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Key Points

•Mutations affecting
NF-kB, epigenomic
regulation, or DNA
damage repair were
identified in MYD88
wild-type WM.

•NF-kB pathway muta-
tions were downstream
of BTK, and many
overlapped with those
found in aggressive
B-cell lymphomas.

ActivatingMYD88 mutations are present in 95% of Waldenström macroglobulinemia (WM)

patients, and trigger NF-kB through BTK and IRAK. The BTK inhibitor ibrutinib is active

in MYD88-mutated (MYD88MUT) WM patients, but shows lower activity in MYD88 wild-type

(MYD88WT) disease. MYD88WT patients also show shorter overall survival, and increased

risk of disease transformation in some series. The genomic basis for these findings remains

to be clarified. We performed whole exome and transcriptome sequencing of sorted tumor

samples from 18 MYD88WT patients and compared findings with WM patients with

MYD88MUT disease. We identified somatic mutations predicted to activate NF-kB (TBL1XR1,

PTPN13, MALT1, BCL10, NFKB2, NFKBIB, NFKBIZ, and UDRL1F), impart epigenomic

dysregulation (KMT2D,KMT2C, andKDM6A), or impair DNA damage repair (TP53,ATM, and

TRRAP). Predicted NF-kB activating mutations were downstream of BTK and IRAK, and

many overlapped with somatic mutations found in diffuse large B-cell lymphoma. A

distinctive transcriptional profile in MYD88WT WM was identified, although most

differentially expressed genes overlapped with MYD88MUT WM consistent with the many

clinical and morphological characteristics that are shared by these WM subgroups. Overall

survival was adversely affected by mutations in DNA damage response in MYD88WT WM

patients. The findings depict genomic and transcriptional events associated with MYD88WT

WM and provide mechanistic insights for disease transformation, decreased ibrutinib

activity, and novel drug approaches for this population.

Introduction

Activating MYD88 and CXCR4 activations are present in 95% to 97% and 35% to 40% of
Waldenström macroglobulinemia (WM) patients, respectively.1 Among WM patients who harbor an
MYD88 mutation (MYD88MUT), nearly all carry the amino acid substitution p.Leu265Pro., making the
identification of this mutation an important part of the diagnostic workup of WM.2 At the protein level,
MYD88MUT triggers NF-kB pro-survival signaling through BTK and IRAK4/IRAK1, and activates the
SRC family member HCK that triggers BTK, AKT, and ERK1/2 signaling.3,4 Ibrutinib blocks BTK and
HCK activity and is highly active in MYD88MUT, but less so in MYD88WT WM, suggesting important
differences in the molecular pro-survival signaling for these 2 WM variants.5-7 In some series, those with
MYD88WT disease also showed increased risk of transformation to diffuse large B-cell lymphoma
(DLBCL) and/or decreased overall survival (OS).8-10 CXCR4 mutations that impact bone marrow (BM)
disease burden, immunoglobulin M (IgM) secretion, symptomatic hyperviscosity, and drug resistance are
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nearly always found in those patients with MYD88MUT WM.1,8,11,12

Although these findings allude to important biological differences
betweenMYD88MUT andMYD88WT disease, the underlying genomic
and transcriptional landscape of MYD88WT WM remains to be
clarified. We therefore performed whole exome sequencing (WES)
and transcriptome sequencing of theMYD88WT WM and compared
the findings with MYD88MUT WM.

Patients and methods

The study was approved by Dana Farber/Harvard Cancer Center
institutional review board, and patients provided written consent.
Lymphoplasmacytic cells were collected by CD191 MACS micro-
bead selection (Miltenyi-Biotech, Auburn, CA) from BM aspirates of
18 consecutive patients meeting clinicopathological criteria for WM
and MYD88WT disease following allele-specific polymerase chain
reaction for detection of MYD88 L265P mutations and Sanger
sequencing to exclude non-L265P MYD88 mutations.6,13 Baseline
clinical information is shown in Table 1. For 12 patients, CD19-
depleted peripheral blood mononuclear cells were available and
used to prepare germline DNA as before.13-15 Fifty base-pair paired-
end RNA sequencing libraries were generated using NEBNext Ultra
RNA library prep kit (New England BioLabs, Ipswich, MA). WES
libraries were constructed using SureSelect (Agilent, Santa Clara,
CA) for 150 base pair paired-end sequencing. For tumor/germline
paired samples, small variants were analyzed using both Strelka
(https://github.com/Illumina/strelka) and MuTect2 (https://soft-
ware.broadinstitute.org/gatk/). Unpaired WM samples were ana-
lyzed by GATK HaplotypeCaller (https://software.broadinstitute.
org/gatk/). Mutations in unpaired patients were assessed for genes
known to be relevant to WM and/or related lymphomas. Mutations
were filtered for those that affected amino acid coding and were
present in a gene that had measurable gene expression in healthy
donor and/or WM samples. Somatic structural variants were
detected using Manta (https://github.com/Illumina/manta); copy
number alterations were called using Control-FREEC (http://
boevalab.com/FREEC/). Variants were annotated using the Variant
Effect Predictor (https://github.com/Ensembl/ensembl-vep). RNA
sequencing reads were aligned using STAR (https://github.com/
alexdobin/STAR) and quantified using Salmon (https://combine-
lab.github.io/salmon/). Statistical analysis was performed using R,
and Bioconductor packages limma, edgeR, and tximport were used
to calculated voom-based differential gene expression testing. The
DESeq2 package was used for regularized log transformation for
clustering analysis and camera was used to calculate gene set
enrichment using the publicly available MSigDB data set (http://
bioinf.wehi.edu.au/software/MSigDB/). Sequencing data have been
applied for deposition in the National Center for Biotechnology
Information’s Short Read Archive. Results were compared with our
previous genome, transcriptome, and OS findings for MYD88MUT

WM patients.9,14-16 The survival fromWM diagnosis, defined as the
time betweenWMdiagnosis to last follow-up or death, was estimated
using the Kaplan-Meier method. All reported P values have been
adjusted using the false discovery rate correction when appropriate.

Coded deidentified samples were collected under an approved
sample collection protocol, institutional review board number 07-150.

Results

A median of .90.9 (range, 62.6-137.4) million reads were
successfully mapped and paired following WES. Removing

multimapping and duplicate reads resulted a median coverage of
157 (range, 96-230) reads per base pair over the target regions.
Aligned data files were further analyzed with ContEst (http://www.
broadinstitute.org/cancer/cga/contest) revealing minimal sample
cross contamination with median estimated contamination levels of
0.05% (range, 0.02%-0.11%). The median number of somatic
mutations per patient was 33 (range, 8-294; Figure 1A). Somatic
variants for MYD88WT patients fell into 3 broad categories
and included those predicted to (1) trigger NF-kB; (2) impart
epigenomic dysregulation; and (3) impair DNA damage repair
(DDR). The key mutation findings and predicted protein changes
are shown in Table 2. A complete list of variants is reported in
supplemental Table 1. Mutations predicted to activate NF-kB were
observed in 12/18 (66.7%) patients and included TBL1XR1,
PTPN13, MALT1, BCL10, NFKB1,NKFB2,NFKBIB, NFKBIZ, and
UDRL1F (Figure 1B). Although many of these variants were
previously identified in patients with aggressive B-cell lymphomas,
novel recurring mutations also emerged.17-19 TBL1XR1 mutations
that are also found in DLBCL and primary central nervous system
lymphoma were identified in 5 (28%) MYD88WT patients, and
included missense, nonsense, and frameshift mutations. Two
patients each harbored 2 different TBL1XR1 mutations. TBL1XR1
mutations occurred at sites within or proximal to WD40 domains
(Figure 1C) that are known to trigger TBL1XR1/nuclear receptor
corepressor binding and degradation of nuclear receptor co-
repressor leading to activation of NF-kB and JUN pro-survival
signaling.20

Somatic mutations in the phosphatase PTPN13 were observed in 4
(22%) patients, occurring within the PDZ, FERM, and KIND
domains (Figure 1C). The PDZ domain binds to IKBA, an essential
cytosolic gatekeeper of NF-kB.21 Loss of PTPN13 function leads to
tyrosine phosphorylation of IKBA, resulting in nuclear translocation
of NF-kB. Other mutations predicted to alter NF-kB signaling
included those in the CBM complex (MALT1, BCL10) in 3 (17%),
and NFKB2 in 2 (11%) patients, and NFKB1, NFKBIB, NFKBIZ,
and UFD1L, which were observed once. The 2 MALT1 variants

Table 1. Patient clinical characteristics

Median Range or %

Age, y 59 42-81

Sex 10 males/8 females NA

BM, % 12.5 2.5-80

sIgM, mg/dL 2625 610-5620

Hb, g/dL 11.0 8.1-14.4

Adenopathy 9 (50%) NA

Splenomegaly 7 (38.8%) NA

Prior therapies 1 0-4

Untreated, n 8 44.4%

Previously treated, n 10 55.5%

Rituximab monotherapy 2 20.0%

Alkylators 7 70.0%

Nucleoside analogs 5 50.0%

Proteasome inhibitors 5 50.0%

Hb, hemoglobin; NA, not available; sIgM, serum IgM.
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were nonsense mutations 23 base pairs apart and predicted for
truncation of the C-terminal domain with loss of a TRAF6-binding
site. Mutations at this site have not been previously reported,
although functional studies suggest a critical role in preventing
MALT1 degradation and stabilizing the CBM complex.22 One
patient carried both nonsense and frameshift mutations in the
C-terminal domain of BCL10; these are similar to those in MALT
and follicular lymphomas that abrogate pro-apoptotic activity and
promote NF-kB activation.23 Structural variant analysis also
revealed deletions removing the DEATH/PEST domain of NFKB2
in 2 patients covering amino acids 691 through 822 and 711
through 839, respectively. Deletions in this region are associated
with constitutive NF-kB activation in myeloma.24

Somatic mutations in the chromatin-modifying genes (CMG)
KMT2D, KDM6A, and KMT2C were also observed in 4 (22%), 3
(17%), and 1 (6%) of the MYD88WT WM patients, respectively.
Mutations in the H3 lysine 4 methyltransferases KMT2D and
KMT2C are commonly found in DLBCL and follicular non-Hodgkin
lymphoma patients.17,18,25 Knockout studies have suggested a
partial functional redundancy for these CMG.25 In KMT2D mu-
rine knockout models, reduced class-switched B cells were
observed following immunization, a finding consistent with defec-
tive B-cell maturation and/or class switching.25 Mutations in the
DDR genes TP53 2/18 (11%), ATM 1/18 (6%), and TRRAP 1/18
(6%) were also observed, and the TRRAP-mutated patient (patient
17) exhibited the highest number of somatic variants in this
series (Figure 1A). A role for these mutations in NF-kB–driven

lymphomagenesis is supported by previous functional studies,
along with high rates of somatic mutations in TRRAP-mutated
patients.26-28

Other mutations included CXCR4 in 3/18 (17%) patients
(Figure 1C), 2 of whom had frameshift mutations within the C-
terminal domain as those found in MYD88MUT WM patients.11 A
third mutation (R134S) was identified in the intracellular 2 domain;
these mutations have not been previously reported in CXCR4-
mutated WM patients. Substitutions at R134 have been demon-
strated to affect inhibitory G protein alpha subunit (Gai) activation.

29

In addition, 1 NOTCH1 and 1 EGF mutation were observed.
Analysis of copy number alterations revealed no recurring events,
but was remarkable for the absence of chromosome 6q deletions
that are present in half ofMYD88-mutated WM patients, and target
genes regulating BTK, BCL2, NF-kB, and apoptosis signaling.30 To
better understand the relevance of these mutations in relationship to
MYD88 mutation status, we compared the WES findings from this
study with those from our previous whole genome sequencing of
53 MYD88MUT WM patients.14,15 Although many of the mutated
genes in MYD88WT patients were also found in MYD88MUT

patients, TBL1XR1 and MALT1 mutations were observed in
MYD88WT patients only (P5 .001 and 0.062, respectively), whereas
those with KDM6A (P 5 .052) and KMT2D (P 5 .065) showed a
trend toward enrichment in MYD88WT patients (Figure 2A).

With a median follow-up of 72.1 months (range, 13.2-176.9) from
diagnosis, 4 (22.2%) patients transformed to DLBCL. Nine (50%)

A
350

300

250

200

150

100

50

PT1
7

PT4 PT8
PT1

3
PT5 PT7

PT1
0

PT2 PT6 PT9
PT1

5
PT1

8
0

Nu
m

be
r o

f s
om

at
ic 

m
ut

at
ion

s
B

PT18
PT17
PT16
PT15
PT14
PT13
PT12
PT11
PT10
PT9
PT8*
PT7*
PT6
PT5
PT4
PT3*

PT1*
PT2

TB
L1X

R
1

M
A

LT1

B
C

L10

N
FK

B
2

N
FK

B
1

N
FK

B
IB

N
FK

B
IZ

P
TP

N
13

U
FD

1L

K
M

T2C

K
M

T2D

K
D

M
6A

TP
53

ATM

TR
R

A
P

C
X

C
R

4

E
G

F

N
O

TC
H

1

Two variants
observed in this patient

NF-KB Signaling DNA Damage Response

Epigenetic Signaling

C

WD40 Repeats

KIND FERM PDZ Phosphatase

SETCoiled Coil
PHD

Alpha Helix
C-terminal
Tail

LisH FBOX

TBL1XR1

PTPN13

KMT2D

CXCR4
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died, including 3 from disease transformation. The genomic
mutations found in transformed patients included TBL1XR1,
TP53, NFKB1, NFKB2, and MALT1 somatic mutations, all of
which have been identified in DLBCL patients.17,18 MYD88WT

patients had a significantly lower median OS relative to patients
with MYD88MUT disease. The estimated median OS for the 18
MYD88WT patients was 167 months; a median follow-up of 73.8
months was insufficient to calculate the predicted median for the
cohort of 262 MYD88MUT patients diagnosed over the same
period (log-rank P , .0001). Genomic findings were aggregated
into NF-kB signaling, epigenetic signaling, and DDR categories
and evaluated for their effect on OS. Particularly striking was the
exceedingly poor survival in patients with DDR mutations, in whom
the median OS was 29.9 months (range, 13.2-33.1), as shown
in Figure 2B. No significant differences in OS were ob-
served when stratifying the MYD88WT population by the other
2 categories. Constructing a Cox proportional hazard model
accounting for sex, age at diagnosis, MYD88 mutation status,
and the presence of DDR mutations revealed hazard ratios of 8.5
and 77.9 for MYD88WTDDRWT and MYD88WTDDRMUT, respec-
tively, relative to MYD88MUT WM patients (P , .001 for both
comparisons).

Analysis of the MYD88WT WM transcriptome revealed a distinct
transcriptional profile (Figure 3A). However, principal component
analysis of the top 500 high-variance genes revealed a clustering
ofMYD88WT andMYD88MUT WM samples, regardless ofCXCR4
mutation status that was distinct from healthy donor peripheral
blood B, memory B, and plasma cells (Figure 3B). These findings
were recapitulated in the supervised clustering of the top 100
most statistically significant differentially expressed genes be-
tween healthy donor memory B cells andMYD88WT WM samples,
in which gene expression levels were very similar between all
WM samples regardless of MYD88 and CXCR4 mutation status
(Figure 3C). Likewise, the contrast between healthy donor
memory B cells and MYD88WT samples found significant log2
fold change (LFC) overexpression of genes we had previously
associated with WM, including DNTT (LFC, 12.4; P 5 .005),
RAG1 (LFC, 8.1; P 5 .008), RAG2 (LFC, 10.0; P , .001),
CXCL12 (LFC, 11.8; P 5 .002), VCAM1 (LFC, 10.6; P 5 .001),
IGF1 (LFC, 7.0; P , .001), BMP3 (LFC, 7.0; P 5 .005), CD5L
(LFC, 10.0; P 5 .002), and B2M (LFC, 1.1; P 5 .022).15 These
findings are likely to explain many of the shared clinical and
morphological characteristics among WM patients, regardless of
their underlying MYD88 mutation status. The exceptions were
CXCR4, BCL2, and BAX, which were not significantly different
from healthy donor controls in MYD88WT samples.

Comparisons of gene expression based on MYD88 mutation
status revealed 291 significantly dysregulated genes that can be
seen in supplemental Table 2. Many of the genes we previously
associated with MYD88WT WM were validated in this larger
cohort including IL6 (LFC,23.7; P5 .022), TNFAIP3 (LFC,21.5;
P 5 .04), NFKBIZ (LFC, 21.8; P 5 .034), PIM1 (LFC, 22.1;
P , .001), PIM2 (LFC, 21.4; P 5 .038), CD40 (LFC, 21.4;
P 5 .037), and CD86 (LFC, 2.7; P 5 .024). A significant
dysregulation in a number of highly relevant novel genes including
RASSF6 (LFC, 26.1; P 5 .02), EIF5A2 (LFC, 2.4; P 5 .008),
CCL22 (LFC,24.5; P5 .034),CCR7 (LFC,22.7; P5 .006), LTK
(LFC, 2.0; P 5 .028), VEGFA (LFC, 22.7; P 5 .027), PRDM8
(LFC,22.6; P, .001), PRDM1 (LFC,23.0; P5 .001), and XBP1T
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(LFC, 21.9; P 5 .028) was also found in this expanded cohort.
Gene set enrichment analysis identified significant enrichment for
the upregulation of E2F, MYC, PIK3-AKT-MTOR, and G2M
checkpoint signaling targets (P # .009 for all) as well as the
downregulation of inflammatory response genes (P 5 .023)
and TNFA signaling through NF-kB (P , .001).

Discussion

This is the first study to focus on the genome and transcriptome of
MYD88WT WM, an infrequent subtype of WM that is remarkable in
certain studies for an increased risk of disease transformation, lower
response to ibrutinib, and shortened OS.5-10,31 Distinct patterns of
mutations were identified among MYD88WT patients, including
those affecting NF-kB signaling, epigenomic regulators, and those
in DDR genes, and were independent of prior treatment status. The
most common mutations involved those affecting genes in NF-kB
signaling that were identified in 12/18 (66.7%) MYD88WT patients,
and included TBL1XR1, NFKBIB, NFKBIZ, NFKB2, MALT1,
BCL10, and UDRLIF. Although mutations in these genes are rare
or absent in MYD88MUT WM disease, they are found in aggressive
lymphomas.17-19 TBL1XR1 mutations that were identified in 5

patients, including 2 patients who each had 2 mutations that are
of particular interest given their frequent presence in activated
B cell–like DLBCL and primary central nervous system
lymphoma.13-15 These diseases are also recognized for their high
frequency of recurring MYD88 mutations that are exclusive of
TBL1XR1 mutations, suggesting that the actions of the latter may
mimic at least in part those of activating MYD88 mutations.13-15 In
addition to mutations in TBL1XR1, many of the other NF-kB
pathway mutations identified in this study are found in aggressive
B-cell lymphomas. Taken together, these findings may provide
a genomic explanation for the increased risk of disease
transformation9,10 and accompanying shorter survival observed in
our previous study forMYD88WT WM patients.9 Somatic mutations
in CMG were also observed in 8 (44.4%) MYD88WT patients.
KMT2D mutations were the most common CMG mutations
observed in MYD88WT WM patients, and are present in 30% of
DLBCL patients. Varettoni et al32 recently reported KMT2D
mutations in 24% of MYD88MUT WM patients, although these
were primarily subclonal and their clinical course relative to patients
without KMT2D mutations was not clarified. The mechanistic
pathways by which CMG mutations promote WM pro-survival
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cies between MYD88WT and MYD88MUT WM patients. (A)

Data for mutation frequencies for 53 MYD88MUT WM patients

were acquired from our previous whole genome sequencing

results, using high-quality somatic variants supported by at

least 3 reads.10,11 (B) Kaplan-Meier curves for overall survival

from time of diagnosis for WM patients with MYD88MUT,

and MYD88WT with and without DDR mutations (log-rank

P , .0001).
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signaling deserves further study given their frequent occurrence
in WM.

Particularly concerning were MYD88WT patients who presented
with DDR mutations. Compared with patients with MYD88MUT and
MYD88WT disease lacking DDR mutations, those with MYD88WT

disease with DDR mutations represented a subset with ultra-high-risk
disease. A similar observation has also been made in myeloma
patients.33 Although TP53 mutations are uncommon in WM, they are
present inMYD88-mutated patients.32,34,35 Their association with poor
outcome inMYD88-mutated patients has previously been reported.34,35

Last,CXCR4 activating mutations found in 30% to 40% ofMYD88MUT

patientswere identified inMYD88WT patients, although the frequency of
these mutations was lower. Only 2 (9%) of theMYD88WT patients had
C-terminal variants that promote WHIM-like signaling, as found in
MYD88MUT WM patients. The significance of a third CXCR4 variant
(R134S) identified in 1 patient remains unclear. All 3 of theseCXCR4-
mutated patients also had mutations affecting NF-kB signaling, akin to
MYD88-mutated WM patients, and may therefore be amenable to
therapeutics targeting CXCR4, such as ulocuplumab, which is being
investigated in WM patients harboring both MYD88 and CXCR4
mutations in combination with ibrutinib (NCT03225716).

The findings of this study may also provide important insights into
why WM patients with MYD88WT disease are less responsive to
ibrutinib monotherapy.5-7 The NF-kB pathway mutations observed
in two-thirds of MYD88WT patients were all downstream of BTK
(Figure 4). NF-kB pathway inhibitors that are downstream of BTK,
including proteasome inhibitors that target IKBA, and novel agents
that target IKK and MALT1 may be more appropriate for these
individuals.36,37 A mechanistic rationale for how ibrutinib fits into the

treatment of CMG and DDR-mutated MYD88WT WM remains
elusive, as does a targeted treatment approach for such patients.

An unexpected finding was the transcriptional similarity forMYD88WT

andMYD88MUT disease relative to healthy donor B cells. This finding
may well account for the many overlapping disease characteristics
observed between MYD88WT and MYD88MUT patients.8,9 The
transcriptional similarity between these subsets of WM may reflect
the common activation of NF-kB triggered by activating mutations
such as TBL1XR1 in MYD88WT patients and mutated MYD88.
However, the extent of NF-kB activation may differ, because some
NF-kB–regulated genes such as IL6, IRAK2, TNFAIP3, NFKBIZ,
NFKB2, TIRAP, PIM1, and PIM2 show lower expression in
MYD88WT vs MYD88MUT patients. Because MYD88 is a key
mediator of innate immune signaling, additional branch points
for downstream signaling exist, even in the context of NF-kB
that includes AKT and ERK (via cytokines) pathways triggered
by MYD88 activation of HCK and/or BCR/SYK in WM cells.4,38

The existence of a “My-T-BCR supercomplex” that encompasses
mutated MYD88 and BCR components that contribute to broader
signaling that includes mTOR is also supported by recent studies in
activated B cell–like DLBCL.39 Consistent with this notion, we
observed a gene set enrichment for PI3K-AKT-MTOR signaling was
observed in MYD88WT patients; therefore, a targeted approach for
treating MYD88WT patients may entail the use of PI3K or MTOR
inhibitors. In contrast to MYD88MUT patients, those with MYD88WT

had lower levels of BCL2 expression that were on par with the
expression found in healthy donor B cells. The BCL2 antagonist
venetoclax has shown remarkable activity in WM, although MYD88
mutation status and relative dependence on BCL2 expression
remain to be clarified.40
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Figure 3. Findings from next-generation gene expression studies in MYD88WT
WM. (A) The top 100 most statistically significant genes between samples from 18 MYD88WT

and 75 MYD88MUT patients are shown, demonstrating a uniform gene signature associated with the MYD88WT population. (B) Principal component analysis of the top 500 high variance

genes revealed a clustering of MYD88WT and MYD88MUT WM samples, regardless of CXCR4 mutation status that was distinct from healthy donor peripheral blood B, memory B, and

plasma cells. (C) These findings were also recapitulated in the supervised clustering of the top 100 most statistically significant differentially expressed genes between healthy donor

memory B cells and MYD88WT WM samples, in which gene expression levels were very similar between all WM samples regardless of MYD88 and CXCR4 mutation status.
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In summary, the findings depict genomic and transcriptional events
associated with MYD88WT WM and provide mechanistic insights
for disease transformation, decreased ibrutinib activity, and novel
drug approaches for this population.
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