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Key Points

•GSK3b is upregulated
and more nuclear in
localization in AML,
allowing it to promote a
more aggressive dis-
ease in vivo and in vitro.

•Nuclear localization of
GSK3b is correlated
with poorer overall
survival and drug
resistance.

Acutemyeloid leukemia (AML) is adevastatingdiseasewithpoorpatient survival.As targetable

mutations inAMLare rare, novel oncogenicmechanisms areneeded to definenew therapeutic

targets. We identified AML cells that exhibit an aberrant pool of nuclear glycogen synthase

kinase 3b (GSK3b). This nuclear fraction drives AML growth and drug resistance. Nuclear, but

not cytoplasmic, GSK3b enhances AML colony formation and AML growth in mouse models.

Nuclear GSK3b drives AML partially by promoting nuclear localization of the NF-kB subunit,

p65. Finally, nuclear GSK3b localization has clinical significance as it strongly correlates to

worse patient survival (n5 86; hazard ratio5 2.2; P, .01) andmediates drug resistance in cell

and animal models. Nuclear localization of GSK3b may define a novel oncogenic mechanism

in AML and represent a new therapeutic target.

Introduction

Acute myeloid leukemia (AML) is an aggressive disease with poor patient survival. Although a wide range
of genetic abnormalities has been described in AML, individual patients exhibit only a small number of
these abnormalities, and these vary considerably among patients.1,2 This molecular heterogeneity
complicates the development of targeted AML therapeutics with broad efficacy. Identifying more
universal abnormalities in AML would provide novel targets and improved prognostic biomarkers.

Glycogen synthase kinase 3 (GSK3) has been reported as a promising AML therapeutic target.3-5

GSK3 is a kinase that affects multiple signaling pathways important for cellular self-renewal, growth, and
survival, including the NF-kB and b-catenin pathways, both critical for AML development.6,7 GSK3
inhibition promotes growth inhibition and differentiation of a variety of AML cells, irrespective of specific
mutations.3,5 Unlike traditional AML chemotherapy that exhibits toxic effects on normal hematopoietic
cells as well as AML cells, for unknown reasons GSK3 inhibition does not lead to growth impairment of
normal hematopoietic cells.3-5 In fact the GSK3 inhibitor, lithium, has been used clinically to accelerate
the recovery of white blood cells after bone marrow transplantation.8

GSK3 inhibitors target both isoforms of GSK3, GSK3a and GSK3b, and we and others have shown
GSK3b plays an important role in AML.3,5 GSK3b upregulation has been observed in a wide variety of
cancers, including pancreatic, non–small cell lung, gastric, and chronic lymphocytic leukemia.9-15

Interestingly, in chronic lymphocytic leukemia and pancreatic cancer, GSK3b aberrantly localizes to the
nucleus. This nuclear localization of GSK3b has been correlated to the expression of antiapoptotic
genes such as Bcl-2 and Bcl-XL.11,16 Although nuclear GSK3b has been observed in several types of
cancer, whether the upregulation of nuclear GSK3b specifically could promote more aggressive cancer
is less clear.
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Herewe showGSK3b protein is universally upregulated and aberrantly
nuclear localized in AML as compared with normal hematopoietic cells.
Then utilizing a targeted, inducible GSK3b rescue system, we show
increased nuclear localized GSK3b, not merely increased GSK3b
expression, promotes more aggressive, drug-resistant AML. Finally, we
show that AML patient samples exhibit a wide variation in nuclear
GSK3b partitioning, and that patients with the most pronounced
nuclear GSK3b localization exhibit poorer survival.

Materials and methods

Reagents and cells

Daunorubicin and doxycycline were from Dot Scientific (Burton, MI).
5-Fluorouracil was from TCI America (Portland, OR). JSH-23 was
obtained from Apex Biotechnology Corp. (Taiwan). Antibodies were
from the following: hemagglutinin (HA)-tag, caspase-3, poly ADP
ribose polymerase (PARP), GSK3b, pGSK3b, p65, pp65 (S536),
IkB, glyceraldehyde-3-phosphate dehydrogenase, Histone 3, X-linked
inhibitor of apoptosis protein (XIAP), and Bcl-XL (Cell Signaling
Technologies, Beverly MA); CD34 (Beckman Coulter, Brea, CA);
CD38, CD14, and CD15 (BD Biosciences, San Jose, CA); and CD3,
CD117, and CD19 (Biolegend). P65-A488 was obtained from Santa
Cruz Biotechnology (Dallas, TX). Quantitative polymerase chain
reaction (qPCR) primers were obtained from Sigma-Aldrich (GSK3b:
F 59-GGAACTCCAACAAGGGAGCA-39, R 59-TTCGGGGTCGG-
AAGACCTTA-39; b-actin: F 59-AGAGCTACGAGCTGCCTGAC-39,
R 59-AGCACTGTGTTGGCGTACAG-39). Cell lines were from the
following: OCI-AML3 (Deutsche Sammlung von Mikroorganismen und
Zellkulturen, Braunschweig, Germany); and 293T, Phoenix, U937,
THP-1, and HL60 cells (American Type Culture Collection, Manassas,
VA). Primary AML and normal donor samples were from the Case
Western Reserve University Hematopoietic Cell Core Facility (Cleve-
land, OH) or Eastern Cooperative Oncology Group–American College
of Radiology Imaging Network (ECOG-ACRIN) E1900 and E3999.
Mouse progenitor cells were obtained as previously described.17

GSK3b rescue system

To establish targeted GSK3b constructs, GSK3b was mutated to
S9A. Three silent mutations (C1847T, A1850T, and A1853G) were
made using the Quickchange Lightning kit (Agilent Technologies,
Santa Clara, CA). For GSK3b–nuclear localization signal (NLS),
3 SV40 large T NLS were added to the GSK3bC terminus. GSK3b-
Cyto was made as previously described, mutating R102G and
K103A.18 GSK3b complementary DNA (cDNA) was cloned into
PLVX-TRE3G-EF1a-mCherry vector from Clontech (Mountain View,
CA). Each construct was HA-tagged at the N terminus.

Cells were transduced with GSK3b shRNA TRCN0000039999
(Sigma, St. Louis, MO) and selected with blasticidin. Next, GSK3b-
Cyto or GSK3b-NLS and a tet-regulator were transduced (Tet-on
3G, Clontech) and selected using puromycin and G418. GSK3b
expression was induced for a minimum of 48 hours with doxycycline
(0.2-1.5 mg/mL).

qPCR

Total RNA was isolated from either AML cells lines or peripheral
blood mononuclear cells (PBMCs) from healthy donors and AML
patients using the RNeasy Mini Kit (Qiagen, Hilden, Germany). RNA
was transcribed into cDNA using the High Capacity RNA-to-cDNA
Kit (Applied Biosystems, Foster City, CA). qPCR was performed in

quadruplicates using EvaGreen Dye (Biotium, Fremont, CA) on a
BIO-RAD CFX96 Real-Time Thermocycler (Bio-Rad, Hercules, CA).

Viral transductions

Lentiviral. 293T and AML cells were transfected as pre-
viously described.3

Retroviral. Phoenix E cells were cotransfected with MLL-AF9-
GFP (Addgene) or vector and PCL7 (Addgene). After 48 hours, cells
were concentrated with Retro-X concentrator per the manufacturer’s
instructions (Takara Bio, Japan). Cells were incubated in viral superna-
tant in retronectin-coated plates for 3 days (Takara Bio).

Western blot

Cells treated as indicated were lysed with a triton containing lysis
buffer for whole cell extracts. Western blots were performed as
previously described.3,19

Mouse xenograft studies

Six-week-old female Nod/SCID/IL2-Rg2/2 (NSG) mice (Jackson
Laboratory, Bar Harbor, ME) were injected IV with 3 million OCI-
AML or HL60 cells per group (n5 5 per group). GSK3b expression
was induced by administering 100 mg/mL doxycycline ad libertum.
In the drug resistance study, 4 days after cell injection, daunorubicin
was administered once daily to half of the induced and control mice
at a dose of 1.5 mg/kg for a 3 doses. Mice were euthanized
according to our institutional guidelines (signs of significant disease
morbidity such as limb paralysis or .20% weight loss).

Colony assay

Ten thousand viable cells per group were plated in 1.27% methyl-
celluose (R&D Systems, Minneapolis, MN). Colonies were counted after
7 to 10 days.

Drug resistance assays

Viability was assessed by counting at least 100 cells in at least 2
representative microscope fields using trypan blue (Thermo Fisher)
or Hoechst 33342 staining (Invitrogen, Carlsbad, CA).

Luciferase assay

293T cells were transfected with a GSK3b construct, ELAM-
luciferase, and Renilla-Luciferase construct. After 48 hours, cells
were analyzed using the Biotium Dual Firefly/Renilla Luciferase Kit
per manufacturer instructions (Fremont, CA).

Flow cytometry and imaging cytometry

Cell surface markers were stained for 15 minutes at room
temperature (CD34 or CD117 for ECOG samples). Cells were
then fixed in 4% formaldehyde and stained per antibody supplier
instruction but with 80% methanol and analyzed on a LSR II (BD
Biosciences) or Attune NXT cytometer (ThermoFisher) or an Amnis
ImageStream cytometer for imaging cytometry (EMD Millipore
Billerica, MA). Before each run, BD calibrite beads were run to
normalize for day-to-day variation. The nuclear localization score
was calculated using IDEAS 6.1 software (EMD Millipore).

Statistical analysis

The Student t test andWilcoxon rank-sum test were used to compare
the distribution of continuous values in 2 groups. Error bars are
defined as 61 standard error. Mouse survival data were analyzed
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using the log-rank test. Multiple means was analyzed using the Tukey
Kramer test or 1-way analysis of variance (not significant, P . .05;
*P , .05; **P , .01; ***P , .001). Cook’s distance was used to
determine regression model outliers. The biomarker studies were
performed in a blinded fashion between laboratory investigators and
a statistician. Survival distributions were estimated using the Kaplan-
Meier method. Cox proportional hazards models were used to assess
the association between overall survival and covariates.

Study approval

The CaseWestern Reserve University Institutional Animal Care and
Use Committee approved all of the animal protocols used in this
study. For the human patient sample work, written informed consent
was received from participants prior to inclusion in the study. The
University Hospitals Cleveland Medical Center Institutional Review
Board approved all of the human subject’s research.

Results

GSK3b is upregulated and exhibits aberrant nuclear

localization in AML

GSK3 inhibition and knockdown selectively leads to the growth
inhibition and differentiation of AML cells while sparing normal
hematopoietic cells, suggesting GSK3 may promote AML mainte-
nance and progression.3-5 To explain this marked difference in
biological effects, we probed the protein expression and subcellular
localization of GSK3b in AML and normal hematopoietic cells.

Western blot analysis comparing normal bone marrow cells
(abbreviated NM), immature peripheral blood granulocyte colony-
stimulating factor mobilized leukocytes (abbreviated MB), and a
variety of AML cell lines and primary patient samples showed a
dramatic increase in GSK3b protein in AML as compared with
normal cells (Figure 1A; supplemental Figure 1). Flow cytometry
revealed GSK3b protein levels in normal hematopoietic progenitor
cells (CD341), monocytes (CD141), B cells (CD191), neutrophils
(CD151), and T cells (CD31) were all 5- to 10-fold lower than
GSK3b levels in AML (Figure 1B; n 5 2 for each subset tested).
Finally, GSK3b expression in adult AML diagnosis samples (n5 86)
from ECOG-ACRIN studies (E3999 and E1900) is markedly
upregulated compared with normal CD341 hematopoietic pro-
genitor cells (n 5 12), suggesting GSK3b elevation is broadly
characteristic of AML (P , .001) (Figure 1C-E).

Interestingly, although GSK3b protein is upregulated in AML,
extensive genomic studies by others reveal negligible changes in
GSK3b RNA when comparing AML and normal hematopoietic cells.
For example, a large microarray study of 542 AML and 72 normal
hematopoietic samples reveals GSK3b RNA is merely 1.048-fold
upregulated compared with normal PBMCs (supplemental Figure 2A;
P, .05). This result is further supported by qPCR comparing GSK3b
messenger RNA in 3 AML cell lines, 3 AML patient samples, and 3
normal patient PBMC samples, where 1-way analysis of variance
reveals no significant difference between the groups (supplemental
Figure 2B; P 5 .61992). In addition to the lack of RNA changes, no
DNA mutations of GSK3b have been observed in curated AML data
sets (http://cancergenome.nih.gov).

GSK3b is partially regulated through its nuclear or cytoplas-
mic subcellular localization.18,20 Nuclear GSK3b has access to
different protein targets than the cytoplasmic pool of GSK3b

leading to distinct effects on cellular processes.11,16,21 To quantify
the nuclear localization of GSK3b in AML and normal controls,
imaging cytometry was used. Imaging cytometry combines the high-
throughput power of flow cytometry with the imaging capacity of
fluorescent microscopy.22-25 By correlating the intensity of the nuclear
signal to the GSK3b signal, a log2-based nuclear localization score
is derived where a negative number indicates a more cytoplasmic
localization and a positive number a more nuclear localization. This
nuclear localization score as measured by imaging cytometry
exhibits high intrasample reproducibility (supplemental Figure 3).

Imaging cytometry analysis reveals that normal CD341 cells
exhibit a predominantly cytoplasmic GSK3b localization and AML
cells universally exhibit elevated nuclear localization of GSK3b
(Figure 1C-E). Similar results confirming the aberrant nuclear
localization of GSK3b in AML were obtained using confocal
microscopy (supplemental Figure 4). Imaging cytometry was
performed using primary AML samples (n 5 86), AML cell lines
(n 5 3) and CD341 normal hematopoietic progenitor cells
(n 5 12). GSK3b localization in normal CD341 cells generated
an average nuclear localization score of20.596 0.2. In contrast,
AML cell lines and patient samples exhibit a dramatically
increased GSK3b nuclear localization, generating an average
nuclear localization score of 1.7 6 0.045. (P , .00001)
(Figure 1C). Although there is a wide distribution of GSK3b
nuclear localization scores in AML, all samples tested exhibit
higher scores than any of the normal CD341 progenitor cells
examined (Figure 1C).

Transformation of mouse progenitor cells by

MLL-AF9 promotes GSK3b expression and

nuclear localization

We next tested if leukemic transformation from normal hematopoi-
etic progenitor cells leads to the upregulation of nuclear GSK3b
using a well-characterized MLL-AF9 model that leads to trans-
formation after ;2 weeks of serial replating.5,17,26-30 Consistent
with previous reports, normal hematopoietic cells transduced with
MLL-AF9 demonstrated a marked increase in colony formation,
whereas cells transduced with empty vector failed to form colonies
after 2 serial replatings (supplemental Figure 5).

Similar to previous results with normal human hematopoietic cells,
GSK3b expression was extremely low in the nontransformed
mouse cells (Figure 2). GSK3b expression and nuclear localization
increased markedly in MLL-AF9 transduced cells by the second
passage. Further increases in GSK3b nuclear localization were
observed after the third passage suggesting that the GSK3b
nuclear localization becomes more pronounced as leukemogenesis
progresses. These observations suggest GSK3b upregulation
and nuclear localization can be promoted by MLL-AF9-mediated
transformation and may represent an important step in AML
leukemogenesis.

Nuclear GSK3b more potently promotes AML cell

growth in vitro than cytoplasmic GSK3b

Nuclear GSK3b is characteristic of a wide range of AML cells, and
inhibition of GSK3 impairs AML growth. This result is consistent
with a growing body of literature that shows elevated nuclear
GSK3b can be observed in several cancers, and subsequent
inhibition or knockdown of total GSK3b inhibits cancer growth.9-15
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Whether the upregulation of nuclear GSK3b specifically could
promote more aggressive cancer is less clear.

To test if upregulation of nuclear GSK3b specifically promotes
more aggressive AML, we knocked down endogenous GSK3b
and then rescued GSK3b expression with nuclear or cytoplasmic-
targeted variants in the OCI-AML3 and HL60 cell lines (supplemental
Figure 6).18 Quantitation of GSK3b before and after induction
suggests the amount of GSK3b expressed through the rescue
system restores levels to approximately that of the parental AML
cells (supplemental Figure 6). Thus, this model provides a unique
tool to test if increased proportional nuclear GSK3b partitioning,
not merely increased GSK3b expression, could promote more
aggressive AML.

Using this rescue model we tested if nuclear or cytoplasmic
GSK3b expression could promote AML colony formation.
Nuclear-targeted GSK3b (NLS cells) in HL60 and OCI-AML3
cells increased colony formation by 38% 6 7.7% and 19% 6
6.1%, respectively, as compared with nontetracycline induced
controls (P , .001 for HL60-NLS and P , .01 for OCI-AML3-
NLS) (Figure 3A). Cytoplasmic GSK3b (Cyto cells) failed to
increase colony formation (P . .05 for HL60-Cyto and OCI-
AML3-Cyto) (Figure 3A). These results suggest nuclear GSK3b
promotes AML growth in vitro, gaining oncogenic function
compared with cytoplasmic GSK3b.

As nuclear GSK3b promotes AML growth in vitro, we next tested
its impact in vivo. Immunodeficient mice injected with HL60 or
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Figure 1. GSK3b is highly upregulated, active, and more nuclear in AML cells. (A) GSK3b levels were assessed as indicated in normal bone marrow (NM), immature

granulocyte colony-stimulating factor mobilized peripheral blood leukocytes (MB), and AML cells by western blot. FAB subtypes are as follows: HL60-M2 OCI-M4 U937-M4

subtype THP1-M5 subtype Pt1-M4 Pt2-M2 Pt3-M4EO. (B) GSK3b levels in different populations of normal cells (n 5 2 for each subpopulation) and AML cells (n 5 2 for 3

cell lines and 1 patient sample) were analyzed using flow cytometry analysis. P , .001 for all comparisons except for OCI/CD3, Pt/CD3, OCI/CD19, Pt/CD19, OCI/CD14,

and Pt/CD14 where P , .01. (C) Imaging cytometry was used to quantify GSK3b expression in primary AML (n 5 86) and normal bone marrow CD341 cells (n 5 12)

expressed in box-and-whisker plot displaying the median and quartile distributions of GSK3b mean fluorescence intensity. (D) Imaging cytometry was used to quantify GSK3b

nuclear localization in primary AML (n 5 86) and normal bone marrow CD341 cells (n 5 12) expressed in box-and-whisker plot displaying the median and quartile distributions.

(E) Representative images of cells from the cell types indicated from imaging cytometry showing GSK3b expression and the nucleus (49,6-diamidino-2-phenylindole [DAPI]

staining). The GSK3b expression level and nuclear localization of each sample is shown. **P , .01; ***P , .001.
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OCI-AML3 cells were provided with tetracycline-supplemented or
plain water and monitored for survival. GSK3b induction in AML
cells in the mice after tetracycline-supplemented water administra-
tion was confirmed by flow cytometry (supplemental Figure 7).
Nuclear, but not cytoplasmic, GSK3b led to a marked reduction in

survival (survival in days: HL60-NLS, No Tet 5 35, Tet 5 28.75,
P , .01; OCI-AML3-NLS: No Tet 5 32, Tet 5 25.75, P , .01)
(Figure 3B). Taken together, these data suggest nuclear, but
not cytoplasmic, GSK3b provides a major AML growth advantage
in vivo.
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Figure 1. (continued).

2894 IGNATZ-HOOVER et al 13 NOVEMBER 2018 x VOLUME 2, NUMBER 21

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/2/21/2890/1629824/advances016006.pdf by guest on 08 June 2024



Nuclear GSK3b promotes NF-kB activation

As nuclear GSK3b promotes AML growth in vivo and in vitro, we
hypothesized nuclear GSK3b may impact prosurvival signaling in
AML. As NF-kB is activated by GSK3b and it is a critical prosurvival
factor in many cancers, we explored the connection between these
factors in AML.7,11,16,31-36 Of note, nuclear GSK3b has been
correlated with increased NF-kB activation in pancreatic cancer
and chronic lymphocytic leukemia.11,16 Initially using a NF-kB
reporter assay in 293T cells, we observed more potent NF-kB
activation with nuclear GSK3b overexpression as compared with

cytoplasmic (GSK3b-NLS 5 18-fold induction; GSK3b-Cyto 5
threefold induction; P , .001) (Figure 4A; supplemental
Figure 6E). Importantly, GSK3b overexpression alone can drive
NF-kB dependent transcription without the necessity for addi-
tional stimuli, suggesting nuclear GSK3bmay promote the basal
activation of NF-kB.

We next tested if nuclear GSK3b could better activate NF-kB in
AML than cytoplasmic GSK3b. The induction of nuclear, but not
cytoplasmic, GSK3b led to increased activation of the p65 subunit
as evidenced by increased phosphorylation at serine 536 (S536)
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Figure 2. GSK3b is upregulated and exhibits high nuclear localization in mouse hematopoietic progenitor cells after MLL-AF9-mediated transformation.

5-Fluoruracil-mobilized mouse progenitor cells were transduced with vector control or MLL-AF9 and serially passaged in semisolid media for 3 passages or until colonies failed

to form. Cells were analyzed by imaging cytometry following each passage for GSK3b intensity and nuclear localization score. Note: no colonies formed for vector control at

the second serial passage.
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and nuclear translocation of p65 (Figure 4B-C). GSK3b expression
did not promote IkB degradation, suggesting GSK3b acts distal to
the IkB complex in AML (Figure 4B).11,16

If nuclear GSK3b enhances the nuclear localization of p65 in AML,
then GSK3b and p65 nuclear localization should positively corre-
late in AML patient samples. Linear regression analysis of GSK3b
and p65 nuclear localization scores from our ECOG-ACRIN cohort
revealed a positive correlation (R2 5 0.5168, P, .001) suggesting
the localization of these proteins is related in AML (Figure 4D). This
result suggests that nuclear GSK3b may influence the accumu-
lation of p65 in the nucleus where it can promote transcription of
NF-kB target genes.

Finally, given that nuclear GSK3b activates NF-kB, we next assessed
for changes in NF-kB-dependent target genes that are involved in
AML survival and drug resistance. Nuclear, but not cytoplasmic,
GSK3b increased the expression of the prosurvival gene Bcl-XL in
HL60 cells as well as the expression of XIAP in both HL60 and OCI-
AML3 cells (Figure 4E). In contrast, cytoplasmic GSK3b expression
led to a reduction of Bcl-XL (HL60) and XIAP (OCI-AML3) (Figure 4E).

Nuclear GSK3b protects against daunorubicin-

mediated AML cell killing in vitro and in vivo

Because nuclear GSK3b promotes prosurvival NF-kB signaling,
which is associated with AML drug resistance,35,36 we tested if
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nuclear GSK3b promotes AML drug resistance. GSK3b-NLS
protected AML cells from daunorubicin-mediated cell killing
doubling the median lethal dose (LD50) from 197 nM to 400 nM
while GSK3b-Cyto lowered the daunorubicin LD50 from 247 nM to
185 nM (Figure 5A). The protective effect of nuclear GSK3b on
AML cell survival was found to be expression dependent as
increasing amounts of nuclear GSK3b increased drug resistance
(Figure 5B). Similar results were observed utilizing another AML
therapeutic, cytarabine (Figure 5B).

To further characterize drug resistance effects of nuclear GSK3b, we
tested if nuclear GSK3b inhibited apoptosis.Western blot analysis of
AML cells expressing GSK3b-NLS revealed significant decreases in
the cleavage of the apoptotic mediators caspase 3 and PARP after
daunorubicin treatment as compared with control cells (Figure 5C).
Additionally, the expression of GSK3b-Cyto promotes cleavage of
caspase 3 in response to daunorubicin, suggesting cytoplasmic
GSK3b may promote apoptosis instead of impairing it.

In addition to promoting resistance to daunorubicin-mediated killing,
nuclear GSK3b protects colony formation in HL60 cells treated
with low doses of daunorubicin. For example, nuclear GSK3b
induction led to threefold more colonies as compared with control
cells after treatment with 30 nM daunorubicin (P, .05) (Figure 5D).

GSK3b-NLS also promotes AML daunorubicin resistance in mice.
For this model, immunodeficient mice were injected with HL60-NLS
cells, and the mice were provided either tetracycline-supplemented
water to induce nuclear GSK3b or plain water. Mice were treated
with vehicle or daunorubicin and assessed for survival. As expected,
the GSK3b-NLS promoted more aggressive disease regardless of
the presence of daunorubicin. Interestingly, although treatment
with daunorubicin improved survival, the induction of nuclear GSK3b
significantly limited daunorubicin’s prosurvival effects, suggesting
nuclear GSK3b promotes daunorubicin resistance in vivo (average
days survival: No Tet/dauno5 32, Tet/dauno5 26.6; No Tet5 27.75,
Tet 5 24; P , .01 for each No Tet/Tet comparison) (Figure 5E).

GSK3b and p65 nuclear localization correlate to

poorer patient survival

As GSK3b-NLS promotes drug resistance and most AML patients
die of drug resistant disease, we hypothesized that GSK3b nuclear
localization will predict patient survival.37,38 Although the nuclear
localization of GSK3b is universally elevated in AML, there is a wide
range in patients, suggesting it may serve as a useful biomarker
(Figure 1C-D). We also assessed the nuclear localization of the
related protein, p65. Similar to GSK3b, p65 also exhibits a wide
range of nuclear localization scores among AML patients (Figure 6A).

We next used a Cox proportional hazard model to test if increased
p65 and GSK3b nuclear localization scores correlate to poorer
patient survival in the ECOG-ACRIN cohort, revealing that in-
creased GSK3b or p65 nuclear localization strongly correlates with
decreased patient survival (GSK3b hazard ratio [HR] 5 2.237,
P , .01; p65 HR 5 2.476, P , .05) (Figure 6D). We also
individually correlated total expression of GSK3b, p65, b-catenin,
and pS9 GSK3b to patient survival. Interestingly, none of these
parameters correlated to poorer patient survival suggesting the
importance of the nuclear pool of these proteins.

Given that GSK3b nuclear localization correlates with poorer
patient outcomes, we characterized GSK3b nuclear localization

within the major AML cytogenetic risk groups. These risk groups
provide important prognostic information and are widely used to
guide treatment decisions.2,39,40 There was no statistically significant
difference in GSK3b nuclear localization between patients in these
groups, suggesting that GSK3b nuclear localization is not merely
characteristic of 1 cytogenetic risk group (supplemental Table 2).

Given that increased nuclear GSK3b is associated with poorer
overall survival and our in vivo and in vitro models suggest nuclear
GSK3bmay promote drug resistance, we used a logistic regression
model to test if increased nuclear GSK3b is associated with lower
rates of complete remission (CR) and decreased disease-free
survival (DFS). Increased nuclear GSK3b was associated with less
DFS (Figure 6E; HR5 2.784, P5 .019). Increased nuclear GSK3b
also trended toward a statistically significant association with
decreased CR (Figure 6E; HR5 0.262, P5 .067). Taken together,
these data further support the association of nuclear GSK3b with
worse clinical outcomes.

We next developed a multivariate Cox proportional hazard model
that included cytogenetic risk group, age, performance status, and
treatment received to test if nuclear GSK3b localization score could
improve current prognostic models. Inclusion of GSK3b nuclear
localization yielded a high HR (HR 5 2.566, P 5 .003) and
significantly improved the fit of this multivariate model, suggesting
nuclear GSK3b may function as a useful AML biomarker (likelihood
ratio 5 9.1, P , .01) (Figure 6F).

To further test if GSK3b and p65 nuclear localization score can be
used as AML biomarkers, we compared overall survival between
patients with low and high GSK3b or p65 nuclear localization scores
using the median scores as the cutoff. Patients with GSK3b or p65
nuclear localization scores above the median exhibited worse overall
survival than patients below the median (GSK3b HR 5 1.637, P 5
.008; p65HR5 1.948, P5 .048) (Figure 6B-C). Themajor impact of
nuclear GSK3b localization score on AML survival, taken together
with the cell and animal based studies, suggests elevated nuclear
GSK3b localization can directly promote poorer patient survival. As
the primary determinant of AML patient survival is drug resistance/
refractoriness, these biomarker studies are also suggestive that
nuclear GSK3b promotes AML drug resistance in patients.

Discussion

In general, cancers are driven by genetic and epigenetic changes
that promote cell survival. For example, mutation of the AML
oncogene, NPM1, leads to aberrant cytoplasmic localization and
altered function.41 Here we report a novel oncogenic mechanism
where aberrant nuclear localization of wild-type GSK3b can drive
AML. To our knowledge, no GSK3b mutations or significant
transcriptional changes have been reported in AML, and our
present qPCR data further enforce that conclusion (supplemental
Figure 2; http://cancergenome.nih.gov).1

Our studies demonstrate that AML exhibits a high level of
expression and aberrant nuclear localization of GSK3b in a range
of genetic subtypes. As AML is highly heterogeneous, this finding
strongly suggests that the aberrant localization of GSK3b may
represent a more general AML hallmark and therefore common
therapeutic target in AML.

Our model provides a unique tool to dynamically show increased
nuclear GSK3b promotes more aggressive, drug resistant AML,
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Figure 5. Nuclear localization of GSK3b promotes resistance to standard AML chemotherapeutics. (A) The indicated cells with or without targeted GSK3b
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producing similar results in 2 different AML cell lines. Drug
resistance in AML is a major clinical challenge because the majority
of patients relapse with drug-resistant disease.39 Although we
recognize the absolute quantification of GSK3b in our model is
difficult to correlate directly to a clinical context, we argue our model
provides foundational evidence that nuclear GSK3b more po-
tently promotes AML growth and drug resistance than cytoplas-
mic GSK3b. This increased relative potency is appreciated in our
clinical data. Indeed, independent of overall GSK3b expression
levels, a higher proportion of nuclear to cytoplasmic GSK3b,
reflected in the nuclear localization coefficient, correlated to poorer
patient survival in 86 clinically annotated samples collected from
multiple centers. Interestingly, although patients with elevated
nuclear GSK3b exhibited poorer overall survival and DFS, the
correlation with CR only trended to significance. This suggests that
increased nuclear GSK3b may correlate more with drug resistance
that drives relapse rather than an initial treatment failure. Previous
work suggests the AML stem cell population as a potential cause of
relapse and given the key role of GSK3b in MLL leukemogenesis
and the importance of GSK3b’s main target b-catenin in AML stem
cells, further studies with nuclear GSK3b and AML stem cells are of
interest.

Interestingly in addition to GSK3b nuclear localization, p65
nuclear localization also correlates to poor patient survival. This
finding follows from the observation that GSK3b and p65 nuclear
localization correlate. As p65 nuclear translocation represents a
key step in NF-kB activation, patients with poorer survival may
exhibit more active NF-kB signaling. Although it is well-established
that NF-kB promotes cancer drug resistance, to our knowledge
this is the first report of p65 nuclear localization correlating to AML
patient survival.

Although GSK3b protein expression is markedly upregulated in
AML, it did not correlate to poorer patient survival. This suggests the
relative nuclear localization of GSK3b is the key factor and fits with
our observations that nuclear, but not cytoplasmic, GSK3b leads to
AML resistance to chemotherapy. This observation is consistent
with previous studies that have suggested that cytoplasmic GSK3b
can exhibit proapoptotic effects in other disease models.20,42-44

Thus, the overall effect of GSK3b in AML may be dependent on the
relative balance between proapoptotic cytoplasmic GSK3b and
oncogenic nuclear GSK3b.

Targeting GSK3 is a highly desirable therapeutic approach that
inhibits AML cell growth while promoting normal hematopoietic
stem cell growth.3,8,45 As normal cells lack an appreciable pool of
nuclear GSK3b, our study sheds light on why GSK3 inhibitors have
such different biological effects on normal and AML cells.
Furthermore, our data suggest that specifically targeting the nuclear
pool of GSK3b may be of specific therapeutic interest.

GSK3b is known to activate the transcription factor NF-kB, a key
factor of cancer cell survival and drug resistance.7,31,35,36,46 In AML,

nuclear GSK3b more robustly activated NF-kB through p65
phosphorylation and nuclear translocation leading to increased
expression of the NF-kB prosurvival genes Bcl-XL and XIAP.
Interestingly, we observed a strong correlation of p65 and GSK3b
nuclear localization in a large set of patient samples, further
supporting a relationship between these factors. As GSK3b is a
central kinase that is known to regulate numerous nuclear
transcription factors such as CREB, Fos/Jun, NFAT, p53, and
C/EBP, nuclear GSK3b likely exhibits additional oncogenic effects
beyond NF-kB in AML.6,42

At first glance, our observation that nuclear GSK3b directly
promotes AML is paradoxical given that b-catenin has been shown
to be crucial for AML initiation in mouse models and GSK3b
is known to impair the function and lead to the degradation of
b-catenin. Although b-catenin is required for AML formation, it
is not required for established AML.22 Furthermore, we and
others have shown GSK3b affects AML through b-catenin-
independent mechanisms.3-5 Although careful regulation of
GSK3b is necessary to maintain adequate b-catenin signaling,
our data suggest that in established AML there is overall a
selection for cells exhibiting elevated nuclear GSK3b and this
elevated nuclear GSK3b promotes more aggressive AML.
Future studies will be necessary to determine the role of nuclear
and cytoplasmic GSK3b on b-catenin signaling during AML
leukemogenesis.

Interestingly, previous studies in AML have yielded contradictory
results about the role of GSK3b in AML that may be explained by its
differential roles in leukemogenesis and disease progression. One
recent study suggests GSK3b deletion in normal hematopoietic
stem cells promotes a myleodysplastic syndromelike state, which
eventually progresses to aggressive AML.47 It is possible that early
accentuation of b-catenin signaling may promote the initial AML
transformation. However, many groups have shown that genetic
and pharmacologic inhibition of GSK3b impair the growth of
established AML.3-5 Our study helps reconcile these previous
studies by defining a specific role of nuclear GSK3b in driving AML
after initial transformation.

Our work suggests that 1 novel strategy to specifically target AML
cells may involve directly targeting the nuclear pool of GSK3b. The
nuclear translocation of GSK3b has been reported to involve the
combination of regulatory phosphorylation at the S9 residue as
well as interaction with scaffolding proteins such as Axin and
Frat1, promoting and opposing GSK3b nuclear localization,
respectively.18,21,48,49 Future therapeutic strategies could involve
targeting molecules involved in GSK3b transport to promote
nuclear export. In addition to developing a potential therapeutic
strategy, studies of GSK3b nuclear transport in AML are important
as it is likely that 1 or more components of this pathway are
dysregulated in AML leading to high levels of nuclear localization
observed.

Figure 5. (continued) **P , .01). (C) The indicated cells with or without targeted GSK3b induction were treated with daunorubicin (200 nM) for 18 hours and analyzed by

western blot for PARP or caspase 3 cleavage. (D) The indicated cells with or without targeted GSK3b induction were treated with daunorubicin for 2 days. Daunorubicin was

washed away, the cells were plated in semisolid media, and colony formation was assessed after 7 days (n 5 2). (E) Tetracycline-induced (0.2 mg/mL) and noninduced

HL60-NLS cells were injected IV into NSG mice. Mice receiving tetracycline-induced cells were provided tetracycline-supplemented water (100 mg/mL). Four days post–cell

injection, mice were injected with 1.5 mg/kg daunorubicin once a day for 3 days and monitored for survival (n 5 5).
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Figure 6. Nuclear localization of GSK3b and p65 predict AML survival. (A) Nuclear localization scores of p65 were quantified using imaging cytometry (n 5 86).

A box-and-whisker plot displaying the median and quartile distributions is shown. (B-C) Kaplan-Meier survival curve analysis comparing overall survival of AML patients

based on nuclear localization scores of GSK3b (B) or p65 (C) above and below the median. (D) Nuclear localization scores of GSK3b and p65 were correlated to patient

survival using multivariate Cox proportional hazard analysis controlling for age, sex, treatment group, and performance status (n 5 86). Nuclear GSK3b localization

improves a multivariate Cox proportional hazards model for overall survival. (E) Nuclear localization scores of GSK3b were correlated to patient complete remission and

disease-free survival using a logistic regression model (n 5 86). Increased GSK3b is associated with less DFS and trended to less CR (HR 5 2.784 and 0.262, P 5 .019

and 0.067, respectively). (F) Analysis controlling for age, performance status, and treatment was performed both without and with GSK3b (top and bottom panels,

respectively). The likelihood ratio is 9.1 (degrees of freedom 5 1, P 5 .0026, n 5 86) indicating the model including GSK3b as a covariate significantly improves the

model fit to the data.
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