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m Platelets express =2 members of the regulators of G protein signaling (RGS) family. Here,
we have focused on the most abundant, RGS10, examining its impact on the hemostatic
* Following vascular response in vivo and the mechanisms involved. We have previously shown that the
injury, RGS10 tunes hemostatic thrombi formed in response to penetrating injuries consist of a core of fully

Lapee g iing activated densely packed platelets overlaid by a shell of less-activated platelets responding

network to ensure the , . . :
. to adenosine 5’-diphosphate (ADP) and thromboxane A, (TxA;). Hemostatic thrombi formed
establishment of an

effective hemostatic
plug.

* It does this by limiting
Gq and Gio-dependent
signaling and by
agonist-selective

effects on responses to
thrombin. ADP. and Finally, we found that free RGS10 levels in platelets are actively regulated. In resting

in RGS10~/~ mice were larger than in controls, with the increase due to expansion of the
shell but not the core. Clot retraction was slower, and average packing density was reduced.
Deleting RGS10 had agonist-specific effects on signaling. There was a leftward shift in the
dose/response curve for the thrombin receptor (PAR4) agonist peptide AYPGKF but no
increase in the maximum response. This contrasted with ADP and TxA,, both of which
evoked considerably greater maximum responses in RGS10~/~ platelets with enhanced
Gg- and Gi-mediated signaling. Shape change, which is Gqs-mediated, was unaffected.

TxA,. platelets, RGS10 was bound to 2 scaffold proteins: spinophilin and 14-3-3v. Platelet
activation caused an increase in free RGS10, as did the endothelium-derived platelet
antagonist prostacyclin. Collectively, these observations show that RGS10 serves as an
actively regulated node on the platelet signaling network, helping to produce smaller
and more densely packed hemostatic thrombi with a greater proportion of fully
activated platelets.

Introduction

Most platelet agonists, including thrombin, adenosine 5’-diphosphate (ADP), and thromboxane A,
(TxA,), activate platelets through G protein—coupled receptors. G proteins are a3y heterotrimers,
becoming active when the « subunit binds guanosine triphosphate (GTP) and reverting to the inactive
state when the GTP is hydrolyzed to guanosine diphosphate (GDP). Signal duration is normally limited
by the a subunit’s intrinsic GTPase activity, a relatively slow process that can be greatly accelerated by
members of the regulators of G protein signaling (RGS) family."® Human and mouse platelets
predominantly express 2 members of this family: RGS10 and RGS18.*° RGS18 is primarily expressed
in hematopoietic cells.*® RGS10 is expressed more widely.>'" Both proteins have a compact structure
that consists primarily of a conserved RGS domain, and each has been shown to accelerate GTP
hydrolysis by G and G; but not by Gs.*'*"®
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The best evidence to date that RGS proteins regulate platelet activation
in vivo comes from studies on transgenic mice. Gi, is the predominant
G; family member in platelets and is especially important for mediating
platelet responses to ADP P2Y,, receptors.'®'” Replacing platelet
Gipae with a G18438 variant that has diminished ability to interact with
RGS proteins produces a gain of function, even in hemizygotes,'®'° as
does deleting RGS182°22 or RGS10.%° These observations suggest
that RGS10 and RGS18 normally act as brakes on platelet activation
but leave open how they impact hemostatic plug formation in vivo and
how their effects might be regulated to allow a robust response to injury
while also avoiding premature platelet activation.

An effective hemostatic response requires assembly of a complex
3-dimensional structure. We and other investigators have shown that
the hemostatic response produces a core of fully activated and densely
packed platelets overlaid by a shell of less-activated and loosely packed
platelets.*2” This structure was originally described in the mouse
microvasculature, but it occurs in larger vessels as well.28 Notably,
it appears to contribute to and reflect the formation of agonist
concentration gradients radiating from the site of injury.2*3" These
gradients are agonist specific, determined in part by the hindered
transport of molecules in the narrow gaps between platelets, especially
in the core region®> As a result, platelets in different regions of
hemostatic plugs are exposed to different combinations and concen-
trations of agonists. Thrombin and fibrin are limited to the thrombus
core, whereas ADP and TxA, are the major drivers of events in the
thrombus shell 243334

Here, we have asked how the signal-limiting ability of platelet RGS
proteins contributes to the development of a stable hemostatic plug,
focusing on RGS10 because it is the most abundant RGS protein
expressed in human and mouse platelets.®>*® Our studies will be
presented in 2 parts. In the first, we show that hemostatic plugs formed
in RGS10™~"~ mice are larger than in controls and that this difference
is due to expansion of the shell region but not the core. We also
show that deleting RGS10 affects signaling events that are G, and
G; mediated but not those mediated by G3. Most notably, the effects
of deleting RGS10 have proved to be agonist selective, causing a
considerable increase in the maximal responses to ADP and TxA, but
not to thrombin. In the second part of the study, we show that free
RGS10 levels in resting platelets are regulated through binding
interactions with 2 scaffold proteins: spinophilin and 14-3-3vy. Platelet
activation and platelet suppression (exposure to endothelium-derived
prostacyclin [PGl,]) cause an increase in free RGS10. Collectively,
these observations indicate that RGS10 is much more than a simple
brake on unwanted platelet activation, serving instead as an actively
regulated node on the platelet signaling network and helping to shape
the architecture of the hemostatic plug.

Methods

Materials and additional methods can be found in supplemental
Methods.

Vascular injury: platelet and fibrin accumulation

Hemostatic thrombus formation was observed in the cremaster muscle
microcirculation of male mice aged 8-12 weeks, as previously
described.®* Briefly, Alexa Fluor 568-labeled anti-CD41 antibody
F(ab'), fragments, Alexa Fluor 647—-labeled anti—-P-selectin, and Alexa
Fluor 647 anti-fibrin antibodies were administered via a catheter in the
jugular vein. Arterioles 30-50 wm in diameter were studied. Vascular
injury was induced using a pulsed nitrogen dye laser fired through the
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microscope objective. Thrombus formation was observed for 3 min at
1.9 frames per second and analyzed using SlideBook 6 software
(Intelligent Imaging Innovations, Denver, CO). For the embolization
studies, anti-CD41-labeled platelets accumulating at the injury site were
acquired with 4 X 4 binning and 4-milisecond exposure time; only the
red channel was used to increase image acquisition to 35.5 frames per
second, with a total of 6300 frames collected in 3 minutes. Data were
collected in a region of interest drawn downstream of the thrombus.

Clot retraction

Clot retraction was measured by 2 methods: visual assay and
automated light scattering assay.

Visual assay. \Whole mouse blood was drawn in 0.38% sodium
citrate and spun at 200g to obtain platelet-rich plasma. Samples
were adjusted with platelet-poor plasma to 6 X 10°® platelets/mL,
recalcified, and stimulated with 10 U/mL thrombin. Clot retraction was
recorded at 15-minute intervals at 37°C and analyzed using ImageJ
software.

Automated light scattering assay. Blood was collected
from the inferior vena cava of anesthetized mice into 3.8% sodium
citrate and activated with 5 U/mL thrombin in the presence of 2 mM
CaCl,. Light scatter was measured with a Thrombodynamics
Analyser System (HemaCore LLC, Moscow, Russia).3®

Measurement of intracellular calcium concentration.
Intracellular calcium was measured as described.®” Isolated
platelets were suspended in Tyrode's buffer without Ca** and
loaded with Fura-2/AM (5 uM) in the presence of Pluronic F-127
(0.2 pg/mL) for 20 minutes at 37°C. The platelets were then
washed and resuspended in Tyrode's buffer with no extracellular
Ca™ ™. Changes in Fura-2 fluorescence were detected with an SLM
Aminco Bowman Series 2 spectrophotometer, with excitation at
340 and 380 nm and emission measurement at 510 nm.

Statistical analysis

Results are presented as mean * standard error of the mean
(SEM). Data were analyzed using the Student ¢ test. P = .05 was
considered statistically significant.

Results

In agreement with an earlier report by Hensch et al,”> we found
that RGS10™'~ mice are grossly normal in appearance. Their blood
counts are normal (supplemental Table) as is expression of RGS18
(supplemental Figure 1). We did not observe the hyperglycemia that
was reported by investigators at The Jackson Laboratory (http://www.
informatics.jax.org/external/ko/lexicon/1405.html), and we found no
differences in initial weight gain compared with littermate controls
(supplemental Figure 1). Because the RGS10™'~ mice were initially on
a mixed background, these and subsequent studies were performed
on littermates produced by heterozygous RGS10™'~ crosses.

|’23

The hemostatic response in vivo in RGS10~/~ mice

Platelet function in vivo was measured using a laser to make
penetrating injuries in cremaster muscle arterioles. We have
previously shown that this is a model of hemostasis rather than
thrombosis.?* We have also shown that, as long as the injuries fully
penetrate the vessel wall, the hemostatic response is the same with
a laser or a sharpened probe.?* The resultant hemostatic plug
consists of a core of densely packed P-selectin™ platelets overlaid
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Figure 1. RGS10~/~ mice form larger more stable thrombi. Confocal intravital fluorescence microscopy was performed to follow platelet accumulation (A-B), P-selectin

expression (A,C), fibrin deposition (D), and platelet embolization (E) after making small penetrating injuries in cremaster muscle arterioles with a laser in RGS10™/~ mice and

littermate controls. Bar graphs represent the CD41" (B) and P-selectin® (C) areas at the end of the 3-minute observation period. N = 78 injuries performed in 11 mice. (D)

Fibrin accumulation detected with a fibrin-specific antibody (24 injuries in 3 mice). (E) The mean fluorescence area of platelet clumps passing through a virtual analysis window

placed immediately downstream of the injury site. The data were pooled into early (i) and late (i) time points for analysis. N = 19 injuries for WT and 18 injuries for RGS10 ™/~

in 3 mice. (Fi) The decline over time in the relative porosity of hemostatic thrombi formed in WT and RGS1 0™/~ mice infused with caged FITC-albumin. Data are mean * SEM,

22 injuries in 4 WT mice and 23 injuries in 4 RGS10™/~ mice. (Fii) AMFI measured 180 seconds after injury. AMFI, increment in mean fluorescence intensity measured over

the entire thrombus at 15-second intervals immediately after a light flash that causes the albumin to fluoresce.

with a shell of loosely packed P-selectin™ platelets. P-selectin, in
this case, is used as a marker for a-granule exocytosis and to
distinguish core from the shell. Thrombin activity and fibrin
deposition are limited to the core.®®

Figure 1A shows mean platelet accumulation following injury detected
with fluorescently tagged F(ab’), anti-CD41 (). Platelet accumula-
tion occurred at the same initial rate in RGS10™~ mice and controls;
however, after reaching a maximum, there was a decline in CD41
fluorescence in wild-type (WT) mice that did not occur in the RGS1 0~
mice. Measured at the end of the observation period, total platelet
accumulation was approximately one-third greater than in the
controls (Figure 1B). This increase was due to an expansion of the
P-selectin™ shell region and not the P-selectin™ core region, which,
if anything, was slightly smaller than in controls (Figure 1A,C). Fibrin
accumulation was unaffected (Figure 1D).

Embolization and clot retraction in the absence
of RGS10
The decline in thrombus size that normally begins ~1 minute after

injury in this model is due in part to embolization from the shell
region and in part to clot retraction.?*®' We measured both. To

€ blood advances 2s aucusT 2018 - vOLUME 2, NUMBER 16

quantify embolization, we observed the passage of CD41" platelet
aggregates downstream from the site of injury. There were fewer
emboli in the RGS10™/~ mice than in controls during the period
(=100 seconds) when the platelet accumulation curves diverged
(Figure 1E). Clot retraction measured in a traditional benchtop
assay was slightly slower in the RGS10~/~ mice (supplemental
Figure 2). Because the difference was small and observed at only
a single time point, we repeated the measurements using a
method that provides a nearly continuous readout (supplemental
Figure 2B).%® Identical results were obtained: loss of RGS10
causes a small, but reproducible, delay in clot retraction.
Although small in magnitude, this delay would be expected to
contribute to the difference in thrombus size that we observed in
Figure 1A.

Platelet-packing density in thrombi formed in
RGS10~/~ mice

As hemostatic thrombi form, the narrowing of the gaps between
platelets and an increase in platelet-packing density create a

sheltered environment in which thrombin is effectively trapped and
can accumulate.®*3' We have found that this increase in packing
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Figure 2. Increased integrin activation and a-granule exocytosis in platelets from RGS10™

/= mice. Platelets from RGS10~/~ and littermate control mice (WT) were

stained with fluorophore-conjugated antibodies to P-selectin or activated o3 (Jon/A antibody) after incubation with a PAR4 agonist peptide (AYPGKF) (A), a TxAp mimetic

(U46619) (B), or ADP (C) at the concentrations indicated (N = 7). N.S., not significant.

density is greater in the core than in the shell. The increased shell
size and delayed clot retraction observed in the RGS10 ™/~ mice in
the present study suggested that there could be an accompanying
decrease in average packing density. To determine whether this is the
case, we measured relative thrombus porosity over time by infusing the
mice prior to injury with albumin conjugated to caged fluorescein.?®3®
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Pulses of 405-nm light applied at 15-second intervals were used to
uncage the fluorescein, causing a spike in thrombus-associated mean
fluorescence intensity with each pulse, followed by a decline in
fluorescence as the fluorescent albumin exchanged out of the
thrombus. As we have reported previously, the magnitude of this spike
declined with each successive light flash, reflecting a decrease in
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Figure 3. The impact of deleting RGS10 on Ca™* mobilization and myosin light chain. (A-B) Ca* " mobilization. Platelets were stimulated with AYPGKF, ADP, or
U46619 at the concentrations indicated in the absence of extracellular Ca**. (A) Representative measurements. (B) Summary of the results of 4 experiments (mean + SEM).

(C) Myosin light chain (MLC) phosphorylation. Washed platelets were incubated for 3 minutes with 360 uM AYPGKEF to activate PAR-4. Lysates were probed with an antibody
specific for MLC phosphorylated on Thr18 and Ser19 before reprobing with anti-MLC. Data are mean = SEM. N = 4.

thrombus porosity over time (Figure 1Fi).2° This decline in porosity was
not as great in the RGS10™'~ mice as in the controls, indicating
greater final porosity (lower packing density) in the RGS10™~ thrombi
compared with WT (Figure 1Fiii).

Platelet activation in vitro was measured initially by light trans-
mission aggregometry and then by flow cytometry using antibodies
to detect integrin ay,B3 activation (Jon/A antibody) and a-granule
exocytosis (anti—P-selectin). The aggregometry studies (supple-
mental Figure 3) confirmed the dose/response shift that has been
reported previously.>® However, the flow cytometry studies, which
were performed in the presence of aspirin and apyrase to reduce
secondary signaling events, highlight critical differences between

€ blood advances 2s aucusT 2018 - vOLUME 2, NUMBER 16

agonists that were not previously appreciated. Platelet activation
with the PAR4 thrombin receptor agonist peptide AYPGKF showed
a leftward shift in the steep dose/response curves for integrin
activation and a-granule exocytosis that was not accompanied by a
change in the maximum response (Figure 2A). In contrast, there was
a considerable increase in the maximum responses when platelets
were stimulated with U46619 (a TxA, mimetic) or ADP: integrin
activation increased 4.1-fold for U46619 and 5.5-fold for ADP, and
P-selectin exposure increased 6.7-fold for U46619 and 10.3-fold
for ADP (Figure 2B-C). Similar results were obtained when flow
cytometric studies were performed on platelets obtained from
mice that have been backcrossed for 8 generations into C57BL/6
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Figure 4. The impact of deleting RGS10 on Akt phosphorylation. (A-B) Gel-filtered platelets from RGS10™/~ mice or matched WT controls were incubated with vehicle,
350 pM AYPGKF, or 20 wM ADP for 5 minutes in the presence or absence of the P2Y antagonist MRS2500 (50 M) or the P2Y, antagonist cangrelor (100 nM), as
indicated. Lysates were probed with anti—p-Akt (S473) and then reprobed with anti-Akt. The p-Akt signal was normalized to the Akt loading control and is represented as signal

relative to the maximum for WT controls. Data are mean = SEM, N = 5. (C-D) Platelets were incubated for 5 minutes with AYPGKF at the concentrations shown, lysed, and

immunoblotted for p-Akt and Akt as in panel A. Quantification was performed as in panels A and B. Data are mean = SEM. N = 3 to 5.

background. The same results were obtained (supplemental Figure 4).
Finally, we note that there was no increase in basal P-selectin exposure
or integrin activation on RGS10™/~ platelets (Figure 2), and shape
change was unaffected (supplemental Figure 5). These observations
suggest that the RGS10~'~ platelets are not circulating in a
preactivated state, and signaling by G5 family members in platelets
has been unaffected by deleting RGS10.

RGS10 targets G,- and G;-mediated responses
in platelets

Ggmediated responses in platelets lead to phosphoinositide hydroly-
sis, the release of Ca™* from the platelet dense tubular system, and,
among other responses, integrin activation and myosin light chain
phosphorylation.3%4° In the studies shown in Figure 3A-B, a greater
increase in cytosolic Ca** was observed in RGS10™/~ platelets
compared with controls. As in the flow cytometry assays, the difference
between controls and RGS10™~ platelets disappeared at higher
AYPGKF concentrations. The gain of function observed with U46619
persisted to =20 uM, the highest concentration tested (data not
shown). Myosin light chain phosphorylation was also greater in
RGS10™'~ platelets than in controls (Figure 3C).

Gi-derived Gg, activates phosphatidylinositol 3-kinase B isoforms,
leading to Akt activation.'®*'*? To investigate the impact of
RGS10 deletion on Gi-dependent signaling, Akt phosphorylation
was measured in platelets stimulated with AYPGKF or ADP in the
presence or absence of cangrelor (to block platelet Gip-coupled
ADP P2Y;, receptors) or MRS2500 (to block Gg-coupled
ADP P2Y, receptors). When added alone, ADP caused Akt
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phosphorylation to a greater extent in RGS10™'~ platelets than in
controls (Figure 4A-B). Adding MRS2500 at a concentration sufficient
to block the ADP-induced Ca™* increase (supplemental Figure 6) had
no effect, but cangrelor reduced Akt phosphorylation whether RGS10
was present or not, showing the role of RGS10 in regulating Gip-
dependent signaling. A dose/response curve with AYPGKF showed
that deleting RGS10 shifted the curve to the left with, once again, no
increase in maximum Akt phosphorylation (Figure 4C-D). Studies with
cangrelor or MRS2500 also indicated that the response to AYPGKF
was amplified by secreted ADP working through P2Y,,, but not
P2Y, (Figure 4A-B), as Kunapuli and colleagues have previously
observed in unrelated studies in human and mouse platelets.*' Taken
together, these results show that RGS10 normally represses G- and
Gg-dependent signaling in platelets.

Regulating free RGS10 levels

We have shown previously that, in resting platelets, RGS18 is
bound to the scaffold protein spinophilin (neurabin-Il or spinophilin),
forming a heterotrimeric complex with the tyrosine phosphatase
SHP-1.43 Dissociation of the complex occurs when platelets are
activated by thrombin or U46619.43** It also occurs when platelets
are exposed to PGl,, which causes cyclic adenosine mono-
phosphate (cAMP)-dependent phosphorylation of spinophilin.**
Other investigators have shown that RGS18 can bind to the 14-3-3
family member 14-3-3y, which is abundant in platelets. In contrast
to spinophilin, the binding of RGS18 to 14-3-3y was reported to
increase when platelets are activated.* In the second part of this
study, we probed resting platelets for the presence of RGS10
complexes with spinophilin and 14-3-3y and established an assay
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Figure 5. Release of RGS10 from binding sites on spinophilin leads to a rise in free RGS10 levels in platelets incubated with agonists or PGl,. (A) Human
platelets were incubated for 3 minutes with a PAR1 agonist peptide (SFLLRN 50 pM), a TxA, mimetic (U46619 10 wM), ADP (10 uM), or collagen (10 pg/mL) in the absence
or presence of 100 uM aspirin (ASA) and 1 U/mL apyrase (APY), as indicated. Lysates were precipitated with anti-RGS10 and probed for spinophilin before reprobing with
anti-RGS10 (data are mean = SEM, N = 3). (B) Human platelets were incubated for 3 minutes with ADP (10 M) in the absence or presence of 100 pM aspirin (ASA).
Lysates were precipitated with anti-RGS10 and probed for spinophilin (SPL) before reprobing with anti-RGS10 (data are mean = SEM, N = 4). (C) Human platelets were

incubated with 20 M forskolin (Forsk) or 15 M PGl,, with or without 1 uM okadaic acid, as indicated. Proteins were precipitated with anti-RGS10 or nonimmune

immunoglobulin (Ig) and then probed with anti-spinophilin before reprobing with anti-RGS10 (data mean = SEM, N = 4). P values are relative to resting platelets. (D) Lysates

were prepared from resting platelets and from platelets incubated with PGl, (15 wM) or the PAR1 agonist peptide SFLLRN (50 uM). The lysates were then incubated with

GST-Gi2a coupled to glutathione beads in the presence of GDP plus AIF,~ or GDP alone, as indicated. Bound proteins were subjected to electrophoresis and probed with

anti-RGS10 and Gi2a antibodies to detect RGS10 and GST-Gi2a fusion protein, respectively (upper panels). Summary of 3 experiments expressed as the percentage of the

result obtained with resting platelets (data are mean = SEM) (lower panel). P values are relative to resting platelets.

for measuring free RGS10 levels. These studies were performed
with human, rather than mouse, platelets to allow comparisons with
our previous studies on RGS18. RGS10 was immunoprecipitated
from resting platelets and from platelets activated with ADP,
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collagen, or a PAR-1 thrombin receptor agonist peptide (SFLLRN),
U46619. In resting platelets, RGS10 coprecipitated with spinophi-
lin (Figure 5A). SFLLRN and U46619 caused dissociation of the
spinophilin/RGS10 complex as did, to a lesser extent, collagen and
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Figure 6. Dissociation of RGS10 from binding sites on
14-3-3v during platelet activation. (A) Lysates were pre-
pared from human platelets stimulated with 1 U/mL thrombin,
after which 14-3-3y was precipitated with anti-RGS10 anti-
body or nonimmune immunoglobulin (Ig) and probed with
anti—14-3-3+y before reprobing with anti-RGS10 antibody.

The bar graph summarizes results from 2 experiments.
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(B) Lysates were prepared from CHO cells transfected with
HA-tagged RGS10 and Myc-tagged 14-3-3v. Proteins were
precipitated with an anti-HA antibody or nonimmune Ig and
probed for Myc—14-3-3+y before reprobing with anti-RGS10
antibody (data are mean = SEM, N = 3).

Thrombin

ADP. Dissociation of the complex by collagen was completely
blocked by adding aspirin and apyrase. Dissociation by ADP was
reduced, but not eliminated, by adding aspirin (Figure 5B). These
results suggest that platelet receptors for thrombin, TxA,, and, to a
lesser extent, ADP, are directly coupled to spinophilin and RGS10,
whereas collagen receptors are coupled indirectly via released TxAo
and ADP. As we observed previously for RGS18,** increasing
cAMP levels also affect the spinophilin/RGS10 complex. Figure 5C
shows that stimulating increased cAMP formation with PGly or
forskolin causes dissociation of RGS10 from spinophilin. Note the
presence of a second band that was seen on the strip and reprobe of
the RGS10 immunoprecipitates in Figure 5 that does not align with
RGS10 in platelet lysates and was not seen in Figure 6 (see the
following paragraphs). The etiology of this band is unknown at present.

In Figure 5D, a pull-down assay was used to detect free RGS10 in
platelets. In this assay, free RGS10 is captured by a glutathione
S-transferase (GST)-Gj,a fusion protein and detected with anti-
RGS10.4* GDP and AIF,~ are added to mimic the transition state of
Gipa, which is recognized by RGS domains. The results show that
levels of free RGS10 rise when human platelets are stimulated with
SFLLRN or PGl,.

Finally, we asked whether RGS10 binds to the scaffold protein 14-3-3y.
The results show that, in resting human platelets, 14-3-3y coprecipi-
tates with RGS10 (Figure 6A). Activation of the platelets with
thrombin caused dissociation of RGS10 from 14-3-3v. Dissociation
was complete within 1 minute, a time course similar to what we have
previously observed for dissociation of spinophilin/RGS18 com-
plexes.*® Because dissociation from 14-3-3y during platelet activation
is opposite to what has previously been reported for RGS18,%% we
performed a comparison study in CHO cells expressing epitope-
tagged RGS10 and 14-3-3v. A similar result was obtained: RGS10
and 14-3-3y were associated in resting CHO cells but not in CHO
cells incubated with thrombin (Figure 6B). Thus, the results in the
second part of this study show that RGS10 is associated with =2
scaffold proteins in resting platelets, forming complexes that dissociate
when platelets are activated and leading to an increase in free RGS10
able to interact with Goa-GTP.

2152 MA et al

Discussion

There is increasing recognition that the hemostatic response to
penetrating injuries does more than pile up activated platelets and
fibrin.*® Once platelets begin to accumulate, they create a sheltered
local environment in which solute transport is restricted and agonist
concentration gradients are established. Depending on their location
within the mass, platelets are exposed to different combinations of
agonists and packed together to different extents. Nodal points within
the platelet signaling network provide opportunities to regulate the
pace and extent of platelet activation. Heterotrimeric G proteins and
their regulators provide 1 such potential nodal point. Although G
proteins are essentially on/off switches, the time until they turn off can
be shortened by members of the RGS protein family. The evidence that
RGS proteins impact platelet activation has been explored through the
use of RGS protein knockouts and a Gipa(G1848S) variant that does
not bind to RGS proteins. In each case, a gain of function has been
observed.'82%2"23 Mice lacking RGS10 or RGS18 have a shorter
bleeding time and a reduced time to occlusive thrombus formation in
vivo in the FeClg injury model.>*?'?® Here, we have attempted to go
beyond the concept of RGS proteins as brakes, focusing on the ways
in which they can potentially shape the hemostatic response to
penetrating injuries and the extent to which they do so. In the first part
of these studies, we examined the impact of RGS10 on the hemostatic
response in vivo and explored the mechanisms underlying the
observed effects. In the second part, we asked whether interactions
with other proteins regulate free RGS10 levels in platelets, demon-
strating cross talk between G protein—dependent activation pathways
and cAMP-dependent inhibitory pathways.

The results show that deleting RGS10 changes platelet reactivity in a
Gg and Gi-dependent manner, reshaping thrombus structure and
altering thrombus stability. Hemostatic thrombi formed in RGS10™/~
mice have a larger shell region without an increase in the core region.
As a result, they have a lower average packing density (greater porosity)
that we were able to measure by studying the exchange of fluorescent
albumin. Among the agonists studied, PAR4 activation produced the
greatest response in assays of integrin activation, o-granule secretion,
and cytosolic Ca*™, with a steep dose/response curve in each case.
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Deleting RGS10 caused a modest leftward shift in the steep dose/
response curve to a PAR4 agonist peptide and no increase in the
maximum response. In contrast, platelet responses to ADP and U46619
were increased from fourfold to 10-fold. One way of summarizing these
observations is that RGS10 plays a critical inhibitory role in platelets
activated with some weaker agonists and with low concentrations of
some stronger agonists. How RGS10 inhibition is bypassed at higher
PAR4 agonist concentrations should be investigated in a future study.
However, because ADP and TxA, are the main drivers in the shell
region,* we suggest that these differential effects underlie the observed
growth of the shell. In contrast, thrombin is the main driver of platelet
activation in the thrombus core where close packing of the platelets
traps thrombin and raises its local concentration.®"3® The lack of an
effect of the knockout on fibrin accumulation suggests that the thrombin
concentration in the core has not been markedly affected. We infer from
the lack of an effect of deleting RGS10 on the core that the local
thrombin concentration is sufficient to produce a maximum PAR4-
mediated response. At the same time, we found no evidence for an
increase in basal activation in circulating RGS10™~ platelets, which
indicates that loss of RGS10 is insufficient to trigger platelet activation in
the absence of injury. It remains to be seen whether removing RGS18,
as well as RGS10, will have a greater effect.

What is the molecular basis for differences in the agonist-specific
response of platelets following RGS10 deletion? The data suggest
that it is not due to differences at the level of the G proteins that
couple to the receptors for each agonist. Prior work in cells other
than platelets indicates that RGS10 can accelerate GTP hydrolysis
by G4 and G; family members.®'>"'® There is no evidence that it
regulates G, family members. The present studies indicate that
this is also the case in platelets because shape change is
unaffected by deleting RGS10. Knocking out RGS10 increased
intracellular Ca™ ™ responses and Akt phosphorylation. The former
is mediated by Gg; the latter is mediated largely by Gio. Other
factors that may determine the agonist-selective effects of remov-
ing RGS10 include the location of receptors and RGS proteins
within the platelet, how many receptors of each class exist, how
efficiently they are coupled to each G protein, and the localization
of other RGS10-binding proteins. These hypotheses remain to be
tested.

Once signal transduction is initiated in platelets, critical events, such
as integrin engagement and granule exocytosis, can occur. An
unexpected finding in our studies is that clot retraction occurs more
slowly in RGS10~/~ platelets than in controls. Robust clot retraction
requires integrin activation, outside-in signaling through the integrin,
and myosin phosphorylation. Data presented here show that deleting
RGS10 increases integrin activation. Myosin phosphorylation is also
enhanced, as is the increase in cytosolic Ca™* that promotes it. Why,
then, does clot retraction occur more slowly? At present the answer is
unknown, but we note that conventional clot retraction assays are
performed at very high thrombin concentrations and occur over a time
period much longer than used in the studies that we performed in vivo.
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Finally, the data show that, in resting platelets, RGS10 is at least partly
held in complexes with spinophilin and 14-3-3v. The ability of RGS10,
like RGS18, to bind to scaffold proteins in an activation-sensitive manner
places both RGS family members at a regulated nodal point in the
platelet signaling network that balances the need for platelets to resist
inappropriate activation while retaining the ability to activate quickly in
response to injury. Platelet agonists cause dissociation of spinophilin/
RGS complexes and a rise in free RGS protein levels, as does PGl,,
although by a different mechanism. We have shown previously that
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Summing up, the available evidence suggests that the regulated
agonist-specific interaction of RGS proteins with G, and Gj, in
platelets provides a mechanism not only for limiting the growth of
hemostatic thrombi, but also for shaping critical features of their
architecture. Hemostatic thrombi formed after penetrating injuries in
mice lackihg RGS10 have a larger than normal shell region and,
partly as a result, a lower average packing density. Fewer platelets
detach from the shell region in the absence of RGS10, suggesting
that they are more activated. Removing RGS10 causes the shell to
expand, whereas blocking ADP receptors with cangrelor or introducing
Hermansky—Pudlak syndrome mutations to prevent ADP release
causes the shell region to contract."®2447 \When RGS10 is present,
the hemostatic response produces a smaller more compact plug with a
greater proportion of fully activated platelets.
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