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Key Points

• Platelet activation in
vitro results in a more
rapid and greater
upregulation of TLT-1
surface expression
compared with
P-selectin.

• TLT-1 is more rapidly
translocated to the
surface of activated
platelets than
P-selectin during
thrombus formation
in vivo.

Introduction

Formation of hemostatic thrombi in vivo is a dynamic process involving platelets with heterogeneous
levels of activation. Pioneering work by Stalker et al1 and Nesbitt et al2 has shown developing thrombi
are characterized by a core of fully activated platelets, which have undergone a-granule exocytosis,
surrounded by a less activated platelet shell. Platelets in the activated core, directly adjacent to the site
of injury, are tightly packed and can be identified by surface exposure of P-selectin. In contrast, the
surrounding shell contains loosely adhered platelets not expressing P-selectin.1

P-selectin is a type 1 transmembrane protein present in platelet and megakaryocyte a-granules. Upon
platelet activation, fusion of a-granules with the plasma membrane results in P-selectin exposure on the
platelet surface.3 Once there, the primary role of P-selectin is to mediate interactions with leukocytes
(monocytes and neutrophils) via its ligand, P-selectin glycoprotein ligand 1, facilitating efficient
recruitment of these cells to sites of vascular injury.3 P-selectin is therefore commonly used as a marker
of a-granule secretion and irreversible platelet activation.1,4-6

TREM (triggering receptor expressed on myeloid cells)–like transcript 1 (TLT-1) is another membrane receptor
found in platelet and megakaryocyte a-granules and is rapidly translocated to the surface upon activation.7,8

TLT-1 is abundantly present in platelets, with expression levels greater than P-selectin in both human (TLT-1,
14 200 copies; P-selectin, 8900 copies) and mice (TLT-1, 154 769 copies; P-selectin, 35970 copies) as
determined by quantitative proteomics-based approaches.9,10 Early findings revealed TLT-1 and P-selectin are
both present in plateleta-granules, but a portion did not colocalize, suggesting distinct storage compartments.11

Elevated levels of soluble TLT-1 can also be detected in plasma of patients with thrombotic diseases.12 TLT-1
belongs to the immunoreceptor tyrosine-based inhibition motif (ITIM)–containing receptor family; however,
unlike other conventional ITIM-containing receptors, deletion of TLT-1 in mice was shown to reduce platelet
aggregation in response to binding its physiological ligand, fibrinogen.8,11,13

In this study, we show that TLT-1 is more rapidly and abundantly upregulated on the surface of activated
platelets than the current gold standard P-selectin. Furthermore, we show that in vivo TLT-1 is present in
both the highly activated core and less activated platelet shell of thrombi, whereas P-selectin is only
detectable in the highly activated core, providing for the first time direct evidence of activated platelets in
the thrombus shell. Collectively, these results suggest that surface expression of TLT-1 is a more
sensitive marker of platelet activation than P-selectin.

Methods

Animals

Wild-type mice were all on a C57BL/6 background. All procedures were in accordance with the Animal
(Scientific Procedures) Act 1986 and undertaken with United Kingdom Home Office approval.

Antibodies and reagents

Antibodies used are listed supplemental Table 1. All other reagents were sourced from Sigma-Aldrich
(Poole, United Kingdom) or as previously described.14
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Platelet preparation

Blood was collected from the inferior vena cava of CO2-asphyxiated
mice into 1:10 (v:v) acid-citrate-dextrose anticoagulant. Washed
platelets were prepared as previously described.14 Briefly, platelets
were resuspended in modified Tyrodes N-2-hydroxyethylpiperazine-
N9-2-ethanesulfonic acid (HEPES) (134 mM NaCl, 0.34 mM
Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 20 mM HEPES, 1 mM
MgCl2, and 5 mM glucose, pH 7.3) and used at 23 107/mL for the
spreading experiment.

Megakaryocyte preparation

Megakaryocytes were prepared as previously described.14 In brief,
bone marrow (BM) cells were obtained from mouse femurs and
tibias by flushing, and cells expressing lineage-specific surface
markers (CD16/CD321, Gr11, B2201, or CD11b1) were depleted.
The remaining population was cultured in serum-supplemented
StemPro medium for 2 days with murine stem cell factor (20 ng/mL)
and a further 4 days in the presence of stem cell factor and 50 ng/mL
thrombopoietin (37°C, 5% CO2). Mature megakaryocytes were then
enriched using a 1.5%/3% bovine serum albumin gradient.

Western blotting

Whole-cell lysates were prepared from megakaryocyte culture each
day following thrombopoietin addition as previously described.14 Equal
amounts of proteins were resolved on 4% to 12% NuPAGE Bis-Tris
gradient gels and immunoblotted with primary antibodies (anti-mouse
TLT-1, 1/1000 [R&D Systems]; anti-mouse P-selectin, 1/500 [Santa
Cruz]; and anti-Erk1/2, 1/1000 [Cell Signaling]) and horseradish
peroxidase–conjugated secondary antibody. Proteins were detected
by enhanced chemiluminescence and autoradiography.

Flow cytometry

Surface protein expression of TLT-1 and P-selectin was analyzed in
resting and stimulated whole blood (BD Accuri C6 flow cytometer) or
BM-derived megakaryocytes (BD FACSCalibur) following fixation and
staining with indicated conjugated antibodies as previously described.14

In vivo thrombosis assay

Laser-induced injury of cremaster arterioles and ferric chloride
(FeCl3)–induced injury of carotid arteries were performed in mice
(20-25 g) as previously described.14 Briefly, mice were anesthe-
tized, and the cremaster muscle or carotid artery was exposed.
Thrombi were then generated by laser or FeCl3-soaked filter paper
application (10%, 3 minutes). Mice were injected with indicated
conjugated antibodies prior to injury. Fluorescence and bright-field
images were captured simultaneously using an Olympus BX61WI,
upright spinning disk confocal microscope (403 0.8 numerical
aperture [NA] water-immersion lens/43 0.13 NA air lens) with a
Photometrics Evolve camera. Images were analyzed using
Slidebook6 software (Intelligent Imaging Innovations).

Immunofluorescence microscopy

Resting platelets were fixed in suspension and plated on poly-
L-lysine–coated coverslips and centrifuged at 1000 rpm for
10 minutes. Megakaryocytes were plated on fibrinogen-coated
coverslips (100 mg/mL) for 15 minutes at 37°C then fixed. Platelets
and megakaryocytes were then permeabilized and stained as
previous.14 Platelets were imaged by Zeiss LSM880 confocal
microscope (403, 1.2 NA water-immersion lens) with Airyscan

processing. Megakaryocytes were imaged using a Zeiss Observer
7 epifluorescent microscope (633, 1.4 NA oil-immersion lens) and
Hamamatsu ORCA Flash 4 LT sCMOS camera. Images were acquired
using Zen Pro V2.3. Deconvolution was performed on representative
Z-stacks before maximum intensity projection for quantification.

Image analysis

Maximum intensity projections were used for image analysis.
Analysis performed using Icy software.15 Colocalization of TLT-1
(488 channel) and P-selectin (647 channel) in platelets was
determined by Manders overlap coefficients M1 (TLT-1:P-selectin)
and M2 (P-selectin:TLT-1) as previously described.16 Megakaryocyte
images were processed using Icy’s Spot Detector plug-in (http://icy.
bioimageanalysis.org/plugin/Spot_Detector) to effectively threshold
granules positive for TLT-1 (488 channel) and P-selectin (647
channel) and determine an object based colocalization measure. In
large, complex cells like megakaryocytes, this approach can effectively
threshold and measure colocalization between granules of interest.

Statistical analysis

Data presented as mean 6 standard deviation (SD) unless stated
otherwise. Statistical significance was analyzed using analysis of
variance. P , .05 was considered statistically significant.

Results and discussion

TLT-1 is expressed in mature megakaryocytes and

upregulated to the surface upon activation

TLT-1 was only detectable in mature BM-derived mouse megakar-
yocytes 4 days after thrombopoietin addition (Figure 1A). Mature
megakaryocytes show increased TLT-1 surface expression in
response to collagen stimulation, which was not mirrored by
P-selectin (Figure 1B).

TLT-1 is rapidly upregulated to the platelet surface

upon activation

Increased surface expression of TLT-1 and P-selectin were detected
in mouse platelets following stimulation with thrombin and glycopro-
tein VI–specific agonist collagen-related peptide (CRP), with TLT-1
upregulated to significantly greater extent than P-selectin (Figure 1Ci).
TLT-1 was also more rapidly upregulated to the surface following
thrombin and CRP stimulation compared with P-selectin (Figure 1Cii).

Differences in upregulation may possibly be explained by the fact that
TLT-1 abundance is .4 times greater than P-selectin abundance in
murine platelets.9 Therefore experiments were repeated with human
platelets, where abundance is more comparable.10 Consistent with
findings in murine platelets, upregulation of TLT-1 was greater
(Figure 1Di) andmore rapid than upregulation of P-selectin (Figure 1Dii).

TLT-1 is expressed throughout the core and shell of

thrombi in vivo

In agreement with our in vitro findings, TLT-1 was detected
more quickly than P-selectin in vivo after laser-induced injury in
mouse cremaster arterioles (Figure 2A; supplemental Videos
1-3). Interestingly, TLT-1 expression (unlike P-selectin) was not
limited to the core and was present throughout the thrombus
(Figure 2B). This differs with the current model of thrombus
formation, in which only platelets in the core undergo a-granule
secretion.1 While TLT-1 expression in the shell does not necessarily
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suggest the thrombus core (which has other defining characteristics,
such as packing density) is larger than previously thought, it does
suggest a greater level of platelet activation in the shell.1,17

Interestingly, in FeCl3-induced thrombi, the platelet core and shell
are not discernible. However, consistent with previous results,
TLT-1 was detected more rapidly than P-selectin and was

present throughout thrombi (supplemental Figure 1; supplemen-
tal Videos 4-6).

Distinct and overlapping TLT-1 and P-selectin staining

To explain the different localization of TLT-1 and P-selectin,
immunofluorescence microscopy was performed on human and
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Figure 1. TLT-1 expression is greater than

P-selectin expression on the surface of activated

megakaryocytes and platelets in vitro. (A) Whole-

cell lysates of primary BM-derived mouse megakar-

yocytes 0 to 5 days after thrombopoietin (Tpo)

administration were western blotted for TLT-1, P-selec-

tin, and ERK1/2. Representative blots of 2 independent

experiments. (B) BM-derived megakaryocyte surface

expression of TLT-1 and P-selectin following collagen

stimulation (30 mg/mL) for 20 minutes at 37°C. Data are

presented as mean fluorescence intensity (MFI) 6 SD;

n 5 7-9. (C-D) Platelet surface expression of TLT-1 and

P-selectin was measured by flow cytometry in response

to the protease activated receptor agonist thrombin and

the glycoprotein VI–specific agonist CRP in murine (C)

and human (D) whole blood. (i) Dose-response (throm-

bin, 0.03-3 U/mL; CRP, 3-30 mg/mL) and (ii) time

course (thrombin, 0.1 U/mL; CRP, 10 mg/mL). Data are

presented as median fluorescence intensity 6 SD;

n 5 3-6 independent experiments per condition.

*P , .05, **P , .01, ***P , .001 vs basal.
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Figure 2. TLT-1 appears more rapidly and is detected throughout laser-induced thrombi in vivo. Mice were injected with anti-GPIbb, anti-TLT-1, or anti-CD62P

antibody. Arterioles of cremaster muscles were subsequently injured by laser. (A) Representative composite bright-field and fluorescence images of platelets (GPIbb), TLT-1,

and P-selectin in thrombi. Scale bars, 10 mm. (B) Quantification of fluorescence area in pixels (data represent mean 6 standard error of the mean; n 5 25-32 injuries from 4 to

6 mice). (C) Distinct and overlapping staining of TLT-1 and P-selectin in platelets and megakaryocytes. Resting human (top row) and mouse (middle row) platelets seeded on

poly-L-lysine and primary mouse BM-derived megakaryocytes (MK) (bottom row) spread on fibrinogen matrix for 15 minutes at 37°C were fixed, permeabilized, and stained with

Alexa Fluor 488 anti-TLT-1 and Alexa Fluor 647 anti-P-selectin antibodies. The right column represented an overlay of both images. Scale bars, 5 mm. Images are representative

of 3 to 4 independent experiments. (D) Degree of TLT-1 and P-selectin colocalization as determined by the Manders overlap coefficients (M1: TLT-1:P-selectin and M2:

P-selectin:TLT-1) in resting human (i) and mouse platelets (ii), and object-based colocalization in mouse BM-derived megakaryocytes (iii) (n 5 3-4 independent experiments

per condition, 400-600 platelets, and 25-35 megakaryocytes per experiment).
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mouse platelets and primary BM-derived megakaryocytes. We found
that TLT-1 colocalized with P-selectin within a-granules. However, a
proportion was present in distinct granules, as determined by Manders

overlap coefficients and object-based colocalization, suggesting differ-
ential distribution or localization to another as-yet-unidentified compart-
ment (Figure 2C-D).
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Figure 2. (Continued).
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Collectively, findings from this study demonstrate that TLT-1 is a
more sensitive marker of megakaryocyte and platelet activation
than P-selectin. The stronger signal and rapid upregulation of
TLT-1 compared with P-selectin following platelet activation is
most likely due to the greater abundance of TLT-1; however,
differential compartmentalization of the 2 receptors and differ-
ences in antibody-binding affinities and fluorescence may also
contribute to the stronger TLT-1 signal. The latter is unlikely to
be the case, as all antibodies tested yielded the same results,
irrespective of labeling (data not shown). Differences in surface
translocation rates of the 2 receptors and distribution within
thrombi suggest distinct mechanisms of upregulation, even
though both are reportedly localized in platelet a-granules.3,7

Another possibility is that TLT-1 is expressed in an early-release
granule that is devoid of P-selectin. This may be either an
a-granule subpopulation or a distinct type of granule.

Previous studies have shown stimulation of platelets with different
agonists causes differential release of a-granule cargo and led
to the proposal of distinct subpopulations of a-granules that
undergo release to specific agonists.18-22 Alternatively, it has been
suggested that cargo is randomly distributed among a-granules
but segregated into subregions within each granule, with
differential release resulting from partial activation.23,24 Identifica-
tion of tubular a-granules has also given rise to the possibility of
polarized granule secretion.25 Either of these mechanisms could
explain the differences in TLT-1 and P-selectin localization
throughout thrombi, as agonists and extent of platelet activation
at sites of vascular damage are stratified, with stronger agonists
and full platelet activation in the core and partial platelet activation
by weaker agonists in the surrounding shell.1,17,18 Conversely, the
rapid upregulation of TLT-1 to the surface suggests a proportion
of TLT-1 may localize distinctly from P-selectin to other as-yet-
unidentified compartments of a-granules and puts forward
the possibility of an early-release granule.11 Consistent with this
hypothesis, a distinct staining pattern of TLT-1 and P-selectin
within platelets and megakaryocytes was observed, suggesting
differential compartmentalization of a proportion of these 2
receptors. However, additional work is required to characterize
these distinct P-selectin–negative granules and mechanism of
translocation to the surface.

In conclusion, TLT-1 is a more sensitive marker of platelet activation
than P-selectin that can be detected in both the core and shell of
thrombi in vivo. This opens the possibility of TLT-1 being used as a
biomarker for early detection of platelet activation in various
pathologies, including coronary artery disease and deep
vein thrombosis, as well as megakaryocyte activation in BM in
myeloproliferative disorders and myelofibrosis.
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