
REGULAR ARTICLE

NPM1 mutated AML can relapse with wild-type NPM1: persistent clonal
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Key Points

• AML with NPM1 muta-
tion can relapse with
NPM1wt, which could
prevent MRD detection.

• The majority of comuta-
tions persist in molecular
remission and atNPM1wt

relapse, suggestive of
clonal hematopoiesis
driving AML relapse.

Acute myeloid leukemia (AML) with NPM1 mutation (NPM1mut) defines a World Health

Organization entity. Absence of minimal residual disease (MRD) following induction

chemotherapy is associated with an excellent prognosis. Data are conflicting on NPM1mut

AML relapsing with wild-type NPM1 (NPM1wt). We analyzed 104 paired samples of

NPM1mut AML patients with relapse and identified 14/104 that relapsed withNPM1wt AML.

Blood counts at diagnosis differed significantly between patients with NPM1mut and

NPM1wt relapse (median white blood cell count, 30 vs 3 3 109/L, P 5 .008; platelet count,

66 vs 128 3 109/l, P 5 .018). NPM1mut relapse occurred significantly earlier than NPM1wt

relapse (14 vs 43 months, P5 .004). At diagnosis, FLT3-ITD were more frequent in patients

with NPM1mut relapse (P 5 .029), whereas DNMT3A mutations were more frequent in

patients with NPM1wt relapse (P 5 .035). Sequencing analysis of paired samples at

diagnosis, molecular remission, andNPM1wt relapse identified cooccurring mutations that

persist from diagnosis throughout remission and at relapse, suggestive of a preexisting

clonal hematopoiesis. We provide evidence that AML relapsing with NPM1wt is a distinct

disease and that initial leukemia and relapse potentially arise from a premalignant clonal

hematopoiesis.

Introduction

Acute myeloid leukemia (AML) with NPM1 mutation (NPM1mut) is the most common AML with normal
karyotype and NPM1mut defines a World Health Organization category with good prognosis in the
absence of concomitant FLT3-ITD mutations.1,2 There is conflicting data if NPM1mut AML can relapse
with NPM1 wild-type (NPM1wt) disease following intensive chemotherapy.3,4 Here we report on 14/104
patients with initial NPM1mut AML that relapsed with NPM1wt AML. Analyzing those patients at
diagnosis and at relapse provides evidence of molecular features suggestive of premalignant clonal
hematopoiesis driving initial AML and relapse.

Patients and methods

Patients

All patients gave their written informed consent for scientific evaluations. The study was approved by the
internal review board and adhered to the tenets of the Declaration of Helsinki. Between 2006 and 2017,
we investigated a total of 104 intensively treated patients with NPM1mut AML who attained a complete
molecular remission (CMR, absence of NPM1 transcripts; sensitivity, 0.001%) and finally had a
hematologic relapse (Table 1).

Submitted 10 July 2018; accepted 23 October 2018. DOI 10.1182/
bloodadvances.2018023432.

Presented in part in abstract form at the 59th annual meeting of the American Society
of Hematology, Atlanta, GA, 9 December 2017.
© 2018 by The American Society of Hematology

3118 27 NOVEMBER 2018 x VOLUME 2, NUMBER 22

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/2/22/3118/1630082/advances023432.pdf by guest on 18 M

ay 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/bloodadvances.2018023432&domain=pdf&date_stamp=2018-11-19


Next-generation sequencing

Unique molecular identifier based sequencing of 63 genes
associated with hematological malignancies was performed at
diagnosis and for patients withNPM1wt relapse in paired samples at
diagnosis, CMR, and at clinical relapse. Digital error suppression
was applied to follow mutations in up to 1/500 molecules as follows.
In short, all samples were analyzed by a gene panel containing
ASXL1, ASXL2, ATM, BCL2, BCOR, BCORL1, BIRC3, BRAF,
BTK, CALR, CBL, CSF3R, CSNK1A1, CXCR4, DNMT3A, EGR2,
ETNK1, ETV6, EZH2, FBXW7, FLT3, FOXO1, GATA1, GATA2,
ID3, IDH1, IDH2, JAK2, KIT, KLF2, KRAS, MAP2K1, MPL,
MYC, MYD88, NF1, NFKBIE, NOTCH1, NOTCH2, NPM1,
NRAS, PHF6, PIGA, PLCG2, POT1, PTPN11, RAD21, RUNX1,
SAMHD1, SETBP1, SF3B1, SRSF2, STAG2, STAT3, STAT5B,
TCF3, TET2, TP53, U2AF1, UBR5, WT1, XPO1, and ZRSR2. The
library of 63 genes was generated with a TruSeq Custom Amplicon
Low Input Kit (Illumina, San Diego, CA) following the manufacturer’s
protocol. The library contained molecular tags (unique molecular
identifiers) that allow the detection and quantification of the individual
molecule of each template DNA fragment. This tag was incorporated
and sequenced, enabling the accurate detection of true variants
with high resolution up to 0.2% variant allele frequency (VAF) as
polymerase chain reaction duplicates can be identified and
discarded. The library was sequenced and demultiplexed on a
Nextseq instrument (Illumina) as described previously.5 The FASTQ
files were further processed using Sequence Pilot software, version
4.3.1, Build 502 (JSI Medical Systems, Ettenheim, Germany), for
alignment and variant calling. Analysis parameters were set according
to the manufacturer’s default recommendation. Validity of the somatic
mutations was checked against the publicly accessible COSMIC
v78 (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic)

and ClinVar databases. Functional interpretation was performed using
SIFT 1.03 (http://sift.jcvi.org) and PolyPhen 2.0 (http://genetics.bwh.
harvard.edu/pph2).6 Additionally, TP53 variants were verified using the
International Agency for Research on Cancer repository.7 Single-
nucleotide polymorphisms were annotated according to the National
Center for Biotechnology Information dbSNP (http://www.ncbi.nlm.nih.
gov/snp; Build 147) and ExAC population frequency database.
Variants of uncertain significance were excluded from statistical
analyses. FLT3-ITD was analyzed by gene scan.

Statistical analysis

Statistical analysis was performed using Prism 7.03 software by
GraphPad (La Jolla, CA). Survival differences were calculated by log-
rank test and for group comparisons the x2 test was used.

Results

We identified 14/104 patients with a hematologic relapse that was
NPM1wt. At first diagnosis. there was no significant distribution of
age, sex, or AML subtype in the group with NPM1mut or NPM1wt

relapse. However, in the subgroup with NPM1mut relapse, we
observed a significant higher white blood cell count (WBC; median,
30 vs 3 3 109/L, P 5 .008) and significant lower platelet count
(median platelet count 66 vs 128 3 109/L, P 5 .018; Table 1).
Bone marrow blast count and hemoglobin were comparable
(Table 1).

For 90/104 patients with an NPM1mut relapse, the median time
to relapse was 14 months (range, 3-77). In contrast, for the 14
patients with an NPM1wt relapse, the median time to relapse
was significantly longer, at 43 months (range, 4-66, P 5 .004;
Figure 1A). There was no significant difference in overall
survival: at 2 years following relapse, overall survival was 48%
(95% confidence interval, 12-77) vs 54% (14-83) for patients
with NPM1mut relapse and NPM1wt relapse, respectively (NS;
Figure 1B).

Diagnostic samples were available for sequencing in 61/90 patients
with NPM1mut relapse and 11/14 patients with NPM1wt relapse.
The mutational landscape of these patients revealed recurrent
comutations in 18 different genes in 62/72 patients. DNMT3A,
TET2, FLT3-ITD, NRAS, IDH1, IDH2, FLT3-TKD, and WT1 were
mutated in .5% of cases (Figure 2). FLT3-ITD mutations were
significantly more frequent in patients with NPM1mut relapse
(analysis available for 104 patients, 33/90 vs 1/14, P 5 .029),
whereasDNMT3Amutations were significantly more frequent in the
cohort of patients with NPM1wt relapse (analysis available for 72
patients, 22/59 vs 9/13, P 5 .035). At diagnosis, a median of 2
genes per patient were comutated with NPM1 (range, 0-5); only
7/72 patients had no cooccurring mutation detected, all of which
relapsed with NPM1mut AML (11% vs 0%, NS).

For the same 11/14 cases withNPM1wt relapse, the relapse samples
were also available for 63 gene panel sequencing. At diagnosis, we
identified a total of 30 comutations in addition to NPM1 in a total of
11 different genes in 11/11 patients (DNMT3A [n 5 8], TET2 [8],
SRSF2 [3], IDH1 [2]), KRAS [2], PTPN11 [2], ASXL1 [1], FLT3-
TKD [1], IDH2 [1], NRAS [1], and STAG2 [1]). At relapse, we
identified a total of 32 comutations in 12 different genes in 10/11
patients with a median of 3 mutations per patient (range, 0-5). An
overview of mutated genes detected in each patient at diagnosis vs
relapse is given in Figure 3A. The color code depicts lost and gained

Table 1. Patient characteristics

NPM1mut

relapse

NPM1wt

relapse P

Total, n 90 14

Sex, n (%)

Female 52 (58) 7 (50) NS

Male 38 (42) 7 (50) NS

Age, median (range), y 59 (22-82) 62 (41-72) NS

AML subtype, n (%)

M0 2 (2) — NS

M1 36 (40) 8 (57) NS

M2 21 (23) 3 (21) NS

M4 22 (23) 2 (14) NS

M5a 1 (6) 1 (7) NS

M5b 4 (4) — NS

M6 1 (1) — NS

Not specified 4 (4) — NS

Initial blast count in BM, median (range), % 76 (21-99) 84 (26-90) NS

Leukocyte count, median (range), 3109/L 30 (1-213) 3 (0.9-51) .008

Hemoglobin, median (range), g/dL 9.4 (4-16) 9.8 (8-13) NS

Platelet count, median (range), 3109/L 66 (9-1100) 128 (32-267) .018

BM, bone marrow; NS, not significant.
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mutations at relapse. Twelve mutations in 8 genes (TET2, PTPN11,
DNMT3A, FLT3-TKD, KRAS, NRAS, SRSF2, and STAG2) were lost
at relapse and 14 mutations in 9 genes (TP53, RUNX1, IDH1, IDH2,
NF1, NRAS, SRSF2, TET2, and WT1) were gained at relapse. We
used digital error correction to reassess these mutations in the
diagnostic sample. With a detection limit of up to 0.2% VAF (1/500
molecules), none of the newly gained mutations was detectable at
diagnosis. Interestingly, 18 mutations in 7 genes persisted over time,
with a median of 2 persistent mutations per patient (range, 0-4;
Figure 3B): at relapse, we observed persistent mutations in
DNMT3A, TET2, IDH1, SRSF2, ASXL1, IDH2, and KRAS
(Figure 3C). DNMT3A, the most prevalent mutation, was lost in only

1 patient (8/11 at diagnosis, 7/11 at relapse), whereas TET2
mutations persisted in 3 patients, IDH1 and SRSF2 mutations in 2
patients (Figure 3C, right) andASXL1, IDH2, and KRASmutations in
1 patient. When persistent, the VAF of mutated genes was generally
higher at relapse than at diagnosis; however, because of low
numbers, no statistical significance was observed for single genes
(Figure 3D and Figure 4C). Interestingly, the VAF at diagnosis was
lowest for ASXL1, IDH2, and KRAS.

The high number of persistent mutations raised the possibility of
the presence of clonal hematopoiesis as a basis for both initial AML
and subsequent relapse. We addressed this point by analyzing
remission samples of patients with NPM1wt relapse. For 9/11

0

50

100

Months

Pe
rc

en
t s

ur
viv

al

OS following relapse at 24 months
48% [95% Cl, 12-77] vs
54% [14-83] (n.s.)

NPM1mut

NPM1wt

0 20 40 60 800
0

50

100

20 40

Months

Pe
rc

en
t r

ela
ps

e 
fre

e 
su

rv
iva

l

60 80

median RFS 14 vs 43 months, p=0.004
RFS 24 months 22 vs 57%
[95% Cl 14-31 vs 28-78]

NPM1mut

NPM1wt

100

A B

Figure 1. AML relapse with NPM1mut occurs earlier than relapse with NPM1wt. (A) RFS of patients with NPM1mut relapse and NPM1wt relapse. (B) OS following

relapse of patients with NPM1mut relapse and NPM1wt relapse. 95% CI, 95% confidence interval; OS, overall survival; RFS, relapse-free survival.
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Figure 2. DNMT3A mutations at diagnosis are associated with NPM1wt
relapse. Cooccurring mutations with NPM1 at diagnosis of all patients. For 61/90 patients with

NPM1mut relapse and for 11/14 patients with NPM1wt relapse, the diagnostic sample was available for 63 gene panel sequencing. Shown are mutations in genes affected in

.10% of cases. DNMT3A mutations are significantly more frequent in patients that relapse with NPM1wt disease. FLT3-ITD mutations are significantly more frequent in

patients that relapse with NPM1mut disease. n.a., not available.
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patients analyzed at diagnosis and relapse, 2 remission samples/
patient were available for sequencing. The progression of individual
mutations is shown in Figure 4A. In molecular remission, we
detected persistence of comutations (DNMT3A [n 5 6], TET2 [5],
IDH1 [3], SRSF2 [3], IDH2 [2], and STAG2 [1]) in 8/9 patients
(Figure 4B). Only 1 patient showed a loss of all comutations
(DNMT3A and PTPN11) at CMR and at relapse. Four patients
acquired additional comutations in remission (TP53 [n 5 5], TET2
[1], and RUNX1 [1]; Figure 4A). The median VAF of persistent
mutations was significantly reduced in the first CMR sample and
increased significantly in the second CMR sample and at relapse
(Figure 4C).

A recent report showed that a high allelic NPM1 burden was
associated with inferior outcome in de novo AML8; therefore, we
analyzed the allelic burden of NPM1 mutations. NPM1 was
sequenced by next-generation sequencing in 13 patients in the
cohort with NPM1mut relapse and in 4 patients with NPM1wt

relapse. We did not observe a significant difference of NPM1 VAF
in the 2 subgroups (Figure 5A). Moreover, we analyzed the VAF of
DNMT3A, TET2, and FLT3-TKD at diagnosis and relapse and did
not find a significant difference in the 2 subgroups (Figure 5A).

As a control, we analyzed the persistence of the most common
comutations in the cohort with NPM1mut relapse. Fifteen of 22

patients that had a DNMT3A mutation at diagnosis were evaluable
for DNMT3A mutations at CMR: 11 of those 15 patients had a
persistent DNMT3A mutation in CMR (73%). At diagnosis, the
frequency of R882 mutations were comparable in the cohorts with
NPM1mut and NPM1wt relapse: 55% vs 67%, respectively (NS;
Figure 5B). We also analyzed the frequency of persistent R882
mutations in CMR: 45% in the NPM1mut and 67% in the NPM1wt

cohort had a persistent R882 mutation (NS; Figure 5C). Moreover,
at CMR, 56% of patients had a persistent TET2 mutation (n 5 9
patients with initial positivity and analyzed CMR sample) and 60% had
a persistent IDH1 (n5 5) mutation and 14% a persistent IDH2 (n5 7)
mutation. No patient had a detectable persistent NRAS (n5 7), FLT3-
ITD (n 5 28), or FLT3-TKD (n 5 9) mutation at CMR.

Discussion

We identified 14% of NPM1mut AML patients who achieved CMR
following intensive therapy and relapsed with an NPM1wt AML. To
our knowledge, this is the largest cohort of NPM1wt AML relapse
that has been studied.

In our analysis, NPM1mut relapse occurred significantly earlier than
NPM1wt relapse. These findings are in line with a previous study
reporting on 10% of NPM1wt relapse with a longer latency.3

Interestingly, in our cohort, patients that relapsed with NPM1wt
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disease had distinct clinical and molecular features at diagnosis,
with significantly lower WBC counts and higher platelet counts, a
higher frequency of DNMT3A mutations, and a lower frequency of
FLT3-ITD mutations. All patients were treated with induction and
consolidation therapy and there was no difference in treatment
intensity in the 2 subgroups.

At diagnosis, DNMT3A mutations were the most frequently
observed comutations across all patients and significantly more
frequent in patients who later relapsed with NPM1wt. DNMT3A was
assessed in only 70% of all patients at diagnosis (54% in the
NPM1mut relapse; 100% in the NMP1wt relapse cohort), making
this observation less reliable. However, DNMT3A mutations most
frequently persisted in CMR, and the DNMT3Amutation was lost at

relapse in only 1/8 patients. Interestingly, DNMT3A was also the
most frequent mutation in the NPM1mut relapse cohort at diagnosis
and persisted frequently during remission in this group. Mutated
DNMT3A at diagnosis has been described in AML and is only
moderately associated with outcome.9 The persistence of
DNMT3A mutations in remission has also been addressed by
several groups, and was not associated with clinical outcome.10-12

However, the landmark analysis that defined clonal hematopoiesis
reportedDNMT3A as the most frequently mutated gene.13,14 These
analyses finally laid the basis for the definition of clonal hemato-
poiesis of indeterminate potential (CHIP).15 A recent report
investigated persistent mutations at remission of AML patients
and showed that DTA mutations (mutations in DNMT3A, TET2, and

stable gain loss NPM1
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Figure 4. Premalignant clonal hematopoiesis underlies NPM1wt
relapse. (A) For 9/11 patients, 2 remission samples/patient were available for sequencing analysis.

Eights of 9 patients showed persistent mutations in CMR and 4 patients acquired additional mutations before the onset of relapse. (B) Mutations in 6 genes detected at

diagnosis were found to persist in remission. Shown is the fraction of persistent mutations in relation to all 9 patients. (C) VAF of persisting mutations at diagnosis, CMR, and

relapse. Black line, median; CR, complete remission.
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ASXL1) in remission were not associated with an increased risk of
relapse. Interestingly, those mutations are all associated with CHIP
or age-related clonal hematopoiesis.16 The biologic role of DTA
mutations in leukemogenesis is still under investigation. Preclinical
work shows that early purified stem cells in NPM1 mutated AML
wild-type for NPM1 carry DNMT3A mutations and display an
increased repopulating activity.17 What is more, Single-nucleotide
polymorphism array analysis identified thatDNMT3Awas part of the
most commonly focally deleted region in AML, underscoring its role
in leukemogenesis.18 Because persistence of somatic mutations
per se is associated with relapse,19,20 persistent clonal hemato-
poiesis in remission might increase repopulating activity sufficient to
trigger a treatment related disease or relapse with a preexisting
leukemic clone.

Although CHIP does not define a disease entity, there is growing
evidence that certain mutations confer a high risk to develop
hematologic malignancies.21 The biologic role of mutant DNMT3A

or other mutations in NPM1mut AML might therefore cause a clonal
hematopoiesis that renders progenitor cells susceptible to trans-
formation. In line with this notion is our observation of persistent
mutations in remission and relapse that identify clonal hematopoi-
esis in the majority of patients. The rising VAF and acquisition of
mutations in 4 patients (ie, TP53; Figure 2A) in CMR prove clonal
evolution and raise the possibility that chemotherapy could have
induced these novel mutations. Moreover, the loss of NPM1
mutation at relapse shows that NPM1 is not the sole driver in
NPM1-mutated AML. This is supported by various preclinical
models in which transgenic animals and knock-in animals develop
a myeloproliferative phenotype or full AML only with a long
latency.22-24 In this context, other typical driver mutations such as
FLT3 or NRAS were not observed in remission in either cohort.
Taken together, this could indicate that those driver mutations are
second hits required for NPM1-driven leukemogenesis. Supportive
preclinical evidence shows that only compound mice carrying
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NPM1 and FLT3 or NPM1 and NRAS mutations develop AML with
high penetrance and short latency.25 This is especially interesting
because we observed a strong enrichment for FLT3-ITD mutations
in the cohort of patients that had NPM1mut relapse, indicating that
2 driver mutations cause relapse with the initial aggressive clone.
In the same line is our observation that high WBC and low platelet
counts, both indicative of highly active disease, are associated
with NPM1mut AML relapse. Two reports describe patients with
NPM1mut AML that develop NPM1wt myelodysplastic or
myelodysplastic/myeloproliferative neoplasms following CMR.26,27

Together with our data, there is growing evidence that clonal
hematopoiesis is an underlying phenomenon in this AML entity. Our
data expand these findings and suggest that relapse or therapy-
related leukemia can arise from preleukemic clones with wild-type
NPM1. Recent work established that relapse is driven by drug-
resistant AML stem cells.28 If this is the case, mutations present at
diagnosis, remission, and relapse should also be present in these
stem cells. Leukemia would then arise from a stem cell that drives a
premalignant clonal hematopoiesis and give rise to initial leukemia
and relapse. Although the NPM1wt relapses occurred significantly
later than NPM1mut relapses, we observed some early relapses in
the NPM1wt cohort. One of the patients with the earliest relapse
(7.7 months, no material available for the patient with a relapse 4.1
months after diagnosis) lost 3 comutations at relapse (KRAS,
SRSF2, TET2) and the NPM1 mutation, which could either be
clonal evolution of a preexisting clone or argue for a treatment-
related disease. DNMT3A mutations are the most common
comutations in NPM1mut AML and have also been shown to persist
in remission.4,10 Therefore, we analyzed DNMT3A mutations in the
cohort of patients with NPM1mut relapse as control. Persistent
DNMT3A mutations were detected in 73% of patients in remission.
Moreover, TET2 and IDH1 mutations persisted frequently in
remission; therefore, clonal hematopoiesis might also contribute
to NPM1mut relapse. Interestingly, FLT3-ITD, FLT3-TKD, and NRAS
mutations were not observed in CMR in either the cohort with
NPM1mut or NPM1wt relapse. Although regularly analyzed in
remission, the benefit of minimal residual disease based on those
markers is therefore questionable in NPM1-mutated AML. To
analyze the cellular compartment from which the NPM1 clone
arises and is eventually lost at relapse warrants cell sorting and
single-cell sequencing analysis in a prospective manner.

Previous work showed that high allelic NPM1 burden at diagnosis is
a negative prognostic factor.8 In our analysis, NPM1 allelic burden

was not associated with NPM1wt or NPM1mut relapse. However
NPM1 is not routinely analyzed by next-generation sequencing;
therefore, the number of evaluable patients for NPM1 VAF is
relatively low in our analysis. The DNMT3A mutation subtype has
frequently been queried for an association with prognosis, and a
recent meta-analysis showed that DNMT3A R882 mutations are
significantly associated with reduced relapse-free and overall
survival.29 In our analysis, the R882 mutations were slightly more
prevalent in the subgroup with NPM1wt relapse; however, this trend
was not significant. This could also be due to the low patient number.

Taken together, our data suggest that, in NPM1mut AML, the
persistence of mutations defines premalignant clonal hematopoiesis
and drives a treatment-related leukemia or relapse (Figure 6).
Although we show that a proportion of patients with NPM1mut AML
lose the NPM1 mutation at relapse, for the majority of patients,
minimal residual disease monitoring by NPM1 quantitative polymer-
ase chain reaction is absolutely mandatory. Although it is not feasible
to monitor all NPM11 AML patients longitudinally with large sequenc-
ing panels, there is increasing evidence that supports the screening for
persistent mutations in at least 1 remission sample.

Acknowledgments

The authors thank all patients and clinicians for their participation in
this study and all coworkers in our laboratory for their excellent
technical assistance.

Authorship

Contribution: A.H. and T.H. designed the study; A.H. interpreted
the data and wrote the manuscript; S.J., M.M., F.D., and N.N. did
molecular analyses; T.H. was responsible for cytomorphologic
analyses; C.H. was responsible for cytogenetic and fluorescence
in situ hybridization analyses; W.K. was responsible for immuno-
phenotyping; and all authors read and contributed to the final version
of the manuscript.

Conflict-of-interest disclosure: A.H., M.M., F.D., S.J., and N.N. are
employed byMLLMunich Leukemia Laboratory. C.H.,W.K., and T.H.
have equity ownership of MLL Munich Leukemia Laboratory.

ORCID profile: A.H., 0000-0002-9799-7809.

Correspondence: Torsten Haferlach, MLL Munich Leukemia
Laboratory,Max-Lebsche-Platz 31, 81377Munich,Germany; e-mail:
torsten.haferlach@mll.com.

References
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