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High mitochondrial mass is associated with reconstitution capacity and
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Key Points

•HSCs can be separated
based on high or low
mitochondrial mass.

•Higher mitochondrial
mass is associated with
quiescence and greater
reconstitution capacity
of HSCs.

Introduction

Hematopoietic stem cells (HSCs) are capable of self-renewal and multilineage differentiation.1,2 HSCs
prefer glycolysis over mitochondrial oxidative phosphorylation for energy production.3-5 This metabolic
preference allows HSCs to limit reactive oxygen species (ROS) production and maintain HSC
potential.6,7 Although the function of mitochondria in HSCs is not fully understood, recent reports
have suggested that they play important roles other than adenosine triphosphate production.8,9

Contrary to the requirement to maintain low ROS levels, HSCs have recently been reported to
exhibit higher mitochondrial mass (a major source of ROS) compared with more differentiated cells
(Lin2Sca-12c-Kit1 cells),10 which seemingly contradicts previous views that HSCs exhibit a low
mitochondrial profile. However, whether mitochondrial mass varies among HSCs and is associated with
cell cycle state and HSC function are largely unknown.

Here, we show, using superresolution imaging of HSCs from mito-Dendra2 (PhAM) mice11 and droplet
digital polymerase chain reaction (ddPCR), that mitochondrial mass varies within the HSC population.
mito-Dendra2 fluorescence intensity in HSCs positively correlates with the expression of endothelial
protein C receptor (EPCR).12,13 Functionally, we show that HSCs with higher mitochondrial mass are
more quiescent and have greater reconstitution capacity. Overall, this study clarifies the association
between mitochondrial mass and HSC function and demonstrates that quiescent and potent HSCs are
highly enriched within the mito-Dendra2hi HSC fraction.

Methods

All experiments were performed according to protocols approved by the National University of
Singapore Institution of Animal Care and Use Committee, and the Office of Safety, Health, and
Environment. Detailed descriptions for all methods are described in the supplemental Methods.

Results and discussion

To address whether mitochondrial mass varies among HSCs, we first measured the fluorescence
intensity of bone marrow (BM) HSCs (CD1501CD482 Lin2Sca-11c-Kit1 [SLAM LSK] cells)14

obtained from mito-Dendra2 mice, which express Dendra2 specifically in mitochondria11 (Figure 1A;
supplemental Figure 1A). Because mito-Dendra2 fluorescence intensity varied among HSCs, we
analyzed mito-Dendra2lo and mito-Dendra2hi HSCs, defined as HSCs with the bottom 10% and top
10% of mito-Dendra2 fluorescence intensity, respectively (Figure 1A). We quantitated the mitochondrial
mass of mito-Dendra2lo and mito-Dendra2hi HSCs using superresolution imaging of mitochondria with
z-stacks.15 In 3-dimensional imaging, optical aberrations due to refractive index mismatch between oil
and mounting medium and imperfect spherical aberration correction lead to point spread function (PSF)
enlargement (Figure 1B, left panel). Thus, we corrected PSF enlargement using images of fluorescent
microspheres (Figure 1B, right panel) and quantified 3-dimensional mitochondrial mass in HSCs
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(Figure 1C). Notably, we observed higher mitochondrial mass in
mito-Dendra2hi HSCs compared with mito-Dendra2lo HSCs (Figure
1C-D). To confirm this observation, we used ddPCR for absolute
quantification of mitochondrial DNA copy number (Figure 1E) and
found that mito-Dendra2hi HSCs had higher mitochondrial DNA
copy number than mito-Dendra2lo HSCs (Figure 1F). These results
indicate that mitochondrial mass varies among HSCs and confirm
that mito-Dendra2hi HSCs have higher mitochondrial mass than
mito-Dendra2lo HSCs.

In addition, the expression levels of electron transport chain–
related genes were lower in mito-Dendra2hi HSCs (supplemental
Figure 1B), whereas the expression of glycolysis-related, mitochondrial

fission–related, and mitochondrial fusion–related genes was compa-
rable between mito-Dendra2lo and mito-Dendra2hi HSCs (supple-
mental Figures 1C and 2A). Consistent with the lower expression of
electron transport chain–related genes, mito-Dendra2hi HSCs also
displayed lower intracellular ROS levels than mito-Dendra2lo

HSCs (Figure 1G-H), thereby suggesting that electron transport
chain activity is lower in mito-Dendra2hi HSCs.

To further characterize the mito-Dendra2hi HSC fraction, we
compared the expression of HSC-related genes between mito-
Dendra2lo and mito-Dendra2hi HSCs (Figure 2A; supplemental
Figure 3A). Interestingly, mito-Dendra2hi HSCs expressed signifi-
cantly lower levels of Cd34 and higher levels of Procr (encodes

CD150+CD48-

(SLAM) LSK

lo hi

mito-Dendra2

A

Before correction
Z

After correction

B

Sorting of
mito-Dendra2lo and

mito-Dendra2hi HSCs

Assembly of PCR with
probes (FAM/HEX)

DNA extraction

Droplet generation

PCR amplification

Analysis of droplets
(mtDNA/nDNA)

E

0

20

40

60

80

100

m
tD

NA
 c

op
y n

um
be

r
(m

tD
NA

/n
DN

A)

120
**

mito-Dendra2

lo hi

F

CellROX

mito-Dendra2hi

mito-Dendra2lo

G

0

20

40

60

80

100

Re
lat

ive
 M

FI
of

 C
ell

RO
X 

(%
)

120
*

mito-Dendra2

lo hi

H

mito-Dendra2lo mito-Dendra2hi

C

0
20
40
60
80

100

Re
lat

ive
 m

ito
 m

as
s (

%
)

120
140
160

****

mito-Dendra2

lo hi

D

Figure 1. mito-Dendra2
hi
HSCs have higher mitochondrial mass than mito-Dendra2

lo
HSCs. (A) Representative flow cytometric graph for gating of mito-Dendra2lo

(bottom 10%) and mito-Dendra2hi (top 10%) fractions within BM HSCs (SLAM LSK cells) obtained from mito-Dendra2 mice. (B) Representative superresolution images of

fluorescent microspheres (diameter, 0.18 mm) before (left panel) and after (right panel) PSF correction. (C) Representative isosurface rendering of PSF-corrected super-

resolution images of mito-Dendra2lo (left panel) and mito-Dendra2hi (right panel) HSCs. Scale bar, 2 mm. (D) Mitochondrial mass in mito-Dendra2lo and mito-Dendra2hi HSCs

determined by superresolution images with PSF correction (mean 6 standard error of the mean [SEM]; n . 60 each). (E) Schematic flow showing the absolute quantification

of mitochondrial DNA copy number (mtDNA/nDNA) using ddPCR. (F) Mitochondrial DNA copy number in mito-Dendra2lo and mito-Dendra2hi HSCs determined by ddPCR

(mean 6 SEM; n 5 7 each). (G) Representative flow cytometric graph of CellROX fluorescence intensity in mito-Dendra2lo and mito-Dendra2hi HSCs. (H) Cellular ROS levels

in mito-Dendra2lo and mito-Dendra2hi HSCs (mean 6 standard deviation [SD]; n 5 3 each). *P , .05, **P , .01, ****P , .0001, Student t test.
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EPCR) compared with mito-Dendra2lo HSCs. Because EPCR
expression has been reported to strongly correlate with HSC
function,12 we next compared the expression of EPCR between
mito-Dendra2lo and mito-Dendra2hi HSCs. The frequency of
EPCRhi HSCs was higher within the mito-Dendra2hi HSC fraction
than within the mito-Dendra2lo HSC fraction (Figure 2B-C). In
addition, the frequency of EPCRhi HSCs within the mito-Dendra2hi

HSC fraction was significantly higher than the frequency of EPCRhi

HSCs in the total HSC population (Figure 2C). We also compared
the mito-Dendra2 fluorescence intensity between EPCRlo/2 and
EPCRhi HSCs; importantly, the median fluorescence intensity
was higher in EPCRhi HSCs (Figure 2D-E). When mito-Dendra2
fluorescence intensity was plotted against EPCR expression, it
correlated positively with EPCR expression in HSCs (Figure 2F),
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Figure 2. mito-Dendra2
hi
HSCs are more quiescent

and have greater reconstitution capacity than mito-

Dendra2
lo
HSCs. (A) Relative expression of Cd34 and

Procr (EPCR) normalized to B2m expression in mito-

Dendra2lo and mito-Dendra2hi HSCs quantified by reverse

transcription polymerase chain reaction (mean 6 SD;

n 5 5 each). (B) Representative flow cytometric graphs of

EPCR expression in mito-Dendra2lo (left panel) and mito-

Dendra2hi (right panel) HSCs. (C) Frequency of EPCRhi

HSCs within mito-Dendra2lo, mito-Dendra2hi, and total

HSC fractions (mean 6 SD; n 5 3 each). (D) Representa-

tive flow cytometric graph of mito-Dendra2 fluorescence

intensity in EPCRlo/2 and EPCRhi HSCs. (E) Median

fluorescence intensity of mito-Dendra2 in EPCRlo/2 and

EPCRhi HSCs (mean 6 SD; n 5 3 each). (F) Representa-

tive flow cytometric plots showing the correlation between

mito-Dendra2 fluorescence intensity and EPCR expression

of HSCs. (G) Representative flow cytometric plots showing

cell cycle profiles of mito-Dendra2lo and mito-Dendra2hi

HSCs. (H) Frequency of G0 phase cells within mito-

Dendra2lo and mito-Dendra2hi HSCs (mean 6 SD; n 5 4

each). (I) Monthly peripheral blood (PB) chimerism of

mononuclear cells in Ly5.1 recipients transplanted with

mito-Dendra2lo or mito-Dendra2hi ESLAM LSK cells

(250 cells) and Ly5.1 competitor cells (2 3 105 cells) over

4 months posttransplantation (mean 6 SEM; n 5 4 or

5 each). (J) BM chimerism of HSCs in the Ly5.1 recipients

transplanted with mito-Dendra2lo or mito-Dendra2hi ESLAM

LSK cells 4 months posttransplantation (mean 6 SEM;

n 5 4 or 5 each). *P , .05, **P , .01, ***P , .001,

****P , .0001, Student t test.
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thus suggesting that mito-Dendra2hi HSCs contain HSCs with
greater HSC potential.

We next studied the association between mitochondrial mass and
cell cycle state and observed that mito-Dendra2hi HSCs exhibited
a higher frequency of quiescent (G0) cells than did mito-Dendra2lo

HSCs (Figure 2G-H). Correspondingly, mito-Dendra2hi HSCs had
lower expression of the cell cycle–associated genes Myc and
Cdk6, but higher expression of the negative cell cycle regulator
Cdkn1c, compared with mito-Dendra2lo HSCs (supplemental
Figure 3B). Under stress hematopoiesis induced by 5-fluorouracil
(5-FU) injection, the number of Lin2EPCRhiCD1501CD482

HSCs9 decreased 2 days after 5-FU injection and recovered 7 days
after 5-FU injection (supplemental Figure 4A). On the other hand,
the number of mito-Dendra2hi Lin2EPCRhiCD1501CD482 HSCs
remained low 7 days after 5-FU injection (supplemental Figure 4B),
which is consistent with cell cycle entry and proliferation of most
HSCs 7 days after 5-FU injection.9 Therefore, these observa-
tions suggest that mito-Dendra2hi HSCs are more quiescent than
mito-Dendra2lo HSCs.

To determine whether mitochondrial mass is associated with recon-
stitution capacity in HSCs, we conducted competitive BM trans-
plantation of mito-Dendra2lo or mito-Dendra2hi HSCs with Ly5.1
competitor cells into lethally irradiated Ly5.1 recipients. Recipients
transplanted with mito-Dendra2hi HSCs exhibited significantly
higher chimerism of PB mononuclear cells (MNCs) (supplemental
Figure 5A-B) and BMHSCs (supplemental Figure 5C-D) compared
with recipients transplanted with mito-Dendra2lo HSCs. Second-
ary BM transplantation also revealed higher PB MNC and BM
HSC chimerism in mice transplanted with mito-Dendra2hi HSCs
(supplemental Figure 5E-F), suggesting that long-term HSCs
are enriched in the mito-Dendra2hi HSC fraction. No difference in
homing capacity was observed between mito-Dendra2lo and mito-
Dendra2hi LSK cells (supplemental Figure 6A). Using additional
gating of EPCR, we observed that recipients transplanted with mito-
Dendra2hi EPCRhiCD1501CD482 (ESLAM)16 LSK cells exhibited
higher PB MNC chimerism than recipients transplanted with mito-
Dendra2lo ESLAM LSK cells over 4 months posttransplantation,
whereas PB chimerism in recipients with mito-Dendra2lo ESLAM
LSK cells progressively increased (Figure 2I). Moreover, analysis
of HSC chimerism in BM 4 months posttransplantation showed
higher chimerism in recipients transplanted with mito-Dendra2hi

ESLAM LSK cells compared with those transplanted with mito-
Dendra2lo ESLAM LSK cells which also exhibited significant
chimerism of HSCs (Figure 2J). Taken together, these results

indicate that mito-Dendra2hi HSCs have a greater reconstitution
capacity than mito-Dendra2lo HSCs.

In this study, we identified a significant variation in mitochondrial
mass among HSCs. HSCs with higher mitochondrial mass were
more quiescent and exhibited greater reconstitution capacity. Thus,
high mito-Dendra2 fluorescence intensity enriches quiescent and
potent HSCs. Because mitochondrial membrane potential has
been reported to be low in quiescent HSCs,9 our study may
suggest a mass/function paradox regarding mitochondria in HSCs.
The quality and function of mitochondria in quiescent HSCs should
be clarified in the future.
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