mouse that expresses human CYP3A4 and
recapitulates the human CYP3A4 system could be valuable for
investigating the contribution of bone marrow stromal CYP3A4 on
drug resistance in a humanized CYP3A4 system.61,62 However, the
advantage of our xenograft model is that the overall effect of mouse
liver CYP drug inactivation will be the same on both tumors with
control and CYP3A4 knockdown stroma, allowing the specific
study of the human CYP3A4 in the stroma.

Although FLT3 TKIs have an excellent therapeutic ratio, it is still
a concern that the blockade of CYP3A4 in the liver and intestine
will lead to both higher drug exposure locally and systemically with
higher degrees of toxicity. In fact, inhibition of systemic CYPs has
been studied clinically, with expected increased systemic drug
levels.45,63,64 Pharmacologically adjusting drug doses to maintain
safe systemic concentrations should control for inhibition of these
enzymes in the liver, while using CYP inhibitors to remove barriers
to therapeutic drug levels in the tumor microenvironment.37,38
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Figure 4. The CYP3A4 inhibitor clarithromycin reversed the stromal-mediated FLT3 TKI resistance of FLT3/ITD AML cells. Clonogenic recovery of MV4-11 (A)

and Molm14 (B) cells when cultured without (Liq) or with F/STRO (Stro) and without or with clarithromycin (1Cla) after treatment with 3 different FLT3 TKIs (20 nM sorafenib,

0.5 nM quizartinib, and 20 nM gilteritinib) for 72 hours. Data are the mean 6 SEM of 3 to 4 independent experiments. *P , .05, **P , .01.
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