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Key Points

•MCMV induces type 1
IFN that alters the
differentiation of
MDSCs critical for
transplantation
tolerance.

Clinical tolerance without immunosuppression has now been achieved for organ trans-

plantation, and its scope will likely continue to expand. In this context, a previously

understudied and now increasingly relevant area is how microbial infections might affect

the efficacy of tolerance. A highly prevalent and clinically relevant posttransplant pathogen

is cytomegalovirus (CMV). Its impact on transplantation tolerance and graft outcomes is not

well defined. Employing a mouse model of CMV (MCMV) infection and allogeneic pancreatic

islet transplantation in which donor-specific tolerance was induced by infusing donor

splenocytes renderedapoptotic by treatmentwith ethylenecarbodiimide,we investigated the

effect of CMV infection on transplantation tolerance induction. We found that acute MCMV

infection abrogated tolerance induction and that this abrogation correlated with an

alteration in the differentiation and function of myeloid-derived suppressor cells (MDSCs).

These effects onMDSCsweremediated in part throughMCMV induced type 1 interferon (IFN)

production.DuringMCMVinfection, thehighly immunosuppressiveGr1HI-granulocyticMDSCs

were markedly reduced in numbers, and the accumulating Ly6CHI-monocytic cells lost their

MDSC-like function but instead acquired an immunostimulatory phenotype to cross-present

alloantigens and prime alloreactive CD8 T cells. Consequently, the islet allograft exhibited an

altered effector to regulatory T-cell ratio that correlated with the ultimate graft demise.

Blocking type 1 IFN signaling during MCMV infection rescuedMDSC populations and partially

restored transplantation tolerance. Our mechanistic studies now provide a solid foundation

for seeking effective therapies for promoting transplantation tolerance in settings of CMV

infection.

Introduction

Cytomegalovirus (CMV) is a highly prevalent viral pathogen whose infection in immunocompetent
individuals is generally mild or asymptomatic.1 However, in immune-suppressed hosts such as in
transplant recipients, CMV infection can cause significant morbidity and mortality, and has long been
associated with acute and chronic allograft dysfunction,2-4 and therefore remains a major health
hazard.2,5 An important factor that facilitates CMV infection and its replication in transplant recipients is
impaired host antiviral immunity because of indefinite use of immunosuppression.6 Clinically, donor-
specific tolerance has now been achieved in transplant recipients.7-11 This could potentially eliminate the
need for indefinite immunosuppression, therefore minimizing the risk for CMV infection. However, the
reciprocal impact of CMV infection on the ability to induce and/or maintain transplantation tolerance has
not been studied.
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Currently, successful clinical tolerance protocols involve donor
bone marrow (BM) transplantation and chimerism induction. Such
protocols, without an exception, require recipient conditioning with
chemotherapeutic agents, which carry significant toxicities12 and
may directly impact allograft function.13 Alternatively, we have
shown that donor splenocytes simply treated with the chemical
cross-linker ethylenecarbodiimide (ECDI-SPs) effectively undergo
apoptosis and, when infused IV in recipients, readily induce robust
donor-specific tolerance in murine models of allogeneic and xenogeneic
transplantation.14-20 Recently, 2 independent studies have demon-
strated the remarkable safety and efficacy of this approach of antigen
delivery via apoptotic cells for immune tolerance induction in human BM
transplantation and multiple sclerosis.21,22 Employing this approach, we
have previously shown that infusion of ECDI-SP induces CD11b1 cells
phenotypically and functionally resembling myeloid-derived suppressor
cells (MDSCs).18 MDSCs are a heterogeneous population of immature
cells largely composed of 2 subpopulations in mice (ie, CD11b1Gr1HI

granulocytic-MDSCs and CD11b1Ly6CHI monocytic-MDSCs).23 In
multiple transplant settings, MDSCs have been critically implicated in
promoting transplantation tolerance by infiltrating transplanted allografts
and locally subverting alloreactive T-cell activation.18,24

In the current study, we used murine CMV (MCMV) infection in an
ECDI-SP tolerance model to investigate the impact of this highly
clinically relevant pathogen on the induction of donor-specific
tolerance and its effects on MDSCs via type 1 interferon (IFN)
production as a mechanism of tolerance disruption.

Materials and methods

Mice

Eight- to 10-week-old male BALB/c and C57BL/6 (B6) mice were from
Jackson Laboratory (Bar Harbor, ME). Mice were housed under specific-
pathogen–free conditions and used according to approved protocols by
Northwestern Institutional Animal Care and Use Committee.

Islet transplantation

Mice were rendered diabetic by streptozotocin (Sigma Aldrich).
Islet transplantation was performed as described.14 Graft function
was monitored by blood glucose using OneTouch glucometer
(LifeScan Inc.). Rejection was confirmed when 2 consecutive
readings were .250 mg/dL.

MCMV infection

Mouse CMV strain Dm157 was a gift from Michael Abecassis
(Northwestern University). Working stocks were prepared as
described.25,26 Recipients were infected (108 plaque-forming units;
intraperitoneally [IP]) on indicated days.

Apoptotic cell preparation

Donor-specific tolerance was induced by IV injection of ECDI-
SPs.14,15 Briefly, splenocytes were incubated with ECDI (Calbio-
chem) (3.2 3 108 cells per mL with 30 mg/mL ECDI) on ice for 1
hour followed by washing and IV injection (13 108 cells per mouse)
on indicated days.

Anti-IFNAR1 antibody and recombinant

IFN-a treatment

Anti-IFNAR1 antibody (MAR1-5A3; BioXCell) or isotype antibody
(mouse immunoglobulin G1) was given at 250 mg per mouse

(IP) on indicated days. Recombinant mouse IFN-a (accession#
NM_206870 expressed in Escherichia coli; BioLegend) was given
at 400 U/g per day subcutaneously on indicated days. Control mice
received phosphate-buffered saline (PBS).

MDSC depletion

MDSCs were depleted via IP injections of anti-Gr1 antibody (RB6-
8C5; BioXCell) as described.18 Control mice received isotype
antibody (rat immunoglobulin G2b).

Adoptive transfer of Gr1HI MDSCs

Gr1HI MDSCs were sorted from BM and spleens of naı̈ve B6 mice
using biotin-labeled anti-Gr1 antibody (Miltenyi). Purity of sorted
Gr1HI cells by this method was routinely .90% with very few
Ly6CHI cells. Gr1HI cells (30 3 106; equivalent to the number of
Gr1HI cells pooled from spleen and BM of 1 naı̈ve mouse) were
injected IV on the indicated days.

Flow cytometry

Cells were stained with fluorochrome-conjugated antibodies for 30
minutes on ice, washed, acquired on CantoII (BD Biosciences), and
analyzed using FlowJo V.10.1 (Tree Star LLC). For intracellular staining,
cells were permeabilized using Cytofix/Cytoperm buffers (BD) followed
by staining with fluorochrome-conjugated antibodies. Antibodies used
were as follows: Gr1-eFluor780 (RB6-8C5), CD11c–fluorescein
isothiocyanate (FITC) (HL3), CD86-allophycocyanin (APC)
(16-10A1), CD11b-phycoerythrin (PE), PerCPCy5.5 (M1/70), Ly6C-
eFluor450 (HK1.4), F4/80-PECy7 (BM8), major histocompatibility
complex II (MHC II)–FITC (MS/114.15.2), interleukin 12 (IL-12)–PE
(C17.8), CD4-eFluor450 (GK1.5), CD8-PerCPCy5.5 (53-6.7), CD3-
FITC (17A2), and FcgRII/III-FITC (93), all from eBioscience; and
Ly6G-APCCy7 (1A8) and C5aR-PECy7 (20/70), from BioLegend.
Dead cells were excluded using Aqua live/dead dye (Molecular Probes).

T-cell proliferation

Splenic Gr1HI and Ly6CHI cells were obtained using the MDSC
isolation kit per the manufacturer’s protocol (Miltenyi). Magnetic-
activated cell sorted CD8 T cells were labeled with carboxyfluorescein
succinimidyl ester (CFSE) (Life Technologies), seeded at 104 per well,
and cocultured with 104 anti-CD3/CD28 Dynabeads and indicated
numbers of Gr1HI or Ly6CHI cells. T-cell proliferation was determined
by CFSE dilution after 72 to 96 hours. For alloantigen cross-
presentation, CFSE-labeled CD8 T cells were seeded at 33 3 104/
well and cultured with 166 3 104 splenic Ly6CHI cells from indicated
mice in the presence of donor splenocyte lysates (50mg/mL), followed
by measuring CFSE dilution in 96 hours.

BM cell culture

BM was flushed from long bones of naı̈ve B6 mice. Single cell
suspension was magnetic-activated cell sorted for lineage negative
(Lin2) cells to a purity of .97% per the manufacturer’s protocol
(Lineage Depletion Kit, Miltenyi). Sorted cells were cultured in
Dulbecco’s modified Eagle medium (with 10% fetal bovine serum
and 1% antimicrobials) for 2 days in the presence of recombinant
IFN-a (100 U/mL; PBL Assay Science) or PBS. Following cultures,
cells were stained with CD11b-APC, lineage markers (CD3, CD19,
NKp46, and Ter-119) conjugated with PerCPCy5.5 as a dump
channel, Gr1-eF780, Ly6C-eF450, CD11c-FITC, and IRF8-PE, and
analyzed by fluorescence-activated cell sorting (FACS).
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IFN-a enzyme-linked immunosorbent assay

Serum IFN-a levels were determined using mouse IFN-a enzyme-
linked immunosorbent assay kit (PBL Assay Science).

MCMV DNA detection

DNA was extracted using TRIzol (Invitrogen). Real-time polymerase
chain reaction (ABI Prism 7500) was performed in triplicates using
TaqMan master mix.27 Primers and TaqMan probes were as follows:
MCMV major-immediate-early protein (MIEP): 59GGTGGTCAGACC-
GAAGACT 39 (forward), 59GCTGAGCTGCGTTCTACGT 39-
(reverse), 59CTGGTCGCGCCTCTTA 39 (probe); mouse b-actin:
59CGTTCCGAAAGTTGCCTTTTA 39 (forward), 59GCCGCCGG-
GTTTTATAGG 39 (reverse), 59CTCGAGTGGCCGCTG 39 (probe).
Cycling conditions were 50°C for 2 minutes and 95°C for 10 minutes
followed by 50 cycles of 95°C for 15 seconds and 60°C for 1 minute.

Statistical analysis

Data are presented as mean 6 standard deviation (SD). Statistical
analysis was performed in GraphPad Prism 5.0a (GraphPad Inc.).
Data were analyzed using nonparametric Student t test (Mann-
Whitney U test for 2 groups) or analysis of variance (Kruskal-Wallis
for 3 groups). Graft-survival was analyzed using log-rank test.
P , .05 was considered significant.

Results

Acute MCMV infection impairs induction of

transplantation tolerance

We first examined the effect of acute MCMV infection on tolerance
induction in a mouse model of allogeneic islet transplantation.
Donor-specific tolerance was induced by IV infusion of donor
splenocytes treated with ECDI (ECDI-SP) on days27 and11, with
day 0 being the day of transplantation (Figure 1A) as previously
described.14,15,18,20 Infusion of donor ECDI-SP in uninfected
recipients induced transplantation tolerance and promoted in-
definite islet allograft survival (Figure 1B). We used the Dm157
strain of MCMV to infect transplant recipients. Dm157 is a mutated
strain of MCMV that lacks the m157 glycoprotein recognized by the
natural killer cell Ly49H receptor and therefore has improved
virulence in B6 mice compared with wild-type MCMV.28 Acute
Dm157 infection (108 plaque-forming units, day 0) of donor ECDI-
SP–treated, otherwise tolerized recipients resulted in acute re-
jection of the majority of islet allografts within 2 to 3 weeks
(Figure 1B). Furthermore, delaying Dm157 infection to day 7
posttransplantation also resulted in eventual rejection of ;70%
islet allografts, although over a more extended period (Figure 1C).
To determine whether direct viral cytopathogenic effects on islets
could be the cause of acute islet graft loss in Dm157-infected
recipients, we performed syngeneic islet transplant (B6 to B6) in
recipients acutely infected with the same dose of Dm157 on day 0.
In these recipients, measurement of MCMV MIEP DNA in islet
isografts revealed viral presence on day 4 and clearance by day 7
postinfection, a pattern similar to that of the spleen (Figure 1D).
Despite direct viral infection of islets, function of the islet isograft
remained intact over a prolonged period (Figure 1E). These data
ruled out the possibility that direct islet infection by Dm157 caused
islet graft loss, instead pointing to interference of tolerogenic
pathways by ECDI-SP as the underlying cause of tolerance
abrogation by the virus.

MCMV infection interferes with transplant tolerance

via IFN-a production

IFN-a production in response to MCMV infection is crucial for host
antiviral immunity29,30 and homeostasis.31 In our model of acute
Dm157 infection, we found that IFN-a in circulation peaked by day 2
and subsided by day 4 postinfection (Figure 2A). Considering the
immunostimulatory nature of IFN-a,32 we hypothesized that MCMV-
induced IFN-a may underlie the observed tolerance abrogation
seen in our model. To test this hypothesis, we first examined if
blocking its receptor could improve the efficacy of donor ECDI-SPs
in infected recipients. IFN-a signals through heterodimeric recep-
tors IFNAR1 and IFNAR2. A blocking antibody to IFNAR1 (anti-
IFNAR1-Ab) was given for the period spanning Dm157 infection
and the ensuing IFN-a production to allogeneic islet transplant
recipients treated with donor ECDI-SPs as shown in Figure 2B. This
treatment alone was indeed sufficient to restore tolerance efficacy
by donor ECDI-SPs in a substantial proportion of recipients acutely
infected with Dm157 (Figure 2B). Reciprocally, we treated trans-
plant recipients otherwise tolerized by donor ECDI-SPs with
recombinant IFN-a instead of acute Dm157 infection. As shown
in Figure 2C, similar to Dm157 infection, IFN-a also resulted in rapid
rejection of islet allografts in;80% of recipients otherwise tolerized
by donor ECDI-SPs. Collectively, these findings suggest that
MCMV-induced type 1 IFN is the underlying cause of tolerance
abrogation seen in our model.

ECDI-SP–mediated tolerance to allogeneic islets

requires MDSCs

Generated in the BM, MDSCs can be divided into 2 subpopulations
in mice: Gr1HI-MDSCs and Ly6CHI-MDSCs. Both have been
implicated in promoting allograft tolerance by inhibiting T-cell
responses.24,33 We hypothesized that Dm157 may critically alter
the differentiation of MDSC subpopulations, leading to abrogation
of tolerance otherwise induced by donor ECDI-SPs. To test this, we
first examined whether MDSCs were indeed required for tolerance
induction to allogeneic islets by donor ECDI-SPs. As shown in
Figure 3A (with gating strategy shown in supplemental Figure 1),
anti-Gr1-Ab thoroughly depleted both Gr1HI and Ly6CHI-MDSCs
as previously reported.16,18 Furthermore, depletion of MDSCs
resulted in acute rejection of the islet allograft in;80% of recipients
treated with donor ECDI-SPs (Figure 3B), similar to what we
previously observed in cardiac allograft recipients.16,18 These data
highlight the critical role of MDSCs in tolerance induction by donor
ECDI-SPs in our current model of allogeneic islet transplantation.

We next investigated the effects of MCMV infection on the
individual MDSC subpopulations in ECDI-SP–treated transplant
recipients.

Acute MCMV infection impairs generation of

immunosuppressive Gr1HI-MDSCs

We first determined the effect of acute Dm157 infection on Gr1HI-
MDSCs in ECDI-SP–treated recipients. As shown in Figure 4A,
infusion of donor ECDI-SPs promoted a significant increase of circu-
lating Gr1HI-MDSCs compared with prior to treatment (day 212).
This increase was initially observed on day 3 posttransplantation
and persisted during subsequent time points (Figure 4A). In-
terestingly, acute Dm157 infection on day 0 in the same hosts led
to a subsequent gradual but sustained decrease of circulating
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Gr1HI-MDSCs compared with uninfected hosts (Figure 4A). A
similar pattern of reduction of Gr1HI-MDSCs in the spleen by
Dm157 infection was also observed (data not shown). To determine

whether MCMV-induced IFN-a played a role in the observed decline
of Gr1HI-MDSCs, we treated Dm157-infected recipients with anti-
IFNAR1-Ab as in Figure 2B. As shown in Figure 4B (scatter graph)
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vehicle (PBS) or mouse recombinant IFN-a (400 U/g per day) on the indicated days (N 5 6, compiled from 2 independent experiments). *P , .05 (log-rank test).
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and supplemental Figure 2 (dot plots), the decline of circulatory
Gr1HI-MDSCs by Dm157 infection was indeed completely rescued
by anti-IFNAR1-Ab.

We next determined if Gr1HI-MDSCs were also phenotypically and/
or functionally altered by Dm157 infection. Expression levels of
complement receptors C5aR and FcgRII/III (CD32/CD16) on
Gr1HI-MDSCs have been associated with their maturation
state.34,35 As shown in Figure 4C-D, Dm157 infection did not alter
the expression levels of these markers on the Gr1HI-MDSCs. We
next examined the suppressive potential of Gr1HI-MDSCs retrieved
form Dm157-infected recipients. Ten days posttransplantation,
Gr1HI-MDSCs sorted from the spleens of uninfected or Dm157-
infected transplant recipients treated with donor ECDI-SPs were
cocultured with syngeneic CD8 T cells stimulated with anti-CD3/
CD28. As shown in Figure 4E, in the absence of Gr1HI-MDSCs,
CD8 T cells proliferated rigorously upon anti-CD3/CD28 stimula-
tion. Addition of Gr1HI-MDSCs at a 1:1 ratio (MDSC:CD8), either
from uninfected or Dm157-infected hosts, equally suppressed CD8
T-cell proliferation (Figure 4E-F), similar to their counterpart from
naı̈ve untransplanted mice. As a control for nutrient deprivation,
addition of an identical number of non-MDSCs failed to suppress
T-cell proliferation (data not shown). These data are consistent with
published literature demonstrating a predominant effect of CD11b1

Gr11MDSCs on CD8 T cells.36 A dose titration of Gr1HI-MDSCs in
the suppression assay revealed a similar dose response of Gr1HI-
MDSCs whether they were from naı̈ve, uninfected, or Dm157-
infected ECDI-SP–treated B6 mice (supplemental Figure 3),
indicating that MCMV infection did not alter their suppressive
capacity. Collectively, these data reveal that MCMV infection
impairs generation of the highly immunosuppressive Gr1HI-MDSCs,
likely via stimulating type 1 IFN production, but does not alter their
phenotype or function.

We next tested whether adoptive transfer of Gr1HI-MDSCs in
Dm157-infected recipients could rescue the tolerance induced by
donor ECDI-SPs. To do so, we sorted B6 Gr1HI-MDSCs using
biotin-labeled anti-Gr1 antibody (Figure 4G); 30 3 106 sorted

Gr1HI-MDSCs were adoptively transferred to Dm157-infected
recipients on the indicated days (Figure 4H). This resulted in a
significant prolongation of graft survival in Dm157-infected recip-
ients (Figure 4H). These data suggest that impairment of tolerance
by acute MCMV infection can in part be rescued by adoptive
transfers of Gr1HI-MDSCs.

Acute MCMV infection promotes differentiation of

inflammatory Ly6CHI monocytes

We next examined the effect of acute Dm157 infection on Ly6CHI-
MDSCs. As shown in Figure 5A, in comparison with uninfected
recipients, acutely infected recipients exhibited an impressive
increase of circulating Ly6CHI cells by day 10 and continued to
increase by day 15. This increase of Ly6CHI cells by Dm157
infection was again reversed by recipient anti-IFNAR-Ab treatment
(Figure 5B; supplemental Figure 2). Phenotypically, we found that
the peripheral Ly6CHI cells in Dm157-infected recipients contained
a substantial subpopulation (;40%) that now expressed CD11c
while downregulating CD115 (Figure 5C) and F4/80 (supplemental
Figure 4). These changes were also largely reversed by anti-
IFNAR1-Ab treatment (Figure 5C). Interestingly, we observed a
similar increase of Ly6CHI cells in the islet allografts (Figure 5D) of
Dm157-infected recipients, which similarly upregulated CD11c
while downregulating CD115 (Figure 5E). Furthermore, intra-
graft Ly6CHI cells from Dm157-infected recipients expressed a
significantly enhanced level of IL-12p40 and CD86 compared
with their counterpart from uninfected recipients (Figure 5F).
The expression of MHC II was comparable in both groups
(Figure 5F). Collectively, these data suggest that Dm157
infection promotes the differentiation of immature Ly6CHI cells
to CD11c1CD1152 inflammatory monocytes that exhibit an
immunostimulatory phenotype.

Inflammatory Ly6CHI cells from Dm157-infected

recipients promote priming of CD8 T cells

Next, we evaluated the functional characteristics of Ly6CHI cells in
transplant recipients acutely infected with Dm157. To do so, we
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sorted splenic Ly6CHI cells 10 days posttransplant from either
uninfected or Dm157-infected transplant recipients treated with
donor ECDI-SPs. We used splenic Ly6CHI cells because they

shared a similar phenotype as graft-infiltrating Ly6CHI cells
(supplemental Figure 5), and a sufficient number could be obtained
for in vitro experiments. Sorted splenic Ly6CHI cells were
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cocultured with syngeneic CD8 T cells stimulated with anti-CD3/
CD28. As shown in Figure 6A, splenic Ly6CHI cells from uninfected
ECDI-SP–treated transplant recipients exerted a measurable
suppression on CD8 T-cell proliferation. In contrast, splenic Ly6CHI

cells from Dm157-infected ECDI-SP–treated transplant recipients
completely failed to suppress CD8 proliferation and were in fact
further stimulatory to their proliferation (Figure 6A). Next, we
examined the ability of the Ly6CHI cells from Dm157-infected
recipients to cross-present alloantigens to stimulate donor-specific
T-cell proliferation. To do so, splenic Ly6CHI cells were obtained
from Dm157-infected transplant recipients, pulsed with donor
splenocyte lysate, and cocultured with syngeneic CD8 T cells at a
ratio of 5:1 (Ly6CHI:CD8). Splenic Ly6CHI cells from naı̈ve or
uninfected transplanted recipients served as controls. As shown in
Figure 6B, in contrast to Ly6CHI cells from naı̈ve or uninfected

recipients, Ly6CHI cells from Dm157-infected recipients readily
cross-presented alloantigens to CD8 T cells and stimulated a
significant alloantigen-driven proliferation of these cells. Consistent
with these data, we observed a marked increase of graft-infiltrating
CD8 T cells in Δm157-infected recipients compared with un-
infected recipients (Figure 6C). We further observed that the total
number of intragraft CD41Foxp31 regulatory T cells (Tregs) was
markedly reduced in Dm157-infected recipients (Figure 6D), again
suggesting that the Ly6CHI cells from infected recipients may no
longer be MDSCs, as functional Ly6CHI-MDSCs have been shown
to promote Treg expansion.37 Collectively, these data demonstrate
that Ly6CHI cells from Dm157-infected recipients lose MDSC-like
immunosuppressive characteristics and instead acquire an immu-
nostimulatory phenotype and gain the ability to prime alloreactive
CD8 T cells.
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monocytes. (A) Kinetics of circulating CD11b1Ly6CHI cells in ECDI-SP–treated,

either uninfected or Dm157-infected (on day 0), transplant recipients. Total live CD11b1Ly6CHI cells were enumerated by FACS in 50 mL of blood drawn on the indicated

days. (B) Quantitative analysis of total CD11b1Ly6CHI cells in 50 mL of blood collected on day 10 posttransplantation from recipients of the indicated groups. (C)

Representative FACS plots demonstrating the expression pattern of CD115 and CD11c on circulating Ly6CHI cells from the indicated groups on day 10 posttransplantation.

Data shown in panels A-C were from 2 to 3 independent experiments with a total of 4 to 6 mice in each group. *P , .05. (D) Representative FACS plot demonstrating graft-

infiltrating Ly6CHI cells (gated on total graft-infiltrating live CD11b1 cells; day 10 posttransplant). Scatter graph showing quantitative analysis of the number of graft-infiltrating
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panel D. (F) Representative FACS plots demonstrating expression of intracellular IL-12p40, surface CD86, and MHC II from graft-infiltrating Ly6CHI cells shown in panel D.

Scatter graphs showing quantitative analysis of MFIs of the indicated markers. Data shown in panels D-F were obtained from 3 independent experiments with a total of 4 to 6

mice in each group. Data were presented as mean 6 SD. *P , .05.
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IFN-a regulates the differentiation of Gr1HI and

Ly6CHI cells

Gr1HI and Ly6CHI cells arise from BM lineage negative (Lin2)
progenitor cells. Therefore, we next examined whether IFN-a
induced by MCMV infection could directly alter Gr1HI and Ly6CHI

cell differentiation from BM progenitors. Sorted BM Lin2 cells were
cultured in the presence or absence of IFN-a for 2 days and
examined for their differentiation to CD11b1Gr1HI and CD11b1

Ly6CHI cells. As shown in Figure 7A, a substantial fraction of Lin2

cells spontaneously differentiated to CD11b1 cells regardless of
the presence or absence of IFN-a. These differentiated CD11b1

cells were identified largely as Ly6CHI cells but also a small fraction
of Gr1HI cells (Figure 7A). Interestingly, IFN-a significantly
augmented the generation of Ly6CHI cells (Figure 7B), whereas it
suppressed the generation of Gr1HI cells (Figure 7C). Consistent
with our in vivo observations in Figure 5C, the in vitro differentiated
Ly6CHI cells in the presence of IFN-a also expressed a heightened
level of CD11c (Figure 7D). It has been recently shown that
enhanced expression of IRF8 in Lin2 progenitors promotes their
differentiation to inflammatory Ly6CHI monocytes but inhibits their
differentiation to Gr1HI cells.38-40 Consistent with this notion, we

found that IRF8 expression by Lin2 cells in our culture was
significantly increased by IFN-a (Figure 7E), further supporting the
observed effects of IFN-a on Ly6CHI and Gr1HI cell differentiation
from Lin2 progenitors (Figure 7A-C). Interestingly, following Dm157
infection in donor ECDI-SP–treated mice, we also observed a
significant increase in IRF8 expression in BM Lin2c-Kit1Sca-11

hematopoietic stem cells as well as in Lin2c-Kit1Sca-12FcgRII/III1

granulocyte-monocyte progenitors (GMPs) (Figure 7F; supplemen-
tal Figure 6) in these mice. An increased expression of IRF8 in
GMPs in Dm157-infected mice coupled with a reduction of Gr1HI

cells in these mice is consistent with a recent report demon-
strating the effect of IRF8 in the differential generation of
granulocytes and/or monocytes.39 Collectively, these data
support the hypothesis that MCMV-induced IFN-a inhibits the
generation of immunosuppressive Gr1HI cells from BM Lin2

progenitors while promoting the differentiation of immunostimu-
latory Ly6CHI cells.

Discussion

In the present study, we investigated the impact of acute MCMV
infection on donor-specific transplant tolerance induced by donor
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ECDI-SPs.14,15 We show that acute MCMV infection impairs the
induction of donor-specific tolerance by this approach, resulting in
loss of graft function in a significant number of recipients (Figure 1).
Modeling various pathogens (including viral, bacterial, and parasitic)
has suggested that they may precipitate graft rejection by activating
cross-reactive or alloreactive T cells.41-44 However, the precise
mechanisms underlying such T-cell activation remain unclear. To
our best knowledge, this is the first report demonstrating
interference with MDSC differentiation by virus-induced IFN-a as
an underlying mechanism for alloreactive T-cell activation and
consequent tolerance abrogation.

Direct CMV cytopathic effects on transplanted allografts have been
shown to cause graft destruction.45 However, our data show that
direct MCMV infection of transplanted islets does not result in islet
destruction or loss of islet graft function. This finding suggests that
MCMV-mediated abrogation of transplant tolerance is not because
of its direct cytopathic effects on islets, but rather is because of its
interference with tolerogenic mechanisms of donor ECDI-SPs. Our
observations from acute MCMV infection during tolerance induction
now provide the basis for future studies of 2 additional highly
relevant questions surrounding the interplay between MCMV
infection and transplant tolerance: (1) whether maintenance of
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tolerance is impaired by MCMV infection and (2) whether chronic
MCMV infection impairs tolerance induction and/or maintenance.

In the present study, we show that following MCMV infection,
IFNAR1 signaling plays a critical role in impairing differentiation and/
or function of both granulocytic and monocytic MDSCs critical for
tolerance induction. A near complete restoration of the number and
phenotype of both cell types by IFNAR1 blockade in MCMV-infected
hosts and subsequent restoration of transplant tolerance further
confirm this notion. Consistent with our previous reports,18 we find that
the highly immunosuppressive Gr1HI cells are markedly increased
following ECDI-SPs. However, with concurrent MCMV infection, their
number is significantly reduced, although their phenotype and
suppressive function remain unchanged. It has been recently reported
that enhanced expression of IRF8 suppresses granulocyte differenti-
ation via inhibiting the activity of C/EBPa.38 Interestingly, we observed
a higher level of IRF8 expressed by Lin2 BM progenitors upon IFN-a
stimulation in vitro or by MCMV infection in vivo (Figure 7E-F), and this
correlated with a diminished number of Gr1HI cells under these
conditions. In experimental models and in the clinic, impairment of
granulocyte and neutrophil generation by CMV infection has been well
documented.46,47 Our data now provide a possible mechanistic link
between these observations.

Ly6CHI monocytic cells have been shown to mediate host
antimicrobial defense in many infections.48 In transplantation,
Ly6CHI monocytic cells have been shown to promote both graft
tolerance37,49 and graft rejection.50,51 Our data show that Ly6CHI

cells from uninfected ECDI-SP–treated transplant recipients exhibit
MDSC-like characteristics. Following acute MCMV infection,
Ly6CHI monocytes significantly expand in periphery and in
allografts. However, the expanded Ly6CHI cells no longer exhibit
the same MDSC-like phenotype. In contrast, these cells acquire an
immunostimulatory phenotype and are now capable of cross-
presenting alloantigens and stimulating alloreactive CD8 T cells.
These data are consistent with recent reports demonstrating a role
of Ly6CHI monocytes in allograft rejection.50,51 Interestingly, we
observe that Ly6CHI monocytes from MCMV-infected recipients
acquire CD11c expression while losing F4/80 and CD115
expression, suggesting their differentiation to professional antigen-
presenting dendritic cells. Such a differentiation of Ly6CHI monocytic
cells into dendritic cells has been previously associated with
inflammation,52 increased immunogenicity,53 and graft rejection,50

whereas persistent F4/80 and CD115 expression by Ly6CHI

monocytes has been associated with their immunosuppressive
potential.54 Therefore, downregulation of F4/80 and CD115 coupled
with upregulation of CD11c by Ly6CHI monocytes following MCMV
infection explains their loss of MDSC-like immunosuppressive function
while developing the ability to activate alloreactive CD8 T cells.
Elevated expression of CD115, also known as the colony-stimulating
factor 1 receptor (CSF1R), on tumor infiltrating myeloid cells has
been reported to promote their immunosuppressive potential and
prolong tumor survival. Recently, blocking CD115 and its downstream
signaling has become a novel therapeutic approach in cancer

therapies.55 It would be highly intriguing to investigate whether
agonizing CD115 to promote its downstream signaling would preserve
transplant tolerance in settings of CMV infection.

Another interesting observation in our study is the significant
reduction of intragraft Foxp31 Tregs in MCMV-infected recipients. It
has been previously reported that CD11b1CD1151 monocytic
MDSCs promote antigen-specific Tregs in tumors and cardiac
transplantation models.49,54,56 Corroborating these studies, we
found that in uninfected recipients intragraft Ly6CHI monocytic cells
with a prominent CD115 expression correlated with an elevated
number of Tregs in these grafts. In contrast, loss of CD115 on a
significant fraction of the intragraft Ly6CHI cells in MCMV-infected
recipients correlated with a significant reduction of Tregs in these
grafts. Collectively, these data suggest that phenotypic and
functional alterations of Ly6CHI monocytes in MCMV-infected
recipients may indeed alter both intragraft effector (Teff) and Tregs,
resulting in an unfavorable ratio of these 2 populations leading to
eventual graft demise.

In summary, we demonstrate that acute MCMV infection induces
type 1 IFN production, which in turn alters the differentiation of
tolerance-promoting MDSCs. This alteration results in an increase
of intragraft alloreactive CD8 T cells and a concurrent decline of
intragraft Tregs, correlated with ultimate graft rejection in infected
recipients. Mechanisms of tolerance impairment by CMV infection
demonstrated by this study, coupled with additional evidence
demonstrating that CMV infection impairs transplant tolerance in
models other than ours,13 now provide timely information needed
for investigating effective therapies for preserving transplant
tolerance in settings of CMV infection.
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