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Key Points

• The machine learning
algorithms produced
clinically reasonable
and robust risk stratifi-
cation scores for
aGVHD.

• Predicting scores for
aGVHD also demon-
strated the link between
risk of development of
aGVHD and overall
survival after HSCT.

Acute graft-versus-host disease (aGVHD) is 1 of the critical complications that often occurs

following allogeneic hematopoietic stem cell transplantation (HSCT). Thus far, various types

of prediction scores have been created using statistical calculations. The primary objective

of this study was to establish and validate the machine learning–dependent index for

predicting aGVHD. This was a retrospective cohort study that involved analyzing databases

of adult HSCT patients in Japan. The alternating decision tree (ADTree) machine learning

algorithm was applied to develop models using the training cohort (70%). The ADTree

algorithm was confirmed using the hazard model on data from the validation cohort (30%).

Data from 26695 HSCT patients transplanted from allogeneic donors between 1992 and 2016

were included in this study. The cumulative incidence of aGVHD was 42.8%. Of .40

variables considered, 15 were adapted into a model for aGVHD prediction. The model was

tested in the validation cohort, and the incidence of aGVHD was clearly stratified according

to the categorized ADTree scores; the cumulative incidence of aGVHDwas 29.0% for low risk

and 58.7% for high risk (hazard ratio, 2.57). Predicting scores for aGVHD also demonstrated

the link between the risk of development aGVHD and overall survival after HSCT. The

machine learning algorithms produced clinically reasonable and robust risk stratification

scores. The relatively high reproducibility and low impacts from the interactions among the

variables indicate that the ADTree algorithm, along with the other data-mining approaches,

may provide tools for establishing risk score.

Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapeutic option for
malignant or nonmalignant hematological diseases. However, the incidence of transplant-related
mortality (TRM) is as high as 30% among HSCT patients.1 Acute graft-versus-host disease (aGVHD) is
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1 of the most critical complications that may occur following
HSCT.2 Traditional statistics, such as Cox’s proportional hazard
models and logistic regressions (LRs), have been used to create
various types of prediction scores to alert clinicians about whether
a patient is at risk for developing severe aGVHD. Various predictive
scoring systems3,4 have been created to distinguish these higher-
risk patients from low-risk HSCT patients. However, the predictive
accuracy of these systems is still suboptimal, and they are often
unavailable to the clinicians who need to use them.

Recent progress in the field of machine learning algorithms, which
are included as part of a data mining approach, may change the
procedures used to analyze large and complex HSCT registry
datasets. Machine learning is a data-driven analytic approach
integrating multiple risk factors into a predictive tool.5 The paradigm
underlying machine learning does not start with a predefined model;
rather, it lets the data create the model according to the underlying
pattern.6 One advantage of predictive models created by machine
learning models is the elimination of the effect of selection bias in
choosing variables. Furthermore, it also accounts for interaction and
confounding factors, which cannot be completely adjusted for or
eliminated using conventional statistics,7 meaning that these new
models are expected to be more accurate and reliable. Research
groups from Europe and China have tried to use machine leaning to
create algorithms for predicting total survival and relapse among
acute leukemia patients using relatively uniform databases.8-10

However, it remains to be seen whether machine leaning may be
used to predict complications of HSCT using data from an entire
registry database.

We used machine learning algorithms to establish a model for
predicting the risk of aGVHD using pre-HSCT parameters obtained
from a nationwide dataset in Japan. The primary objective of this
study was to establish and validate this model for predicting aGVHD
(grades II-IV and III-IV). We expected that our results could provide
a clinically useful model for predicting aGVHD risk and demonstrate
the utility of machine learning in future registry studies.

Methods

Inclusion and exclusion criteria

Data on adult patients (age $ 16 years) with malignant and
nonmalignant hematological diseases who underwent allogeneic
HSCT between 1 January 1992 and 31 December 2016 were
obtained through the Japanese Transplant Registry Unified
Management Program11,12 sponsored by the Japan Society for
Hematopoietic Cell Transplantation and Japanese Data Center for
Hematopoietic Cell Transplantation. Those patients were excluded
if information about HLA mismatch, aGVHD grade, or clinical
outcomes (dead or alive) was missing. Our protocol, which
complied with the Declaration of Helsinki, was approved by the
Ethics Committee of Kyoto University and the Japanese Data
Center for Hematopoietic Cell Transplantation. Patient information
is anonymized, and the patients consented to provide the data to
the data center prior to performing the study.

Data collection and definition of each covariate

From the registry database, we extracted data on every pretrans-
plant characteristic (supplemental Table 1), along with data on
posttransplant aGVHD grade and prognoses. Patients were divided
into standard- and advanced-risk groups according to earlier criteria

for determining disease risk.13,14 Disparities in HLA-A, HLA-B, and
HLA-DR antigens were determined at the serologic level from
relatives and cord blood transplants. In unrelated bone marrow
transplants, 8 antigens, including HLA-C, were examined at the
allele level; a 6/6 or 8/8 match was considered HLA matched.1,15

Patients and donors were categorized into 2 groups based on their
age (younger vs older than the median). For females, the data on
their parity were not included in the dataset.

Diagnosis and classification of aGVHD cases were performed by
the attending physicians at each center based on conventional
criteria.16

Machine learning algorithms

Predictive models for aGVHD (grade II-IV and III-IV) were developed
using 5 machine learning algorithms: Naive Bayse (NB) and
alternating decision tree (ADTree) as algorithms providing interpret-
able structures, along with multilayer perceptron (MLP), random
forest (RF), and adaptive boosting (AdaBoost) as algorithms
providing only opaque connections between variables and
responses (“black box” models).6,9,17-21

For each algorithm, a prediction model was trained and tested using
10-fold cross-validation. The performance of each model was
evaluated by quantifying the area under the receiver operator
characteristic curves (AUCs)22,23 using the validation cohort. The
best models, or those that provided the largest AUCs, were
analyzed further. Detailed algorithms for NB, MLP, RF, and
AdaBoost are shown in supplemental Methods, whereas the
algorithm for ADTree is shown in the next section.

ADTree

ADTree is a machine learning algorithm designed for prediction19; it
generates alternating levels of prediction (shown as rectangles in
figures) and decision nodes (shown as ellipses). Each prediction
node has been given a weight, which represents its contribution to
the final score.

Creating predictive models with ADTree involves pursuing multiple
paths. To calculate the score, one starts at the root and proceeds
along multiple paths down the tree as follows: if the node is
a prediction node, proceed along all the edges starting from it; if the
node is a decision node, proceed along the edge corresponding to
the patient characteristics. The cumulative score gathered by the
patient is the sum of the prediction values along all paths that the
patient traverses in the decision tree.20 Higher scores are designed
to be associated with expectedly higher incidences of aGVHD.

Model development and validation

The ADTree algorithm was used to create the predictive model
using the training cohort (randomly selected patients making up
70% of the entire cohort). Validation was performed by testing this
model on the validation cohort (consisting of 30% of the entire
cohort) using conventional statistical methods.1,15 Overall survival
(OS) was calculated with the Kaplan-Meier method and compared
using the Cox proportional-hazards model according to the aGVHD
predictive scores determined by the ADTree algorithm. The
cumulative incidence of aGVHD was calculated using Gray’s
method while considering relapse and death as competing risks.24

The Fine-Gray proportional-hazards model was used to compare
the incidence of aGVHD with the aGVHD predictive scores that
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were determined by the machine learning.25 TRM was calculated
considering relapse as a competing risk.1,26 Data in the database
were fixed in September of 2017. WEKA (version 3.8; The
University of Waikato, Wakaito, New Zealand) and Stata (version
13.1; Stata Corp., College Station, TX) software packages were
used to analyze data. The a level for all tests was set to 0.05, and P
, .05 was considered statistically significant.

Results

Patient characteristics

We included only patients who fulfilled the eligibility criteria, not
satisfying the exclusion criteria shown in Methods, and evaluated
26695 patients with malignant (n 5 25329) and nonmalignant
(n 5 1366) diseases between 16 and 69 years of age (median,
45 years), who underwent allogeneic HSCT between 1992 and
2016 (Table 1). The median follow-up period for survivors was
58.7 months (range, 1.4-306.6) after HSCT. Pretransplant patient
characteristics that were included in the predictive models are
shown in supplemental Table 1. Of the entire cohort, 70% of the
patients were randomly selected for inclusion in the training cohort,
which was used to build the predictive models. The remaining 30%
of patients were placed in the validation cohort, which was used
to confirm the model using conventional (machine learning–
independent) statistical calculations. There were no significant
differences between the training and validation cohorts in terms
of the pretransplant characteristics (supplemental Table 2). The
missing values for performance status (PS) and hematopoietic cell
transplant comorbidity index (HCT-CI) were treated as indepen-
dent categories (“Not available”). In all, 60.8% (n 5 16 230) of all
of the patients (n 5 26 695) had data available for all of relevant
variables shown in supplemental Table 1.

In total, grade II-IV aGVHD was observed among 42.6% of all
patients (n 5 11380/26 695) on day 27 (in median) after HSCT,
while grade III-IV aGVHD was noted in 17.1% of all patients (n 5
4554) on day 29 (in median) after HSCT. Severe aGVHD (grade III-
IV) was directly related to the TRM (n 5 2645; 58.0% of patients

Table 1. Patient characteristics (N 5 26695)

Variables Data

Sex

Female 11 113 (41.6)

Male 15 578 (58.3)

Age, y

Median 45

Range 16-69

PS

0-1 21 567 (80.8)

$2 1638 (6.1)

Missing 3490 (13.1)

HCT-CI

#2 14906 (55.8)

$3 2275 (8.5)

Missing 9514 (35.7)

Disease

AML/MDS 13613 (51.0)

ALL 5129 (19.2)

ATL 1153 (4.3)

CML 2141 (8.0)

NHL 2218 (8.3)

AA 1024 (3.9)

Other 1 417 (5.3)

Disease risk

Standard 14 088 (52.7)

High 12 607 (47.2)

Pretransplant therapy period, mo

Median 8.2

Range 1.2-779.3

Donor source

Rel-BM 4899 (18.4)

Rel-PB 5389 (20.2)

UR-BM 10801 (40.5)

UR-CB 5425 (20.3)

HLA mismatch

No 13969 (52.3)

Yes 12 726 (47.7)

Sex mismatch

No 13136 (49.2)

M to F 5729 (21.4)

F to M 5657 (21.1)

ABO mismatch

No 12060 (45.1)

Minor 5 169 (19.3)

Major 4 694 (17.5)

Both 2408 (9.0)

Conditioning regimens

MAC 16480 (61.7)

RIC 8277 (31.0)

Table 1. (continued)

Variables Data

GVHD prophylaxis

CyA based 12612 (47.2)

Tac based 14083 (52.8)

Follow-up period, mo

Median 58.7

Range 1.4-306.6

Transplant year

2008 or before 12 495 (46.8)

2009 or later 14 200 (53.2)

Unless otherwise indicated, data are n (%).
AA, aplastic anemia; ALL, acute lymphoblastic leukemia; AML, acute myelogenous

leukemia; ATL, adult T-cell lymphoma/leukemia; CML, chronic myelogenous leukemia; CyA,
cyclosporine; F, female; GVHD, graft-versus-host disease; M, male; MAC, myeloablative
conditioning; MDS, myelodysplastic syndrome; NHL, non-Hodgkin lymphoma; Rel-BM, bone
marrow from relative; Rel-PB, peripheral blood stem cells from relative; RIC, reduced-
intensity conditioning; Tac, tacrolimus; UR-BM, bone marrow from unrelated donor; UR-CB,
cord blood from unrelated donor.
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with grade III-IV aGVHD). Overall, 849 patients of these patients
died of aGVHD (18.6%).

Comparison of predictive models

Prediction models for grade II-IV and grade III-IV aGVHD were
developed using 5 major machine learning algorithms and 1
classical algorithm (LR) based on the randomly selected training
cohort dataset (n5 18645). The ranking of the importance of each
variable responsible for the model was calculated (supplemental
Figure 1); HLA mismatch and HSCT type were the most essential
variables for predicting the incidence of aGVHD. AUCs for
predictive models ranged from 0.558 to 0.616 for grade II-IV
aGVHD and from 0.566 to 0.622 for grade III-IV aGVHD in the
validation cohort (Table 2). In both cases, the ADTree model gave
the best predictive performances; therefore, it was used for
subsequent analyses.

ADTree model output

According to the predictive power for each machine learning
algorithm (Table 2), the ADTree was used to develop predictive
models for aGVHD grade II-IV and III-IV using the training dataset
(final number of variables was set at 15). The prediction model,
consisting of a smaller number of variables, demonstrated a lower
AUC (for grade II-IV aGVHD: 0.616 with 15 variables, 0.611 with 10
variables, and 0.586 with 5 variables). The ADTree algorithm was
applied to the training cohort, and parameters were optimized
through 10-fold cross-validation.8 The ADTree prediction models
that were created are shown in Figure 1. For grade II-IV aGVHD
(Figure 1A), HLA disparity, initial diagnosis, and donor age were
selected as the first decision nodes, followed by patient sex, sex
mismatch, donor source, disease risk, body mass index, condition-
ing regimen, graft-versus-host disease (GVHD) prophylaxis, HCT-
CI, and so forth. The following variables were included in the
ADTree model for predicting grade III-IV aGVHD (Figure 1B):
disease risk, HLA disparity, donor source, donor age, usage of
irradiation, diagnosis, and period between the diagnosis and HSCT.
Patient age was not selected as a significant variable in either
model. As shown in Methods, patient age was treated as a binary
variable (younger vs older than the median) to reduce the
calculation burden to build the model; even if patient age were
treated as a continuous variable or more granular categorical
variable (per decades), it was not included in the final ADTree
model. The year of HSCT also was not included in the final models;
the subgroup analyses, including only HSCT in the modern era
(2006 or after), yielded similar models composed of the same
variables.

Some interactions between variables were discovered by the
ADTree algorithm. For instance, HSCT for female patients receiving
grafts from male donors was a risk factor for aGVHD grade II-IV only
if there was also an HLA mismatch (Figure 1A). Additionally, the risk
of developing aGVHD among patients with aplastic anemia was
strongly influenced by HLA mismatch but was not affected by the
period between disease onset and HSCT (Figure 1B).

The conventional LR model constructed as a comparison revealed
that donor type (unrelated donors compared with the relatives),
male sex, poor PS, conditioning regimen, GVHD prophylaxis, HLA
and sex mismatch, and advanced disease were significant risk
factors for grades II-IV and III-IV GVHD (data not shown).

Validations

Prediction scores for each patient in the validation cohort (n 5
8050) were calculated according to the ADTree algorithm, and
distributions are shown in Figure 2. For grade II-IV aGVHD, scores
were distributed from 20.995 to 0.405 (median, 20.148;
Figure 2A). This cohort was divided equally into 5 groups based
on the score: low-risk group (Low; range, 20.995 to 20.433;
median 20.516; n 5 1595), low-intermediate risk group (Low-Int;
range, 20.430 to 20.217; median, 20.315; n 5 1573),
intermediate-risk group (Int; range, 20.212 to 20.092; median,
20.156; n 5 1661), high-intermediate risk group (High-Int; range,
20.092 to 0.030; median,20.033; N5 1581), and high-risk group
(High; range, 0.031-0.405; median, 0.112; n 5 1640) (Figure 2A).
The distribution of scores for aGVHD grade III-IV is also displayed in
Figure 2B. The distribution was determined using the same method
(ie, equal division into 5 groups based on the score: Low, Low-Int,
Int, High-Int, and High).

The incidence of aGVHD (for grade II-IV and grade III-IV) was
calculated and compared among the 5 subgroups for aGVHD risk
using conventional statistical techniques (competitive hazard risk
models), along with OS and TRM (Figure 3; Table 3). For grade II-IV,
the incidence of aGVHD was stratified according to each risk
group. There was a remarkably high incidence of aGVHD among
patients sorted into the High-risk group compared with patients in
the other groups (Figure 3A; Table 3; hazard ratio [HR], 2.57 vs
Low-risk group; P , .01). The probability of grade II-IV aGVHD and
95% confidence intervals (CIs) were estimated in the validation
cohort (supplemental Figure 2A). OS decreased as the risk of
aGVHD increased, probably because of the higher incidence of
TRM (Figure 3B-C; Table 3; HR, 2.23 and 2.06 in the High-risk and
Low-risk groups, respectively). There was a significant relationship
between the raw values of the prediction score (continuous
variables) and the higher incidence of aGVHD, higher TRM, and
inferior OS, which were calculated using conventional Gray-Fine or
Cox proportional-hazard models (supplemental Table 3).

The incidence of grade III-IV aGVHD was also stratified among
subgroups (Figure 3D; Table 3; HR, 3.87, High-risk vs Low-risk
groups; P , .01). The probability of grade III-IV aGVHD and 95%
CIs were also estimated in the validation cohort (supplemental
Figure 2B). The correlation between grade III-IV GVHD prediction
score and OS was more pronounced (Figure 3E), most likely as
a result of the higher incidence of TRM among the higher-risk
patients (Figure 3F). There was also a significant relationship
between the prediction values (raw scores) and the higher

Table 2. Performance of eachmachine learningmodel and 1 classical

statistical model according to the AUCs in the validation cohort

Model

AUCs

Grade II-IV Grade III-IV

NB 0.604 0.622

ADTree 0.616 0.622

MLP 0.576 0.566

RF 0.558 0.593

AdaBoost 0.597 0.611

LR 0.562 0.539
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A

B
-0.832

aGVHD grade III-IV Score

1: High risk

0.132 -0.140

NoYes

-0.0750.097

6: HLA mismatched

NoYes

-0.795 0.038

2: Dx = AA

NoYes

7: HLA mismatched

0.343 -0.469

NoYes

10: Dx to SCT  250 d

-0.070 0.064

NoYes

-0.0360.170

8. Dx = NHL

NoYes

3: HLA mismatched

0.091 -0.106

NoYes

4: Rel-PB

0.175 -0.065

NoYes

5: Donor  40 yo

-0.054 0.096

NoYes

8: TBI

-0.080 0.036

NoYes

1: HLA mismatched

0.128 -0.122

5: Donor  40 yo

-0.061 0.088

aGVHD grade II-IV Score

NoYes

-0.0020.083

14: M to F

NoYes

6: Dx = AML/MDS

-0.081 0.065

NoYes

13: RIC regimen

-0.042 0.027

NoYes

7: UR-BM

0.069 -0.046

NoYes

-0.146 0.071

4. Rel-BM

NoYes

-0.0200.201

8. Dx = ATL

NoYes

-0.0830.096

3: Advanced risk

NoYes

0.106 -0.004

12: Dx = NHL

NoYes

0.010-0.049

15: Female Pt

NoYes

-0.030 0.051

10. BMI  22

NoYes

-0.148

2: Dx = AA

-0.467 0.015

NoYes NoYes

9: Tac-based GVHD prophylsxis

-0.038 0.057

NoYes

-0.049 0.124

11: HCT-CI   3

NoYes

Figure 1. ADTree predictive model of aGVHD. The ADTree consists of various levels of prediction (ellipses) and decision nodes (rectangles). Each prediction node is

associated with a weight, representing its contribution to the cumulative prediction score (the larger scores indicate higher incidence of aGVHD), whereas each decision node

contains a splitting attribute. Variables are not mutually exclusive. Patients traverse the tree according to their pretransplant characteristics (ie, variable values), and the

cumulative scores for grade II-IV aGVHD (A) and grade III-IV aGVHD (B) are calculated. Numbers that appear before the variable names indicate the rankings in ADTree. AA,

aplastic anemia; AML/MDS, acute myeloid leukemia or myelodysplastic syndrome; ATL, adult T-cell leukemia/lymphoma; BMI, body mass index; Dx, diagnosis; M to F, male

donor to female recipient; Rel-BM, bone marrow from relatives; NHL, non-Hodgkin lymphoma; Pt, patient; Rel-PB, peripheral blood stem cell from relatives; RIC, reduced-

intensity conditioning regimen; SCT, stem cell transplantation; Tac, tacrolimus; TBI, total body irradiation; UR-BM, bone marrow from unrelated donor; yo, years old.
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incidence of aGVHD, higher TRM, and inferior OS (supplemental
Table 3).

Discussion

This machine learning–guided retrospective cohort study investi-
gating risk prediction scores for aGVHD revealed 2 major findings:
ADTree provided the most accurate predictive model for aGVHD
among various machine learning algorithms, and the established
ADTree model clearly distinguished among 5 subgroups, based on
the incidence of aGVHD, which was closely related to OS rates and
the incidence of TRM. This study marked the first time that machine
learning has been used to predict the risk of aGVHD.

No standard procedures have been established for evaluating and
selecting which machine learning models are appropriate for use in
registry database analyses.8 A report from the European Society for
Blood and Marrow Transplantation (EBMT) showed that the
ADTree model was selected without comparing its power of
prediction with other machine learning models.8 Another study
compared various machine learning models, such as ADTree, LR,
MLP, NB, and RF. That study concluded that ADTree was the
second best model (after LR) in terms of predicting early TRM.9 We
used ADTree to create our prediction model because it showed the
highest AUC for GVHD prediction. As many as 15 variables were
included in the model to create the most precise prediction; the lower
number of variables was related to the inferior accuracy, although the
study from EBMT successfully established the overall mortality model
using 10 variables.8 The prediction of GVHD might be more difficult

than that of total mortality, which required the higher number of
variables. Furthermore, the visually comprehensive structure of ADTree
makes it an optimal model for use in the medical field compared with
other models like MLP, which is composed of the “black box” process
and does not a provide clear calculation process.9

In addition to demonstrating the strongest power of prediction and an
easy-to-understand structure, an important advantage of the ADTree
algorithm is its ability to detect interactions between variables. For
instance, our ADTree-based model discovered an interaction between
sex mismatch and HLA mismatch. HSCT involving female patients with
male donors was known not to be associated with poorer prognosis,27

but the present study revealed that this effect of higher aGVHD risk in
male-to-female HSCT was apparent only in the setting of HLA-
mismatched HSCT. In the previous study from Europe, Gahrton
et al28 reported that female-to-female HSCT had a significantly
lower nonrelapse mortality and better OS compared with male-to-
female HSCT. Their report did not show significant differences in the
incidence of GVHD, and our study is the first to report this point.
Unfortunately, already-established biological data cannot interpret this
phenomenon; therefore, we expect that our findings can generate new
biological studies of sex-related minor histocompatibility antigens (eg,
to explain this phenomenon). As another example, HLA disparity, which
is a major contributing factor for aGVHD, had the largest effect among
aplastic anemia patients. These data demonstrate the importance of
deliberately selecting donors for aplastic anemia patients, even if that
increases the time spent on donor coordination. The ADTree-based
model revealed that the period between disease onset and HSCT was
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Figure 2. Distribution of aGVHD scores in the

validation cohort. Distributions of aGVHD predic-
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displayed for grade II-IV aGVHD (A) and grade III-IV

aGVHD (B) among patients in the validation cohort
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irrelevant to predicting aGVHD risk among these patients. The ADTree
model is adept at identifying specific characteristics of unique
subpopulations, whereas these characteristics are usually neglected
in conventional statistical analyses.29 Compared with the conventional
model (eg, LR), ADTree did not find “brand new risk factors” for GVHD;
however, a more accurate (higher AUC) and interaction-familiar
prediction model was provided.

To take full advantage of machine learning models, it is important to
know how to manipulate raw data generated from this technique. In
this study, we stratified aGVHD risk scores (continuous variables)
into 5 subgroups (categorical variables) to evaluate the expected
hazards among each group. Because it is difficult to use raw
prediction scores to evaluate aGVHD risk in the clinical field, the
expected hazards in each stratified group can give the attending
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Figure 3. Incidence of aGVHD, OS, and TRM according to aGVHD scores in the validation cohort. (A) The cumulative incidence of grade II-IV aGVHD among the

validation cohort (n 5 8050) is shown according to each risk group for grade II-IV aGVHD (Low, n 5 1595; Low-Int, n 5 1573; Int, n 5 1661; High-Int, n 5 1581; High,

n 5 1640). OS (B) and TRM (C) calculated for the same subgroups. (D) The cumulative incidence of grade III-IV aGVHD among the validation cohort is shown according to each risk

group for grade III-IV aGVHD (Low, n 5 1304, Low-Int, n 5 1603; Int, n 5 1922; High-Int, n 5 1598; High, n 5 1623). OS (E) and TRM (F) calculated for the same subgroups.

Table 3. Validation analysis of predictive score by ADTree

Risk group

aGVHD Overall mortality TRM

HR 95% CI P HR 95% CI P HR 95% CI P

Grade II-IV

Low Reference Reference Reference

Low-Int 1.26 1.11-1.42 ,.01* 1.45 1.28-1.62 ,.01* 1.42 1.21-1.66 ,.01*

Int 1.57 1.39-1.76 ,.01* 1.66 1.48-1.86 ,.01* 1.62 1.40-1.89 ,.01*

High-Int 2.00 1.78-2.24 ,.01* 1.78 1.58-1.99 ,.01* 1.77 1.54-2.06 ,.01*

High 2.57 2.30-2.87 ,.01* 2.23 2.00-2.49 ,.01* 2.06 1.78-2.39 ,.01*

Grade III-IV

Low Reference Reference Reference

Low-Int 1.52 1.20-1.93 ,.01* 1.56 1.37-1.77 ,.01* 1.42 1.20-1.67 ,.01*

Int 1.85 1.48-2.31 ,.01* 1.71 1.51-1.94 ,.01* 1.51 1.29-1.78 ,.01*

High-Int 2.72 2.19-3.38 ,.01* 2.11 1.86-2.39 ,.01* 1.78 1.51-2.09 ,.01*

High 3.87 3.13-4.78 ,.01* 2.93 2.60-3.31 ,.01* 2.09 1.78-2.45 ,.01*

*Statistically significant.
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physicians more comprehensive clues for determining the risk of
aGVHD during selection of donor graft selections, determining
aGVHD prophylaxis regimens, and, moreover, identifying rapid
diagnostic or therapeutic interventions in higher-risk subgroups.
Translating the raw scores into subcategories might lead to the loss
of important clinical information,8 but we suspect that categoriza-
tion may be necessary to allow this model to be used in making
clinical decisions. Division into 5 subgroups was adopted in this
study to allow for the most accurate analysis using a database that
included a large number of patients; division into 3 subgroups may
identify the differentiated risk groups more clearly; however, this
“rough prediction” provides only a limited prediction capacity and
can be less informative in the clinical field.

The present study revealed the utility of machine learning as
a prognostic tool for aGVHD after allogeneic HSCT. Using 10-fold
internal cross-validation guaranteed the robustness of the estab-
lished predictive model,9 and using machine learning prevented any
bias from researchers in terms of variable selection and statistical
calculations. However, there are some limitations to this study that
must be addressed. For instance, we treated HLA disparity
between donors and recipients as binary data (ie, mismatched or
matched); however, the degree of HLA disparity may not be
equivalent between each combination of raw HLA data. For
example, the difference between HLA-A02:01 and HLA-A02:02
may not always be the same as that between HLA-A02:01 and
HLA-A11:01, although there is very little biological data to support
this view.30 Including all data for HLA antigen or allele combination
in the model requires a larger number of patients/donors and will
significantly increase the burden of calculation. Once this limitation
is overcome in the future, this model will provide more information
on how the degree of HLA disparity affects the risk of aGVHD.
Nevertheless, our analysis is valid as long as each combination of
HLA mismatch is reasonably categorized.

Another limitation is that our outcome measure, the incidence of
aGVHD, was also treated as a binary variable in all of the machine
learning models that we used in this study. Information on the onset
time for cases of aGVHD was not included in the process of model
building, even though onset data were included in multivariate
statistical models during validation analyses. To our knowledge, no
machine learning model has succeeded in handling the time-
dependent outcomes. In this study, the onset of aGVHD is limited to
a small window (usually 30-100 days after HSCT); therefore, the
effect of dismissing information regarding the time of onset is
suboptimal.

Overfitting is the conventionally discussed limitation in machine
learning,31 and our algorithm is not completely free of this limitation,
even though we limited the number of variables to 15 in our model.
Therefore, international validations (using EBMT or Center for
International Blood and Marrow Transplant Research cohorts in the

current system) should be performed in the future. Comparing our
model with the EBMT or Center for International Blood and Marrow
Transplant Research model, which can be established with the
same method using their cohort, can be the strongest validation and
provide scientifically essential discussion.

In conclusion, we demonstrated the feasibility of using machine
learning algorithms to predict aGVHD. ADTree established
a clinically reasonable and accurate predictive model using
a nationwide transplant database in Japan. This study will be helpful
in establishing various other prognostic predictive models in the
field of HSCT, as well as using machine learning to analyze other big
data sets, such as those containing biological or genetic in-
formation. Greater accuracy in prediction (ie, higher AUC values)
will likely be achieved if big data, such as HLA, killer
immunoglobulin-like receptor, and single nucleotide polymor-
phisms, can be properly integrated into future models. Distributing
these established models to clinicians via Web tools or mobile
applications will provide strong instruments to determine the most
appropriate therapeutic strategies in the clinical practice.
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