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Key Points

•Microenvironmental
immune cell signatures
stratify PTCL-NOS
patients into clinically
meaningful disease
subtypes.

• Immune-checkpoint
inhibitors represent
potential therapeutic
options for a PTCL-NOS
patient subgroup.

Peripheral T-cell lymphoma (PTCL), not otherwise specified (PTCL-NOS) is among the most

common disease subtypes of PTCL, one that exhibits heterogeneous clinicopathological

features. Although multiple disease-stratification models, including the cell-of-origin or

gene-expression profiling methods, have been proposed for this condition, their clinical

significance remains unclear. To establish a clinically meaningful stratification model, we

analyzed gene-expression signatures of tumors and tumor-infiltrating immune cells using

the nCounter system, which enables accurate quantification of low abundance and/or

highly fragmented transcripts. To do so, we assessed transcripts of 120 genes related to

cancer or immune cells using tumor samples from 68 newly diagnosed PTCL-NOS patients

and validated findings by immunofluorescence in tumor sections. We show that

gene-expression signatures representing tumor-infiltrating immune cells, but not those of

cancerous T cells, dictate patient clinical outcomes. Cases exhibiting both B-cell and dendritic

cell (DC) signatures (BD subgroup) showed favorable clinical outcomes, whereas those

exhibiting neither B-cell nor DC signatures (non-BD subgroup) showed extremely poor

prognosis. Notably, half of the non-BD cases exhibited a macrophage signature, and

macrophage infiltration was evident in those cases, as revealed by immunofluorescence.

Importantly, tumor-infiltrating macrophages expressed the immune-checkpoint molecules

programmed death ligand 1/2 and indoleamine 2, 3-dioxygenase 1 at high levels,

suggesting that checkpoint inhibitors could serve as therapeutic options for patients in

this subgroup. Our study identifies clinically distinct subgroups of PTCL-NOS and suggests

a novel therapeutic strategy for 1 subgroup associated with a poor prognosis. Our data

also suggest functional interactions between cancerous T cells and tumor-infiltrating

immune cells potentially relevant to PTCL-NOS pathogenesis.

Introduction

Peripheral T-cell lymphoma (PTCL), not otherwise specified (PTCL-NOS) is among the most common
subtypes of PTCL. PTCL-NOS does not fit any defined entity of T-cell lymphoma in the World Health
Organization (WHO) classification1 and is often described as belonging to a “wastebasket” category.
Prognosis of PTCL-NOS patients is dismal: the 5-year survival rate is as low as 30% due to lack of clinically
meaningful disease-stratification models and effective therapies.2,3 Given PTCL-NOS heterogeneity, identify-
ing molecularly and/or clinically distinct subgroups is necessary to develop novel therapeutic strategies.
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To classify PTCL-NOS cases, previous studies primarily focused on
tumor cells. For example, cell-of-origin (COO) classifications, which
define PTCL-NOS cases based on histopathologic features or gene-
expression profiles, have been proposed.4,5 Iqbal et al4 classified
PTCL-NOS cases into 2 subgroups based on expression levels of
TBX21 and GATA3, master transcription factors for T helper 1 (Th1)
and Th2 development. Similarly, Wang et al5 demonstrated that high
levels of GATA3 protein in tumor cells, as revealed by immunohisto-
chemistry (IHC), are associated with poor prognosis. Although useful,
these COO-based methods generally disregard the tumor microenvi-
ronment, which could affect multiple facets of tumor pathogenesis,
including tumor growth, response to chemotherapy and/or tumor-
immune interactions.6 Given these roadblocks, we set out to establish
a novel disease-stratification model based on quantitative measure-
ment of gene-expression signatures derived from both cancerous
T cells and the microenvironment. To do so, we used the nCounter
system (NanoString Technologies), which enables accurate quantita-
tion of low abundance transcripts in microenvironmental cells. The
system also enabled accurate measurement of cross-linked and/or
heavily fragmented messenger RNA (mRNA) obtained from formalin-
fixed paraffin-embedded (FFPE) samples.7-10

Methods

Study population and sample collection

Tumor tissues were extracted from International Peripheral T-Cell
and Natural Killer/T-Cell Lymphoma Study cases as well as cases
submitted to Kurume University from 2005 to 2011. Patholog-
ical diagnosis was made by 2 experienced hematopathologists
(H.M. and K.O.) in accordance with the WHO classification.1 FFPE
tumor tissues from 68 PTCL-NOS patients were analyzed.

Clinical data collection and prognostic analysis

Data regarding the observation period and patient survival status
were available for 65 cases. The median observation period for
survivors was 2.7 years (range, 0.1-11.0 years). Clinical data
required to calculate the International Prognostic Index (IPI),11

including age, Eastern Cooperative Oncology Group (ECOG)
performance status (PS), lactate dehydrogenase (LDH) levels, Ann
Arbor stage, and the number of extranodal involvement sites, were
available in 35 patients. Overall survival (OS) was defined as the
time from diagnosis to the last follow-up or death. OS probability
was estimated using the Kaplan-Meier method, and statistical
significance was determined using the log-rank test in univariate
analysis. A Cox proportional hazards model was used to assess
predictive values of microenvironmental signatures in multivari-
ate analysis. This study was approved by the institutional ethics
committees of Kurume University and the Kyushu University Graduate
School of Medical Sciences.

Gene-expression profiling using the nCounter system

RNA was extracted from FFPE samples using the RNeasy FFPE
extraction kit (Qiagen, Hilden, Germany) after treatment with
deparaffinization solution (Qiagen). Gene-expression levels were
assessed using 300 ng of total RNA following the manufacturer’s
protocol (NanoString Technologies, Seattle, WA). Total RNA was
hybridized with gene-specific probes at 65°C for 18 hours, purified
and deposited onto a glass cartridge of the nCounter Prep Station
using the high-sensitivity protocol. Barcodes uniquely assigned to

each target gene were read and counted by a nCounter Digital
Analyzer, using the 555 fields of view setting.

The PanCancer immune-profiling panel (NanoString Technologies),
which consists of 770 genes related to cancer or immune cells,
was used for nCounter-based gene-expression measurements. For
data analysis, 114 immune cell–related genes were selected based
on the previous reports,10,12,13 and 6 genes relevant to Th1 (CXCR3) or
Th2 (CCR4, CCR8, PTGDR2, IL-4, and IL-5) were also included.12,13

Normalization of RNA loading was performed using the geometric mean
of 40 housekeeping genes included in the panel (supplemental Table 1).

Statistical analysis

TheWilcoxon rank-sum test was used to assess genes differentially
expressed between 2 groups. Hierarchical clustering of nCounter
data was performed using Ward linkage and Euclidean dissimilarity
methods. To assess compactness and distance among clusters in
hierarchical clustering analysis, we calculated the Davies-Bouldin
Index,14 which is among the best indices to assess cluster validity.15

Index values were calculated using the clusterSim package.

Microarray analysis

Microarray data sets of 123 PTCL-NOS or PTCL unspecified
cases4,16 (survival data were available for 63 cases) were obtained
from Gene Expression Omnibus (GSE58445 and GSE19069).
Quantile normalization of raw data followed by baseline trans-
formation to the median of all samples was performed using
GeneSpring 14.5 software (Silicon Genetics, Redwood City, CA).
Hierarchical clustering was conducted using Ward linkage and
Euclidean dissimilarity methods.

EBV detection

Epstein-Barr virus (EBV) infection was assessed via EBV-encoded
RNA (EBER) in situ hybridization and/or Southern blot detection of
EBV genomes in 57 cases. EBER in situ hybridization was performed
using a fluorescein-conjugated EBV peptide nucleic acid probe kit
(DakoCytomation, Glostrup, Denmark). Southern blot was performed
using standard methodologies.

Immunofluorescence

Immunofluorescence was performed on paraffin sections using the
Opal multiplex tissue-staining system (PerkinElmer, Waltham, MA).
Antibodies used are listed in supplemental Table 2. Antigen retrieval
was performed by heating sections to 95°C for 20 minutes in high-
pH antigen unmasking solution (H-3301; Vector Laboratories,
Burlingame, CA). Slides were visualized using the Mantra quantitative
pathology workstation (PerkinElmer). Spatial distribution of CD31,
CD201, CD1631, or Langerin1 cells and signal intensities of each
stain were assessed using inForm (PerkinElmer) and Spotfire
(TIBCO, Palo Alto, CA) software.

Results

Microenvironmental immune cell signatures mark

PTCL-NOS subgroups

To stratify otherwise heterogeneous PTCL-NOS cases into
clinically meaningful subgroups, we analyzed levels of transcripts
derived from tumors and microenvironment immune cells. Because
standard mRNA expression analysis, such as microarray and RNA
sequencing, is not sensitive enough to reliably measure transcripts
expressed at low levels in microenvironmental cells, we used the
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nCounter system, which enables accurate quantitation of low
abundance, highly fragmented transcripts obtained from FFPE
samples.7-10 We obtained RNA samples from 68 newly diagnosed
PTCL-NOS cases and analyzed mRNA levels of 120 genes
representing 14 immune cell types, including B-cell, dendritic cell
(DC), mast cell, neutrophil, eosinophil, macrophage, natural killer (NK)-
cell, and T-cell subtypes (Th1, Th2, Th17, follicular helper T-cell [Tfh], g d
T-cell [Tgd], memory T-cell [Tm], and CD81 T cell) (Figure 1A;
supplemental Table 3).12,13 Sample quality was assessed by
mRNA levels of 40 housekeeping genes in each sample (supplemental
Figure 1A). We used the Pearson-correlation matrix followed by
hierarchical clustering to assess coexpression patterns of genes
related to microenvironmental immune cells and cancerous T cells
(Figure 1A-B). Three distinct clusters representing B cells, macro-
phages, and DCs/mast cells were evident; however, no cluster was
evident among T-cell–related genes (Figure 1B). These data indicate
that gene sets for B cells, macrophages, and DCs/mast cells accurately
represent each cell type in PTCL tissues, whereas cancerous T cells do
not necessarily exhibit the “cell-of-origin” phenotypes.

We next performed hierarchical clustering using a gene set representing
each immune cell type and assessed its quality using the Davies-Bouldin
Index.14 Gene sets representing B cells, DCs, mast cells, and
macrophages formed distinct clusters (Figure 1C), exhibiting a low
Davies-Bouldin Index (Figure 1D), whereas those of T-cell subtypes and
NK cells barely formed clusters (Figure 1D; supplemental Figure 1B).
These data indicate that microenvironmental immune signatures derived
from B cells, DCs, mast cells, or macrophages, but not those from
cancerous T cells, delineate distinct subgroups of PTCL-NOS cases. Of
note, only B-cell–related genes formed a cluster when hierarchical
clustering was performed using all 120 immune cell–related genes
(supplemental Figure 1C).

A subset of PTCL-NOS cases reportedly exhibits a Tfh-cell phenotype,
demonstrating distinct clinicopathological features.17,18 Although diag-
nostic criteria for Tfh-PTCL is still under debate, positivity for at least 2 of
the Tfh-cell markers (programmed death 1 [PD-1], CD10, B-cell lymphoma
6 [BCL6], CXCL13, and inducible T-cell costimulator [ICOS]) plus CD4
expression is the minimum criteria for Tfh-PTCL.1 To determine whether
Tfh-PTCL cases exist in our cohort, we performed IHC for CD4, CD10,
CXCL13, BCL6, and PD-1 in 38 cases. Although some exhibited relatively
high mRNA levels of BCL6, CXCL13, or PD-1 by the nCounter system,
no case was positive for 2 Tfh markers via IHC, suggesting that there was
no Tfh-PTCL case in the present cohort (supplemental Figure 1D).

We next validated our findings using publicly available microarray data
sets of 123 PTCL-NOS cases from an independent cohort.4 As
expected, B-cell andmacrophage signatures clearly stratified cases into
2 distinct subgroups, whereas those of DCs or mast cells did not
(supplemental Figure 2A). When hierarchical clustering was performed
based on the expression levels of all genes represented in the
microarray, only B-cell–related genes were clustered together,
possibly due to detection limitations of microarray analysis (supple-
mental Figure 2B).

Microenvironmental immune cells are evident in

PTCL-NOS tissues

We next performed immunofluorescence (IF) to validate our findings in
situ. To do so, we used the Mantra system, which enables quantitative
measurements of multiple IF signals across an entire section.We labeled
microenvironmental immune cells, including B cells, DCs, and

macrophages, using lineage-specific, fluorochrome-conjugated anti-
bodies, and measured signal intensities across a section. As expected,
CD201 B cells were abundant only in cases stratified into the B-cell-
signature–rich subgroup by the nCounter system (Figure 2A). Frequen-
cies of B cells relative to CD31 T-cell lineage cells in a defined area
of a section were markedly elevated in B-cell-signature–rich cases
(Figure 2B). Similarly, we observed CD1A1DCs only in cases exhibiting
a DC signature (Figure 2C). Furthermore, we readily detected cancer-
testis (CT) antigens, implying high tumor immunogenicity in this subgroup
(supplemental Figure 3A). Interestingly, mRNA levels of Langerin, a
marker of Langerhans cells,19,20 and interleukin 15 (IL-15), a Langerhans
cell–specific chemokine that reportedly enhances T- and NK-cell
function,21-23 were markedly high in DC signature–rich cases
(Figure 2D). Chemokine receptors relevant to T-cell migration in the skin
or gutmucosa, includingCCR4,24,25CCR8,26 andCCR9,25,27 and their
ligands were also abundant in these cases (supplemental Figure 3B). IF
analysis confirmed Langerin positivity in CD1A1 DCs (Figure 2E), and
frequencies of Langerhans cells in sections were high in DC signature–
positive cases (Figure 2F). Of note, these Langerin1 samples were
obtained primarily from skin or gastric mucosa (Figure 2G). As expected,
macrophage infiltration was also confirmed by CD163 staining only in
macrophage signature–rich cases (Figure 2H-I).

We assessed CD20 positivity in 7 B-cell-signature–rich cases and
Langerin positivity in 7 DC signature–rich cases. Infiltration of B cells
was evident in all B-cell-signature–rich cases examined, whereas
DCs were detected in only 5 of 7 DC signature–rich cases. These
data suggest that the nCounter system is superior to IF in detecting
signatures of rare microenvironmental cells, such as DCs.

Microenvironmental immune cell signatures dictate

PTCL-NOS clinical outcomes

We next asked whether microenvironmental immune cell signatures
predict clinical outcomes in our cohort, which comprises 65 patients
exhibiting survival data similar to that of a historical control2,3

(supplemental Figure 4A). Cases exhibiting either the B-cell or DC
signature showed significantly better prognosis, whereas those with the
mast cell or macrophage signature did not (Figure 3A; supplemental
Figure 4B). These findings were consistent regardless of the time period
(supplemental Figure 4C). Importantly, the B-cell signature, but not that of
macrophages, was associated with better prognosis in an independent
disease cohort (Figure 3B).4,16 Of note, biopsy sites were not predictive
of clinical outcomes (supplemental Figure 4D), and B-cell signature was
still associated with better prognosis when analysis was limited to the
samples obtained from lymph nodes (supplemental Figure 4E).

We next stratified cases into 4 subgroups based on B-cell and DC
signatures: (1) B-cell signature only (B-only subgroup, n 5 18), (2)
DC signature only (DC-only subgroup, n 5 13), (3) both B-cell and
DC signatures (BD subgroup, n 5 7), and (4) cases exhibiting
neither B-cell nor DC signatures (non-BD subgroups, n 5 30).
Strikingly, patients in the BD subgroup showed markedly better
prognosis (Figure 3C), whereas those in the non-BD subgroup
exhibited dismal prognosis (Figure 3C). When we closely examined
clinical courses of patients, we found that non-BD cases were
primarily resistant to initial therapy (Figure 3D).

Because the COO-based PTCL-NOS classification reportedly de-
lineated PTCL-NOS subgroups,4,5,16 we next tested whether
nCounter-based measurements of COO-related genes would stratify
cases into subgroups in our cohort. To do so, we analyzedmRNA levels
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of Th1, Th2, and cytotoxic T-cell–related genes.4,5,16 Cases with the
Th1-related signature exhibited better clinical outcomes as previously
reported (supplemental Figure 5A).4 In contrast, cytotoxic T-cell–related
signature did not provide prognostic values (supplemental Figure 5B).

The IPI11 is widely used to predict clinical outcomes for non-Hodgkin
lymphoma, including PTCL-NOS.2 Thus, we asked whether micro-
environmental immune cell signatures showed prognostic value
independent of that of the IPI among 35 patients with available IPI
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scores (supplemental Table 4). As expected, PS, IPI, and the B-cell
signature were highly prognostic in univariate analysis (Table 1).
Furthermore, multivariate analysis revealed that B-cell or DC signatures

exhibit a prognostic value independent of the IPI (Table 1). EBV
positivity was associated with the macrophage signature, but it was not
predictive for clinical outcomes (supplemental Figure 6A-B).
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based on indicated gene signatures. P values were calculated using a log-rank test. (C) PTCL-NOS cases were stratified into 4 subgroups according to B-cell and

DC signatures, and Kaplan-Meier curves were generated. P values were calculated using a log-rank test. (D) Clinical courses of 33 cases. Bar graphs represent

survival duration for each patient. Responses to initial therapies are indicated at left. Time of disease progression is depicted as a gray circle. Cases lacking

B-cell and DC signatures (non-BD subgroup) were generally resistant to initial therapy (left). B only, only B-cell-signature–positive cases; BD, B-cell– and DC

signature–positive cases; CR, complete remission; D only, only DC signature–positive cases; non-BD, cases without B-cell and DC signatures; PD, disease

progression; PR, partial remission.
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Tumor-infiltrating macrophages express high levels

of immune-checkpoint molecules

Although non-BD cases exhibited an extremely poor prognosis
(Figure 3C), we observed that nearly half were also positive for
macrophage signature (supplemental Figure 1C). Because
immune-checkpoint proteins, whose inhibitors are widely used
as anticancer drugs,28,29 are reportedly expressed on tumor-
infiltrating macrophages,30 we examined levels of programmed
death ligand 1 (PD-L1), PD-L2, and indoleamine 2, 3-dioxygenase 1
(IDO1) and found that they were highly expressed in macrophage
signature–rich cases (Figure 4A), findings validated in an in-
dependent cohort4,16 (supplemental Figure 7). As expected, PD-L1
and IDO1 proteins were abundant in CD1631 tumor-infiltrating
macrophages, as revealed by IF (Figure 4B). Expression of PD-L1 or
IDO1 proteins was higher in CD1631 macrophages than in
cancerous T cells or other cell types (Figure 4C). mRNA levels of
inflammation-related genes (among them, IFNG andGZMB), which
encode proteins that induce PD-L1 and IDO1 expression,31-33

were also high in macrophage-rich cases (Figure 4D).

Discussion

The tumor microenvironment plays a critical role in tumor
pathogenesis12,13 and may impact responses to therapy.34-36

For example, growth of colorectal cancer cells depends on which
cell types infiltrate the tumor microenvironment.12 In fact, types of
tumor-infiltrating immune cells are strong predictors of clinical
outcomes across 39 human cancers.13 In B-cell malignancies,
such as follicular lymphoma and diffuse large B-cell lymphoma,
microenvironment-based prognostic stratifications have been
tested.34-36 Consistent with this study, the B-cell signature was
reportedly associated with favorable prognosis in angioimmuno-
blastic T-cell lymphoma (AITL).4,16

Immune-checkpoint inhibitors, which target interactions between
tumor and microenvironmental immune cells, are effective against
multiple types of cancers, confirming the significance of microen-
vironment in cancer therapy.28,29 In this study, we assessed
expression levels of 120 immune cell–related genes and identified
a clinically meaningful disease-stratification model for PTCL-NOS
based on microenvironmental gene-expression signatures. We also
revealed potentially targetable interactions between cancerous
T cells and microenvironmental immune cells in a subgroup associ-
ated with a poor prognosis (Figure 4E).

Gene-expression signatures of cancerous T cells, the COO-
based PTCL-NOS classification, reportedly delineated PTCL-
NOS subgroups.4,5 Patients whose tumor cells expressed high
levels of GATA3, the master transcription factor for Th2 differentiation,

Table 1. Univariate and multivariate analysis of 35 patients with available IPI scores

Variable Group n

Univariate analysis Multivariate analysis

2-y OS, % Median, y P HR, median (95% CI) P

Age, y ,60 10 50 1.87 .960

$60 25 64 2.92

Ann Arbor stage I, II 17 72.5 3.78 .536

III, IV 18 50 2.32

No. of extranodal lesions 0, 1 23 71.9 3.78 .140

$2 12 38.9 1.06

LDH higher than upper limit No 20 69.1 3.78 .123

Yes 15 48.7 1.32

Performance status 0, 1 25 82.5 NA ,.001

$2 10 10 0.40

IPI Low, Low-int 20 82.9 NA .006 1.00 .073

High, High-int 15 33.3 1.06 2.81 (0.91-8.68)

Sex Female 10 46.7 1.32 .475

Male 25 65.9 3.78

Initial therapy CHOP like 26 48.7 1.87 .043 1.00 .485

Others 9 100.0 NA 0.55 (0.10-2.93)

B-cell signature No 20 43.3 1.15 .028 5.52 (1.74-17.5) .004

Yes 15 85.1 NA 1.00

DC signature No 25 48.9 1.87 .058 8.23 (2.06-32.1) .003

Yes 10 88.9 NA 1.00

Macrophage signature No 22 69 3.78 .130

Yes 13 46.2 1.06

Mast signature No 24 51.2 2.84 .376

Yes 11 80.8 3.78

CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; CI, confidence interval; HR, hazard ratio; int, intermediate; NA, not applicable.
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Figure 4. Tumor-infiltrating macrophages express immune-checkpoint molecules. (A) Box-and-whisker plots show PD-L1, IDO1 and PD-L2 mRNA levels, as revealed

by nCounter. *P , .05, **P , .01 (Wilcoxon rank-sum test). (B) IF was performed using antibodies against CD3 (green, T cells), CD163 (pink, macrophages), PD-L1 (orange),

and IDO1 (cyan). Representative images for cases with (right) or without (left) macrophage signatures are shown. Immunofluorescence; original magnification 320.

(C) Box-and-whisker plots represent average signal intensities of PD-L1 (top) or IDO1 (bottom) per cell among indicated cell types. Data were obtained from 3 independent

macrophage signature–rich cases. Dots represent outliers. **P , .01 (Wilcoxon rank-sum test). (D) Heat map for hierarchical clustering of 68 PTCL-NOS cases based on

expression levels of genes related to macrophage and tumor-associated inflammation. (E) Summary of 68 PTCL-NOS cases stratified based on microenvironmental immune

cell signatures. Predictive prognostic values and proposed therapy are shown.
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exhibited poor prognosis compared with those whose tumors ex-
pressed TBX21, the Th1 master regulator.4 GATA3-expressing cells
coexpressed known GATA3 target genes (such as CCR4, IL18RA,
CXCR7), whereas TBX21-expressing cells coexpressed TBX21 target
genes (such as CXCR3, IL2RB, CCL3, IFNG).4 Of note, in concor-
dance with our findings, microenvironmental B-cell signature was
associated with favorable prognosis among TBX21 signature–rich
cases.4 The COO classification stratified our cases into subgroups as
previously reported4; however, it failed to predict clinical outcomes with
statistical significance (supplemental Figure 5). Although reasons for
these outcomes are unclear, our cohort may be too small to provide
statistical power sufficient for the proposed COO classifications.4,16

The COO-based classification primarily assesses characteristics of
tumor cells rather than microenvironmental cells. Moreover, few studies
have successfully evaluated the microenvironment immune landscape
using transcriptome analysis.12,13 Interrogating tumor-infiltrating immune
cells, which comprise a small population in tumors, quantitatively is
technically challenging due in part to detection limits of microarray
and RNA-sequencing methods. The nCounter system enabled us to
quantitatively measure transcript levels in both tumor and microenviron-
mental cells without polymerase chain reaction (PCR) amplification8-10

and to detect highly fragmented RNAs in FFPE samples.7-10 In fact, the
nCounter system is currently used to make diagnostic37,38 and
therapeutic39 decisions in clinical practice. We show here for the first
time that it can also be applied to PTCL-NOS, based on our identification
of 4 subgroups (BD, B-cell only, DC only and non-BD) that exhibited
distinct clinical outcomes (Figure 4E). Immunofluorescence data
strongly suggested that the microenvironmental immune cell signa-
tures are not derived from cancerous T cells (Figure 2); however,
it is challenging to distinguish normal and malignant T cells in
PTCL tissues (eg, normal Th1 vs cancerous T cells with Th1 signature).
To do so, clonal T-cell receptor (TCR) rearrangement and/or
tumor-specific gene mutation(s) must be assessed at the single-cell
level, and the nCounter system is not suitable for these assays.

PTCL-NOS cases exhibiting both B-cell and DC signatures (BD
subgroup) responded well to initial therapy and achieved long-term
survival (Figure 3C). Reason for this outcome is unclear. In normal
secondary lymphoid tissues, B cells and DCs serve as antigen-
presenting cells40 and activate T cells by presenting antigens on
major histocompatibility complex molecules and sending costimulatory
signals.41 Thus, PTCL-NOS cells in a B-cell– and DC-rich microenviron-
ment might be more “immunogenic” following chemotherapy-induced
tumor lysis.20,42-44 Tumor-infiltrating DCs were primarily Langerhans
cells (Figure 2E), and most DC signature–rich cases were derived
from skin or the upper gastrointestinal tract (Figure 2G). Collectively,
these data suggest that immunogenicity of cancerous T cells
facilitates their clearance by the immune system upon chemotherapy.

In contrast to B-cell– or DC signature–rich cases, cases lacking
these signatures, namely, in the non-BD subgroup, exhibited extremely
poor prognosis, and almost all patients were refractory to initial

therapy (Figure 3C-D). Importantly, macrophages expressing immune-
checkpoint molecules, such as PD-L1, PD-L2, and IDO1, were
abundant in half of these cases (Figure 4). Considering that tumor-
infiltrating T cells induce PD-L1 in solid tumor cells through inflammatory
cytokines, namely interferon g,31-33 cancerous T cells may induce
checkpoint molecules in tumor-infiltrating macrophages. In fact, the
macrophage signature was positively associated with the presence
of inflammatory cytokine transcripts (Figure 4D).

Taken together, we propose a novel, clinically meaningful disease-
stratification model for PTCL-NOS based on microenvironmental gene-
expression signatures. We also suggest that immune-checkpoint
inhibitors warrant attention as a novel therapeutic strategy for a subset
of PTCL-NOS. Because the present cohort is relatively small, larger
independent cohorts are needed to validate our stratification model.
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