
REGULAR ARTICLE

Identification of patients with hemoglobin SS/Sb0 thalassemia disease
and pain crises within electronic health records

Ashima Singh, Javier Mora, and Julie A. Panepinto

Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI

Key Points

• The algorithms have
high sensitivity and
specificity to identify
patients with hemoglo-
bin SS/Sb0 thalasse-
mia and acute care pain
encounters.

•Codes conforming to
common data model
are provided to facili-
tate adoption of algo-
rithms and standardize
definitions for EHR-
based research.

Electronic health records (EHRs) are a source of big data that provide opportunities for

conductingpopulation-based studies andcreating learninghealth systems, especially for rare

conditions suchas sickle cell disease (SCD). The objective of our study is to validate algorithms

for accurate identification of patients with hemoglobin (Hb) SS/Sb0 thalassemia and acute

care encounters for pain among SCD patients within EHR warehouse. We used data for

children receiving care at Children’s Hospital of Wisconsin from 2013 to 2016 to test the

accuracy of the 2 algorithms. The algorithm for genotype identification used composite

information (blood test results, transcranial Doppler) along with diagnoses codes. Acute

pain encounters were identified using diagnoses codes and further refined by using

prescription of IV pain medications. Sensitivities and specificities were calculated for the

algorithms. Predictive values for the algorithm to identify SCD genotype were calculated.

For all assessments, the local SCD registry and patients’ charts were considered gold

standards. These included 360 children with SCD, of whom 51% were females. Our

algorithm to identify patients with HbSS/Sb0 thalassemia demonstrated sensitivity of

89.9% (confidence interval [CI], 85.1%-93.7%) and specificity of 97.1% (CI, 92.7%-99.2%). This

algorithm had a positive and negative predictive value of 97.9% (CI, 94.8%-99.9%) and

88.7% (CI, 82.6%-93.3%), respectively. Acute pain crises encounters were identified with a

sensitivity and specificity of 95.1% (CI, 86.3%-99.0%) and 96.1% (CI, 88.3%-99.6%). This study

demonstrates the feasibility to accurately identify patients with specific types of SCD

and pain crises within an EHR.

Introduction

Electronic health records (EHRs) are increasingly being used by institutions across the world to
continually collect patient information every time a patient makes an encounter within a health care
system.1 These data, although not primarily collected for research purposes, are housed within a data
repository almost on a real-time basis and offer great potential to be used for a learning health system
(LHS) and population-based studies. Harnessing the information that is continually stored in EHRs can
facilitate research and LHSs not only within a site but also across multiple sites nationally.

An LHS uses a feedback loop model to draw knowledge from various data sources at the patient-level to
provide near real time data that allow for continuous improvement and innovation. In addition, the LHS
lends itself to comparative effectiveness research conducted within a real-world setting. The EHR data
repository can be particularly valuable for creating an LHS, especially for children with rare and
potentially life-threatening disorders like sickle cell disease (SCD). SCD is a chronic disease diagnosed
at birth affecting ;1 out of 400 African American births. This disease is characterized by recurrent
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painful crises, which is one of the most common manifestation of
the disease among children. The initial steps to create an LHS using
EHR data, however, require accurate identification of a patient
cohort and outcomes within the EHR warehouse. In addition to
accurate identification of the patient cohort in SCD, it is necessary
for appropriate care of the patient to correctly ascertain an
individual patient’s genotype. Patients with genotypes hemoglobin
(Hb) SS/Sb0 thalassemia will be defined as sickle cell anemia
throughout the text. Children with sickle cell anemia are considered
to have the more severe form of disease and require specific
surveillance care and monitoring of the therapy provided. For
example, the National Heart, Lung, and Blood Institute guidelines for
prescribing hydroxyurea and conducting annual transcranial Dopp-
ler (TCD) screens are directed toward children with these severe
genotypes.2 Thus, knowledge of a patient’s genotype is eminent
when tracking health outcomes and/or quality improvement efforts.

Our prior work supports identifying the cohort of patients with
SCD.3 However, within these EHR data warehouses, there are no
standard definitions or a common data language to identify children
with sickle cell anemia. In addition, one of the most common
complications for children with SCD are acute pain crises. Similarly,
there are no standard data definitions to capture pain crises
information within the EHRs.

The objective of this project was to test the diagnostic accuracy
of common data definitions that use multiple elements of EHR
data to identify children with HbSS and HbSb0 thalassemia
disease and identify acute care encounters for vaso-occlussive
pain among children with SCD. The assessment of the diagnostic
accuracy of these algorithms forms a critical first step for
demonstrating the feasibility of using these EHR data for SCD
population health research in children and building a LHS to
support quality improvement endeavors.

Methods

Study design and population

This study used retrospective EHR data collected at Medical
College of Wisconsin/Children’s Hospital Wisconsin in the
years 2013-2016 and stored in the i2b2 data warehouse. This
data warehouse contains stored data from the Epic EHR of the
Children’s Hospital Wisconsin, including information on pa-
tient demographics, visit encounters, laboratory tests, diagno-
sis, procedures, and medications ordered. The study was
deemed exempt by our institution’s review board as it involves
systematic investigation for research development, testing,
and evaluation and is designed to develop generalizable
knowledge.

We identified children with SCD (age #18 years) using a
previously validated and published algorithm.3 This published
algorithm was slightly modified to incorporate the International
Classification of Diseases (ICD), version 10 codes and is detailed
in supplemental Table 1. The modified algorithm includes both
ICD-9 and ICD-10 codes to identify children with SCD with a
sensitivity of 93.3% and a positive predictive value of 97.9%.

We developed an algorithm to identify children with sickle cell
anemia and another to identify acute pain crises requiring an
emergency department visit or hospitalization within the pediatric
SCD cohort that uses data elements conforming to the Patient

Centered Clinical Network (PCORnet) common data model format.
The PCORnet common data model specifies standard organiza-
tion and representation of data for the PCORnet Distributed
Research Network,4 enabling consistent data definitions and
formats across multiple sites. The PCORnet common data model
ensures harmonized data definitions are independent of EHR type,
thus overcoming the limitation of interoperability across EHR
vendors. The SAS programs for the 2 algorithms are provided in
supplemental Data (Programs 1 and 2).

Algorithm to identify children with HbSS and HbSb0

thalassemia disease (SCD-genotype algorithm). The al-
gorithm (Figure 1A) to identify children with sickle cell anemia
within the SCD cohort uses the union of the following criteria: (1)
ICD-9 and ICD-10 diagnoses codes. The PCORnet table for
diagnosis includes information on diagnoses codes. We specif-
ically used the data elements of DX_TYPE, DX, DX_SOURCE for
these criteria. (2) Hemoglobin identification. Results of patients –

the PCORnet table for laboratory results (Lab_result_cm) has
elements for identification of test using Logical Observation Identi-
fiers Names and Codes for Hb tests (data variable LAB_LOINC)
and the numerical results (variable RESULT_NUM). (3) TCD
screening test. The data elements in PX, PX_TYPE in the
table for procedures were used for this criteria. The specific codes
for the PCORnet common data elements are listed in supplemental
Table 2.

ICD classification. The first step in ICD classification
determined patient’s genotype based on the most commonly
occurring ICD code in the patient’s record. However, the ICD-10
code for Hemoglobin SS disease without crisis is the same code
as Sickle Cell Disease Not Otherwise Specified (D57.1).
Therefore, we used a second step to identify the patients’
genotype more specifically in this situation. The second most
common code was identified and, if specific to the genotype
(D57.00, Hb-SS Disease With Crisis, Unspecified; D57.01,
Hb-SS Disease With Acute Chest Syndrome; D57.02 Hb-SS
Disease With Splenic Sequestration; D57.20, Sickle-Cell/Hb-C
Disease Without Crisis; D57.211, Sickle-Cell/Hb-C Disease
With Acute Chest Syndrome; D57.212, Sickle-Cell/Hb-C Dis-
ease With Splenic Sequestration; D57.219, Sickle-Cell/Hb-C
Disease With Crisis, Unspecified; D57.40 Sickle-Cell Thalasse-
mia Without Crisis; D57.411, Sickle-Cell Thalassemia With
Acute Chest Syndrome; D57.412, Sickle-Cell Thalassemia
With Splenic Sequestration; D57.419, Sickle-Cell Thalassemia
With Crisis; D57.80, Other Sickle-Cell Disorders Without Crisis;
D57.811, Other Sickle-Cell Disorders With Acute Chest Syn-
drome; D57.819, Other Sickle-Cell Disorders With Crisis, Unspec-
ified), was then used to classify the patient. If a child’s genotype still
remained as SCD not otherwise specified using these steps, the
laboratory and TCD criteria described below were used.

Laboratory criteria for Hb identification. Because chil-
dren with these genotypes have HbS levels higher than in other
types of SCD, we used the laboratory criteria of a HbS level of
$80% on Hb identification testing as the threshold to categorize
patients as having sickle cell anemia. In addition, if a child’s
laboratory test showed evidence of HbC, then the patient was
classified as not having sickle cell anemia. The descriptive names
for Logical Observation Identifiers Names and Codes for Hb test
are listed in supplemental Table 3.
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TCD criteria. TCD screening is a test currently recommended
only for those children with sickle cell anemia2; therefore, we used the
criteria that having had a TCD exam classified the patients as having
the more severe genotypes of SCD. The TCD exam was identified
using the Current Procedural Terminology codes.

Testing of the SCD genotype algorithm

We used our locally developed registry for SCD to assess the
diagnostic accuracy of the algorithm to identify children with sickle
cell anemia. The local SCD registry, created by our SCD provider
team, is housed within EPIC and managed by the clinical team at our
institution. It includes children based on their encounter with the
hematology specialty clinic and newborn screening results. This
registry has been validated against the known clinic patient
population and abstracted charts. In addition, the local team regularly
provides oversight of the data registry to ensure quality data,
including accurate specification of the genotype of patients in the
registry. The provider team tracks updated information for patients
who receive care at our institution; therefore, we used it as the gold
standard for validating the algorithm to identify children with sickle
cell anemia. The registry is designed to include patients who receive
clinical care in our health system. Deceased patients are removed
from the registry. In case of a mismatch between the i2b2 data
warehouse and the registry data, we adjudicated patient’s geno-
type using the individual’s EHR. The chart abstraction was carried
out in a structured format by experienced research personnel. The
genotype was ascertained using the information on the newborn
screening scanned document. If newborn screening was not

available, then genotype ascertainment was done using complete
Hb profile laboratory results and problem list diagnoses.

Algorithm to identify acute care encounters for vaso-
occlusive pain crises (pain crises algorithm). The algo-
rithm to identify vaso-occlusive pain crises encounters within the
SCD cohort used composite information based on ICD diagnoses
codes and administration of IV pain medication (Figure 1B). We
included generic pain ICD codes along with the ICD codes for SCD
crisis (unspecified) to create a sensitive algorithm. In addition, to
increase specificity we combined the ICD codes for pain with the
prescription of an IV pain medication identified by RXCUI (a unique
concept identifier for a normalized naming system for generic and
branded drugs) or raw medication names. An encounter was
identified as a pain encounter if it had an ICD code for diagnoses of
SCD crisis (unspecified) or any pain, along with IV pain medication
(morphine, hydromorphone or fentanyl). The PCORnet common
data model tables of Diagnosis and “Prescribing” include the
required information for the algorithm. The specific data elements
and codes are detailed in supplemental Table 4. The ICD codes that
used to identify pain diagnoses include those that have been used
in prior administrative data research.5

Testing of the pain crises algorithm

The patients’ EHRs were reviewed to assess the accuracy of the
algorithm used to identify acute care encounters for pain. To
validate our algorithm for identification of vaso-occlusive pain
episodes, we randomly selected 15 acute care encounters for pain
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Figure 1. Diagrammatic representation of the algorithms. (A) Algorithm for identifying patients with HbSS and HbSb0 thalassemia disease within SCD cohort. (B)

Algorithm for identifying acute care encounters for pain crises among patients with SCD. ED, emergency department; NOS, not otherwise specified.
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and 15 for reasons other than pain (that is, 30 acute care
encounters each year) among children with SCD. This resulted in a
review of a total of 120 acute care encounters over the study period
of 2013-2016 to determine the overall diagnostics of the algorithm.
The random selection was done by simple random sampling such
that each member had an equal chance of being included in the
sample.

Statistical analyses

We determined the sensitivity and specificity of the algorithms to
identify children with sickle cell anemia within the SCD cohort
and acute care encounters for painful vaso-occlusive episodes.
Table 1 provides the definitions and interpretations of sensitivity,
specificity, positive predictive value, and negative predictive
value as calculated for the respective algorithms. Exact binomial
confidence intervals (CIs) (95%) were reported for all propor-
tions. Two-by-2 contingency tables are presented to illustrate the
true positive, true negative, false positive, and false negative
values identified by the algorithms as compared with the chart
abstractions. All analyses were carried out using SAS software
version 9.4 (SAS, Inc., Cary, NC).

Results

There were 343 patients with SCD identified within the i2b2 data
warehouse. The mean age of these patients by the end of study
period was 8.6 years (standard deviation, 4.7 years), and 51%
were females; the majority were African American (94.7%) and
non-Hispanic (97.6%).

Diagnostics of SCD genotype algorithm

For identification of children with sickle cell anemia within the SCD
cohort, only 75 of the 343 patients (22%) were classified as having
a severe genotype using the most common ICD code for these
genotypes (ICD-9: 282.61, 282.62; ICD-10: D57.00, D57.01, D57.02)
in the patients’ medical records. Subsequent steps of the algorithm
increased the number of children with sickle cell anemia to 192.

The local SCD registry, which was used to validate our algorithm, had
358 children with SCD. There were 2 children that were correctly
identified as having SCD in the i2b2warehouse but not included in the
registry because they died during the study period and were no longer
in the patient registry. Hence, the total number of SCD patients used
in validation of the SCD-genotype algorithm were 360 who were
#18 years of age, and 51% of these were females (Figure 2).

Table 2 shows the contingency table for the validation of the SCD-
genotype algorithm. Of the 360 children with SCD, 209 had sickle
cell anemia and 151 had other genotype SCD as per the local SCD
registry/chart review. The algorithm correctly identified 188 of the
209 patients with sickle cell anemia, demonstrating a sensitivity of
89.9% (CI, 85.1%-93.7%). There were a total of 21 children who
had sickle cell anemia as per the registry but were not identified by
our algorithm (false negatives). Eleven out of these 21 were those
who had just one visit with sickle cell diagnoses and hence were not
identified in the i2b2 warehouse. The reasons for discrepancies of
the remaining 10 false negatives are illustrated in Figure 3.

Among the 151 children who did not have sickle cell anemia, 138
were identified within the EHR warehouse. Most of these
children (134 out of 138) were correctly classified as not having
sickle cell anemia, demonstrating a specificity of 97.1% (CI, T
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92.7%-99.2%). The discrepancies for the 4 patients are
described in Figure 3.

The positive and negative predictive values for the SCD genotype
algorithm were 97.9% (CI, 94.8%-99.4%) and 88.7% (CI, 82.6%-
93.3%), respectively, at our institution, wherein cell sickle cell anemia
represents 58% of the population of SCD pediatric patients.

Diagnostics of pain crises encounter algorithm

The algorithm for identifying acute care encounters for pain
also demonstrated a high sensitivity and specificity of 95.1%
(CI, 86.3%-99.0%) and 96.6% (CI, 88.3%-99.6%), respectively.
Table 3 shows the algorithm results vs the chart review as a 2-
by-2 table. There were 2 encounters in the years 2013 and 2014
that were coded as SCD crises, and the patients received IV
morphine. Upon review of individual patient charts, these were
identified as splenic sequestration only and hence classified as
false positive. Of the 3 false negatives, 1 was an encounter during
which the patient had acute chest syndrome and pain crises
but the associated pain crises codes were not present in the
warehouse, and the other 2 were missed because only oral pain
medications were used for pain management.

Discussion

Our results support that the algorithms we created can identify
children with sickle cell anemia within the SCD cohort and identify
vaso-occlussive pain crises encounters with a high degree of
accuracy. The strength of our algorithms lies in 2 areas. First, we
use composite laboratory criteria such as laboratory values (HbS

.80% for identification of patients with sickle cell anemia) and
recommended clinical practices (TCD screens for identification of
children with sickle cell anemia and IV opioid administration for
identification of pain crises) along with standardized ICD codes to
enhance our accuracy. Second, we base our algorithm on common
data elements of the PCORnet common data model, which enables
sites to adopt and implement the algorithm at their site using the
SAS codes that we provide in the supplemental Data (Programs
1 and 2). In the past, the scientific community has been reluctant
to use EHR and administrative data for research purposes given
the limitations and inaccuracies of these data, which are primarily
collected for billing purposes.6,7 Our results, however, provide the
foundation needed to use the EHR data to develop an LHS for SCD.

The advancement of EHR platforms and the application of
appropriate algorithms make the EHR an appealing data source
for an LHS for quality improvement and research purposes. An LHS
uses information from multiple sources of patient data to generate
evidence in near real time and feeds it back to the clinical practice
forming a continuous cycle of data to support new evidence
generation and up-to-date clinical care.8-10 An exemplary prototype
of such an LHS is ImproveCareNow, an inflammatory bowel
disease–specific LHS.11,12 The network is a collaborative effort
across 107 care centers that has resulted in quality improvement
initiatives leading to better outcomes for patients with inflammatory
bowel disease and has demonstrated continual improvement over
time toward reaching the targeted and recommended population
level outcomes. SCD, which is a rare disorder affecting an
underserved population of the country, can also benefit from such

Patients in local SCD registry:
358*

343 patients identified in i2b2
warehouse

24 not identified in i2b2
334 identified in i2b2
and are in local SCD

registry

2 - chart review confirms
SCD, deceased

7 – chart review confirms
no SCD

360 (24+334+2) sickle cell
disease patients, as per gold

standards

*These exclude patients who were older than 18 years of age on 12.31.2016 or had encounters only in
year 2017. SCD: Sickle Cell Disease

Figure 2. Cohort of patients with SCD in the local registry and those identified in the i2b2 warehouse.

Table 2. Two-by-two table for validating the SCD genotype algorithm

Genotype based on the algorithm

Genotype based on registry/chart reviews

Do not have SCDHbSS/HbSb0 thalassemia Other sickle cell genotype

HbSS/HbSb0 thalassemia 188 4 0

Other sickle cell genotype 10 134 7

Patients with SCD not identified by the algorithm 11 13 —

Total number of SCD patients 209 151 —
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a network by improving adherence to recommended care, reducing
unnecessary variation in care, improving health outcomes, and
communicating and sharing implementation strategies and out-
comes across institutions, along with supporting research. For
example, an LHS for SCD that includes accurate identification of
genotype of children with SCD can help define a cohort of patients
with sickle cell anemia and their adherence to hydroxyurea, annual
TCD screening, and surveillance magnetic resonance imaging brain
scans, which will ultimately aid in improving patient care and health
outcomes. Likewise, knowledge of acute care encounters for
painful vaso-occlusive crises among children with SCD is essential
to understand the burden of the disease and long-term effective-
ness of care. Work being done to advance the use of EHRs and
incorporate additional data such as electronic patient-reported
outcomes offer opportunities to include patient’s perspectives such
as quality of life during a health encounter. This would help us

achieve the patient-centered care goals and improve care as
informed by patient-reported outcomes in an LHS.13

Although our work focuses on using EHR information for a rare
disorder, it is extendible to other chronic diseases. Moreover, an
LHS that incorporated multiple diseases would allow us to study
and compare multiple chronic diseases and their impact on patient
outcomes. The importance of computational algorithms is being
increasingly recognized across disciplines in the medical field.14-18

A few examples in the pediatric field are computable phenotype to
identify cohorts of patients with pulmonary hypertension (positive
predictive value, 85%),14 autism spectrum disorder (positive
predictive value, 86%),15 and also certain outcomes like neurolog-
ical and critical care events in children with traumatic brain injury.16

These algorithms support the use of health information technology
and big data to form an LHS, which many have advocated for
recently.19,20 However, there are no algorithms to identify children
with sickle cell anemia. Operationalization of an LHS using these
algorithms provides a strong foundation for quality improvement and
comparative effectiveness research.

Prior studies using large data have been done with administrative
data sets21-23 and cannot identify patients’ genotype. Moreover, it is
well known that within administrative data sets and within the EHR,
many patients with SCD have multiple genotypes coded across
admissions and are often miscoded.22,24 This supports the need for
the development of standard methods to accurately identify a
patients’ genotype within existing data. There are ongoing efforts to
create standard measures to collect data for SCD research.25 This

343 sickle cell disease patients identified by the algorithm during years 2013 - 2016

192 identified as SCA
(SS, S0 thalassemia)

188 True
Positives

4 do not
have SCA

1 has hereditary persistence of fetal
hemoglobin – used HbSS codes for
many encounters

2 had newborn screens and were
considered as SCA patients for
multiple encounters, subsequently
confirmed to be other genotype

1 has Hb SC type disease, multiple
ED encounters for crisis , which
were coded as Hb SS with crisis

151 identified as
Other (SC, other, +
thalassemia , NOS)

3 patients had Hb S0 thalassemia and no TCD or
labs reflecting HbS>80%

5 patients had encounters using ICD10 codes only
and no crises – and hence no specific codes for
SCA.

1 patient with Hb SS disease had encounters using
ICD10 codes only and one crises encounter, was
defined genotype as ‘other’ sickle cell disease

1 patient had bone marrow transplant in 2008
and has no specific sickle cell codes in health
records 

7 do not
have SCD

134 correctly
classified 

10 have
SCA

Figure 3. Classification of genotype of patients with SCD.

Table 3. Two-by-two table for validating the pain crises algorithm

Type of acute care encounters

based on the algorithm

Type of acute care encounters

based on chart review

For pain crises Not for pain crises Row total

Pain crises 58 2 60

No pain crises 3 57 60

Column total 61 59 120

Based on random samples of encounters selected for validation purposes.
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project adds to the field by creating standard computational algorithms
for using preexisting data to identify genotypes and acute pain
encounters in patients with SCD. These algorithms make it possible to
leverage the power of big data that stakeholders can use to
understand the natural history and epidemiology of this rare disorder.

This study has a few limitations. Though the algorithms demonstrated
high sensitivity and specificity at our site, these have not been tested
at other institutions. However, we expect the algorithms to perform
similarly given the composite criteria we incorporate to improve
accuracy. These criteria include HbS/HbA levels and receipt of TCD
procedures that help ensure a high sensitivity for identification of
specific severe genotypes of SCD. Finally, we included administration
of IV opioid along with pain and crises codes to capture vaso-occlusive
pain encounters to improve errors from using ICD codes alone.We did
not include codes for splenic sequestration to be specific to pain
encounters which might be considered as misses by some experts in
SCD. Future work involves the use natural language processing to
extract information from physician’s notes to improve our algorithm and
extend to other aspects of SCD such as results of imaging studies.

In conclusion, our study demonstrates accurate identification of
patients with HbSS and HbSb0 thalassemia and acute care
encounters for pain using composite algorithms within an EHR

warehouse. To facilitate dissemination of our work, we provide
SAS codes that map our algorithms to the PCORnet common
data model. These computational algorithms provide the neces-
sary backbone to develop an LHS for SCD that incorporates EHR
data from multiple institutions.
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