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Key Points

•HCMV latency modu-
lates host CD341 cells
in favoring HIV-1
infection.

• Latent HCMV upregu-
lates HIV entry cor-
eceptors and
downregulates HIV re-
striction factors in
CD341 cells.

Individuals who have been preinfected by human cytomegalovirus (HCMV) are more prone

to AIDS disease progression after subsequent HIV-1 infection but the underlying mechanism

remains elusive. HCMV is a ubiquitous DNA virus that commonly establishes lifelong latent

infection in CD341 progenitor cells, where latency-specific HCMV genes may modulate host

restriction to HIV-1 infection. To test this hypothesis, we studied progenitor cells that are

known to resist replicative HIV-1 infection because of the intrinsic expression of host

restriction factors. Interestingly, in primary CD341 cells undergoing latent HCMV infection,

an enhanced level of HIV-1 proviral DNA and replication was observed as measured by

digital polymerase chain reaction, quantitative polymerase chain reaction, and Gag

expression, and confirmed using dual-reporter pseudovirus encoding X4- or R5-tropic

envelope and T-cell transfer. This phenomenon may be partially explained by the

upregulation of HIV-1 entry coreceptors, including chemokine receptors CXCR4 and CCR5,

but not of the primary receptor CD4. Furthermore, latent HCMV infection downregulated

the expression of HIV-1 restriction factors SAMHD1, APOBEC3G, tetherin, and Mx2 in CD341

progenitor cells, which may confer to enhanced HIV-1 infection. However, this enhancement

was abrogated when ultraviolet-inactivated HCMV was used for comparison, suggesting

that expression of latent HCMV genes is essential for this effect. Importantly, HCMV gB and

HIV-1 p24 can be detected in the same cell by immunofluorescence and flow cytometry;

therefore, the establishment of HCMV latency in CD341 cells likely leads to host cell gene

modulation that favors HIV-1 infection.

Introduction

Human cytomegalovirus (HCMV) is a ubiquitous DNA virus that is prevalent in 50% to 100% of human
populations. It establishes a natural lifelong latent infection in CD341 hematopoietic progenitor cells,
where it remains asymptomatic in the immunocompetent host. Latent HCMV infection is defined by (1) the
absence of productive or lytic infection gene expression, (2) no new infectious virus being produced, (3)
latency-associated gene expression, and (4) being capable of reactivation to revert to productive infection.
During latency, HCMV is quiescent, with limited gene expression of a unique subset of;30 viral genes,1,2

in contrast to ;200 genes being expressed in a cascade during productive infection. These latency-
associated genes include UL111.5A, LUNA, and UL138 and can regulate host cell responses, such as
downregulating major histocompatibility complex (MHC) class II molecules, while inducing host interleukin-
10 (IL-10), chemokine (C-C motif) ligand 8 (CCL8), and the multidrug resistance-associated protein-1
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(MRP1).3-8 These HCMV latent genes are important for facilitat-
ing establishment/maintenance of latency in which host cell mech-
anisms are modulated. However, only few latent genes have
known functions.

Recent studies showed that infection of CD341 progenitor cells by
HIV-1 may serve as a latent reservoir.9,10 Latent HIV-1 exists in the
proviral state in multiple hematopoietic progenitor cell subsets that
is regulated by NF-kB activation.10 As with other myeloid-lineage
cells, however, CD341 progenitor cells exhibit restriction to HIV-1
infection11; thus, it may be difficult for HIV-1 to undergo successful
replication or establish latent infection in these cells. In fact, the
study by Carter et al estimated that 0.4% of CD341 cells harbor
latent HIV-1 in patient’s bone marrow.9 Myeloid-lineage cells resist
HIV-1 replication due to the constitutive high expression of restric-
tion factors, including APOBEC3G, SAMHD1, tetherin, and Mx2.
These factors can act on different stages of HIV-1 replication such
as viral RNA synthesis (APOBEC3G),12-18 reverse transcription
(SAMHD1),19-22 viral release (tetherin),23-26 and integration (Mx2).27

However, HIV-1 and HIV-2 encode different proteins (Vif, Vpx, and
Vpu) to counteract these restriction factors, but whether they are
regulated in CD341 cells has not been studied before.

The interplay between HCMV and HIV-1 in CD341 cells has not been
investigated to date. Previous studies showed that HIV-1–infected
individuals who were HCMV-seropositive progressed faster to
AIDS from an average of 19 months compared with 49.5 months for
HCMV-seronegative individuals.28-30 Although the mechanism
remains elusive, this finding suggests that HCMV infection could
modulate the host in favor for HIV/AIDS. In a human cervical tissue
explant model, HCMV and HIV-1 appears to coinfect macrophages,
although the outcome remains unknown.31,32 Thus, we hypothe-
sized that latent HCMV infection could modulate CD341 progenitor
cells and result in enhanced infection by HIV-1. To test this
hypothesis, we first established a primary CD341 cell culture model
by expanding peripheral blood (PB)-derived CD341 cells. HCMV
can successfully establish latent infection in these cells with no vi-
ral release, but is capable of reactivation when triggered by cocul-
ture with permissive fibroblasts. Importantly, CD341 cells latently
infected with HCMV had significantly decreased expression of
HIV-1 restriction factors SAMHD1, APOBEC3G, tetherin, and
Mx2, and upregulated HIV-1 coreceptors. As a result, HIV-1
infection of CD341 cells with latent HCMV had increased rep-
lication as detected by real-time quantitative polymerase chain
reaction (qPCR), digital PCR, and HIV Gag p24 protein levels with
both X4- and R5-tropic viruses and dual-reporter pseudoviruses.
On the contrary, HIV-1 infection did not seem to induce HCMV
reactivation in these cells. Taken together, we propose that HCMV
latency can influence HIV-1 pathogenesis in CD341 progenitor
cells.

Materials and methods

Viruses

HCMV strains Towne and Merlin were purchased from ATCC and
propagated as described previously2 in MRC5 human lung fibroblast cell
line (ATCC). HIV-1 live strains NL4-3 (X4-tropic) and JR-FL (R5-tropic)
were propagated in PHA/IL-2 activated healthy human PB mononuclear
cells (PBMCs) as described previously.1 Viral concentrations for HCMV
and live HIV-1 were determined by plaque assay on MRC5 cells and p24
enzyme-linked immunosorbent assay, respectively. HCMV inactivation was
performed by placing 1 mL of virus inoculum in a 6-well plate and exposed

to 20 minutes of ultraviolet (UV) light (30 W, 20-cm distance) in a sterile
tissue culture cabinet.

PB-CD34 cell culture model and viral infection

CD341 cells were isolated using the Diamond CD34 Isolation kit (Miltenyi
Biotec) from PBMCs generated by Ficoll-Paque PREMIUM (GE Healthcare)
density centrifugation of healthy donor buffy coats (Hong Kong Red Cross).
Ethics approval was received from Institutional Review Board of the University
of Hong Kong/Hospital Authority Hong Kong West Cluster (#UW13-476).
Freshly isolated CD341 cells were cultured in StemPro-34 serum-free
medium (GIBCO) supplemented with 25 ng/mL granulocyte-macrophage
colony-stimulating factor (GM-CSF), 100 ng/mL stem cell factor, and 50 ng/mL
IL-3 in 96-well culture plates. Every 3 to 4 days, 50% media change occurred
and cell counts were performed over time. Cells expanded up to 30 days of
culture (named PB-CD34 cells) were used for viral infections. HCMV infection
occurred at multiplicity of infection 5 3 for 3 hours before cells were rigor-
ously washed 3 times with phosphate-buffered saline (PBS) as described
previously.2 Live HIV-1 infection or pseudovirus infection at 50 and 20 ng p24,
respectively, occurred at 23 106 cells/mL in a 24-well plate for 6 hours before
cells were washed 3 times with PBS. After washing, cells were cultured in
StemPro-34 media without cytokines. Plaque assay was performed using
MRC5 cell monolayer at 70% to 80%confluence, where culture supernatants,
infected PB-CD34 cells, or viral inoculum were added for 3 hours before
washed off and replaced with fresh media and monitored for cytopathic effect
(CPE) for ,20 days. The HIV-1 transfer experiment was performed by
coculture of mock or infected PB-CD34 cells at day 5 postinfection
(PI) (washed 3 times with excess PBS) at a ratio of 1:5 to autologous
naı̈ve CD41 T cells, which was negatively isolated by naı̈ve CD4 T-cell
microbeads (Miltenyi Biotec) in RPMI supplemented with 10% fetal
bovine serum without stimulation. Transwell was used to prevent cell–cell
interaction in the same setup. Immunostaining for CD34, CD4, CD25, and
intracellular p24 expression was performed on the cocultured cells at
48 hours PI and analyzed by flow cytometry. Reactivation of infected PB-
CD34 cells was performed by adding GM-CSF (100 ng/mL) and tumor
necrosis factor-a (TNF-a; 2.5 ng/mL) to the culture cells for 14 hours,10

before being assessed by immunofluorescence staining using anti-gB
(Novus Biologicals) and anti-p24 (DAKO) primary antibodies and anti-
mouse immunoglobulin G2a (IgG2a) Alexa Fluor 488 and anti-mouse IgG1
Alexa Fluor 568 (Invitrogen), respectively. Images were acquired using
Carl Zeiss LSM 700 confocal microscope using the 403 oil lens and ZEN
software and analyzed by ImageJ software (http://imagej.nih.gov/ij).

Real-time qPCR analysis

Total RNA was isolated from cells using RNAiso Plus according to the
manufacturer’s instructions (Takara). Reverse transcription of total RNA was
performed using the Primescript Reverse Transcriptase kit with oligo-dT
primers used for gene expression analysis and random hexamers used for
HIV long terminal repeat (LTR) according to the manufacturer’s instructions
(Takara). DNA was extracted from cells using the DNeasy kits (QIAGEN).
RNA and DNA were eluted using Ultrapure DNase/RNase-Free Distilled
Water (Invitrogen) and concentrations determined using Nanodrop 8000
(Thermo Scientific). For complementary DNA (cDNA) analysis by real-time
PCR on the ViiA7 instrument (Life Technologies) using the SYBR Premix Ex
Taq II reagent (Takara), the following primer pairs were used: SAMHD1, 59-
GGATTACTAAAAACCAGGTTTCACAACT-39, 59-GCTCTGCAAATTTCTCT
GGCAG-39; APOBEC3G, 59- GGTCAGAGGACGGCATGAGA-39, 59- GCAG
GACCCAGGTGTCATTG-39; tetherin, 59-CTGCAACCACACTGTGATG-39, 59-
ACGCGTCCTGAAGCTTATG-39; Mx2, 59-CAGCCACCACCAGGAAACA-39,
59-TTCTGCTCGTACTGGCTGTACAG-39; LTR, 59-GCCTCAATAAAGCT
TGCCTTGA-39, 59-TCCACACTgACTAAAAgggTCTgA-39; UL138, 59-GGTT
CATCGTCTTCGTCGTC-39, 59-CACGGGTTTCAACAGATCG-39; UL111.5A,
59-CCCGACACGCGGAAAA-39, 59-TTCATCGAGTAAAACCTACGTTGGT-
39; LUNA, 59-GAGCCTTGACCACTTGGTAC-39, 59-GGAAAACAC
GCGGGGGA-39, interferon-a4 (IFN-a4), 59-GAAGAGACTCCCCTG
ATGAATGT-39, 59-GCACAGGTATACACCAAGCTTCTTC-39; IFN-b,
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59-AGCTGAAGCAGTTCCAGAAG-39, 59-AGTCTCATTCCAGCCAGTGC-39;
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 59-ACAGTCCATGC
CATCACTGCC-39, 59-GCCTGCTTCACCACCTTCTTG-39; UL54, 59-GCACC
GAGACGCGCACCGAA-39, 59-CAGCCTCTACCCTTCCATCA-39; UL55, 59-
GTAGCTGGCATTGCGATTGGT-39, 59-TCCAACACCCACAGTACCCGT-39;
UL86, 59-CACGGTCCCGGTTTAGCA-39, 59-CGTAACGTGGACCTGAC
GTTT-39; UL99, 59-TTCACAACGTCCACCCACC-39, 59-GTGTCCCATTC
CCGACTCG-39; US3, 59-ACCGTGGATATGGTGGACAT-39, 59-AACAG
CAGACCCCAATTGTC-39. Relative expression was calculated by normal-
ization to GAPDH and by DDCT method. For HIV-1 DNA analysis, real-time
PCR using TaqMan Universal PCR Master Mix (Life Technologies) with
specific probes and primers was performed for genes HIV-1 p17 and
CCR5 as reported.33 Cell numbers were calculated by determining CCR5
copies using a CCR5-encoding plasmid standard, then divided by 2 (2
DNA copies of CCR5 per cell). Late reverse transcription (RT) and 2-LTR
circle copies determination was performed by TaqMan qPCR as
described.34

Digital PCR

DNA copy numbers for HCMV were performed for UL55 and UL123exon4
genes according to a previous study.35 The instrument QuantStudio 3D
Digital PCR system (Life Technologies) was used. Briefly, PCR reactions
with templates were partitioned into chips with 20 000 wells and positive
signals were assessed by a scanner. Analysis was performed using the
QuantStudio 3D AnalysisSuite Cloud Software (Life Technologies) to
calculate the number of copies from known cell numbers based on CCR5
copy number determination.

RT-PCR

Total RNA was extracted from mock or HCMV-infected PB-CD34 cells at
day 5 PI; 0.5 mg of total RNA was reverse transcribed using oligo-dT primers
and Primescript Reverse Transcriptase kit in a 20 mL reaction (Takara Inc).
A total of 2 mL of cDNA was used as template for PCR thermal cycling in a
50-mL reaction with CD4, US28, and GAPDH primers as described
elsewhere.36,37

Flow cytometry

The following antibodies were used for immunostaining for phenotypic
analysis using the FACSCalibur or Aria III instruments (BD Biosci-
ences): anti-CD34- phycoerythrin (PE; Miltenyi Biotec); anti-CD38-PE
(Biolegend), anti-CD45RA-PE/Cy7 (Biolegend), anti-CD123-PerCP/
Cy5.5 (Biolegend), anti-CD4-PerCP/Cy5.5 (eBioscience), anti-HLA-DR-
PE/Cy7 (eBioscience), anti-HLA-DR-FITC (Biolegend), anti-HLA-A,B,C-
Pacific Blue (Biolegend), anti-CD80-APC (Biolegend), anti-CD86-PerCP/
Cy5.5 (Biolegend), anti-CD11c-fluorescein isothiocyanate (FITC; Biolegend),
anti-p24-FITC (Beckman Coulter), anti-CXCR4-PE/Cy7 (Biolegend), anti-
CCR5-PE (BD Biosciences), and anti-gB (Novus Biologicals) plus anti-
mouse IgG2a Alexa Fluor 647 (Invitrogen). Analysis was performed using
FlowJo software (Tree Star). To assess gB and p24 intercellular staining in PB-
CD34 cells, cells were fixed by fixation/permeabilization buffer (BD Biosci-
ences), and stained with anti-gB and anti-p24 FITC antibodies overnight at 4°C
before secondary antibody anti-mouse IgG2a Alexa Fluor 647 was used for
staining for 1 hour at 4°C, before being analyzed.

Western blotting

PB-CD34 cells were lysed for total protein with denaturing lysis buffer
consisting of 10 mM Tris-HCl (pH 7.5), 200 mM NaCl, 1 mM EDTA, 1 mM
dithiothreitol, 0.5% NP-40, 1 mM phenylmethylsulfonyl fluoride, 10 mg/mL
aprotinin, 10 mg/mL leupeptin, and 1.25 mg/mL pepstatin A. Cells were
lysed on ice for 30 minutes before being centrifuged for 13 000g at 4°C.
Supernatant collected was assessed for total protein concentration using
the BCA kit (Pierce). Equal amounts of protein were loaded onto sodium
dodecyl sulfate-polyacrylamide gel electrophoresis gel, electrophoresed
and transferred to polyvinylidene fluoride membrane (Millipore). Blocking
occurred with PBS/0.05% Tween-20 with 5% blotting grade skim milk (Bio-
Rad) and 0.5% bovine serum albumin. Primary antibodies against SAMHD1
(Novus Biological), APOBEC3G (Sigma-Aldrich), Mx2 (Novus Biologicals),
tetherin (Thermo Scientific), and b-actin (Cell Signaling Technologies)
were used for immunostaining followed by horseradish peroxidase–
conjugated antibodies (Amersham). Protein signals were assessed by
WesternBright ECL horseradish peroxidase substrate (Advansta) and signals
captured by Amersham Hyperfilm ECL (GE Healthcare) after exposure.

Dual-reporter RGH pseudovirus

To construct pseudoviruses, red-green-HIV (RGH) plasmid,38 and plasmids
encoding envelope proteins from X4-tropic HxB2 (ie, X4-RGH) and R5-
tropic JR-FL (ie, R5-RGH) were used to cotransfect 293T cells cultured in
Dulbecco’s modified Eagle medium supplemented with 20% fetal bovine
serum (GIBCO). After 2 days, supernatants were collected and centrifuged
at 4000g for 10 minutes before ultracentrifuged at 20 000g for 1.5 hours at
4°C. Pellets were resuspended before another ultracentrifugation through
underlaid 20% sucrose gradient at 20 000g for 1.5 hours. Virus stock p24
concentration was determined using the RETRO-TEK HIV-1 p24 Antigen
enzyme-linked immunosorbent assay kit (ZeptoMetrix). Testing of pseudovirus
was performed on Jurkat cells and fluorescence signals were acquired using
the Carl Zeiss LSM 700 confocal microscope and images analyzed by ImageJ.

Statistics

All statistical analyses were performed using a paired 2-tailed Student t test
to calculate P values. P , .05 was considered statistically significant. Data
are presented as mean 6 standard error of the mean (SEM) of at least
4 independent experiments unless indicated in the figure legends.

Results

Peripheral CD341 cells can be expanded in vitro to

enrich progenitor cells

To determine if PB CD341 progenitor can support HCMV latency,
we first isolated CD341 cells from healthy human PBMCs for
characterization. Typically, 0.56 0.143 106 CD341 cells could be
isolated from 2 3 108 PBMCs with a purity .70% (supplemental
Figure 1A-B). To further determine CD341 subsets in PB, we
adapted the hematopoiesis model by Dick’s group to examine cell
surface markers by flow cytometry.39 Heterogeneous CD341 pro-
genitor subpopulations are found in PBMCs, where a majority is
common myeloid progenitors (26.9%; CD341CD381CD45RA2

CD1231), followed by hematopoietic stem cells (HSCs 20.5%;

Figure 1. PB-CD34 cell culture model for the establishment of HCMV latent infection. (A) CD341 cells isolated from healthy PBMCs were cultured for up to 30 days

and the phenotype of cell subsets were assessed by flow cytometry over time (n5 7). (B) Digital PCR analysis of HCMVUL55 and UL123ex4 viral genes for DNA copy number from known

cell inputs determined by CCR5 qPCR from mock or HCMV strain Towne- or Merlin-infected PB-CD34 cells in a time course experiment (n $ 3). (C) Real-time qPCR analysis (log10)

of latency-associated transcripts UL111.5A, LUNA, and UL138 at day 5 PI from mock- or HCMV-infected PB-CD34 cells (n5 6) or productive infection genes UL54, UL55, UL86, UL99,

and US3 (n5 4) (D). MRC5 infection served as positive control (n5 3). Data showmean6SEM. *P, .05, **P, .01, ***P, .001. (E) Plaque assay of mock or HCMV-infected PB-CD34

cells, or supernatant from infected cultures, was applied to fibroblast monolayers and observed for CPE over time. Representative bright field microscope images are shown. Original

magnification 340, except rightmost panels (expanded insets) 3100. CMP, common myeloid progenitor; MEP, megakaryocyte-erythrocyte progenitor; MLP, multilymphoid progenitor.

24 JANUARY 2017 x VOLUME 1, NUMBER 5 LATENT HCMV FAVORS HIV-1 INFECTION OF CD341 CELLS 309

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/1/5/306/878124/advances000638.pdf by guest on 02 June 2024



CD341CD382CD45RA2) and granulocyte-monocyte progenitors
(GMPs 13.9%; CD341CD381CD45RA1CD1231), with lower
frequency of multilymphoid progenitors (28.7%; CD341CD382

CD45RA1) and megakaryocyte-erythrocyte progenitors (6.6%;
CD341CD381CD45RA2CD1232) (supplemental Figure 1B). More-
over, in vitro culture of CD341 cells using cytokine-conditioned media
(GM-CSF, stem cell factor, and IL-3) can improve cell numbers, colony
formation, purity, and proportion of HSCs (supplemental Figure 1A,
C).40 After 30 days of culture, the purity of CD341 cells increased to
93.5% and cell numbers expanded ;sixfold (supplemental
Figure 1A), with the phenotype of the cells reverted to mainly HSCs
(average 66.4% of CD341 cells, n 5 6), whereas other subsets
diminished over time (Figure 1A; supplemental Figure 1B).

Establishment of HCMV latent infection in PB-derived

CD341 cells

To determine if latent HCMV infection can be established in
PB-CD34 cells, infection at multiplicity of infection5 3 using HCMV
strain Towne was performed as previously described.1 By 5 days PI,
total DNA was harvested to quantify the number of viral DNA copies
found in these cells using digital PCR with 2 sets of HCMV-specific
primers for UL55 and UL123exon4.37 To accurately determine the
number of cells input, genomic DNA copy was quantified using
CCR5 gene (because 2 copies exist in 1 cell).35 Combining the
HCMV gene and CCR5 data, in a time course experiment, ;15
copies of HCMV DNA could be detected per infected PB-CD34
cell at days 1, 3, 5, 7, and 14 PI (Figure 1B; supplemental Figure 2).
This level of infection is consistent to other in vitro latent HCMV
CD341 cell infection models.1,41 Note that HCMV DNA was not
detected in mock infection. To determine the state of HCMV
infection in PB-CD34 cells, we examined if HCMV latency-
associated genes are expressed, including UL111.5A, LUNA, and
UL138.3,5,6 qPCR was performed on PB-CD34 cells infected with
mock, HCMV strain Towne, or the clinical isolate Merlin for 5 days
(Figure 1C). Consistent with previous findings, we found that both
HCMV strains express UL111.5A and LUNA significantly in PB-
CD34 cells. Because UL138 gene is encoded by clinical isolates,
only Merlin infection resulted in its expression (Figure 1C). In contrast,
none of the lytic genes (UL54, UL55, UL86, UL99, US3) showed
significant expression compared with productively infected MRC5
cells (Figure 1D). To verify if any HCMV productive infection occurred
in these cells, PB-CD34 culture supernatants collected at day 5 PI
were added to permissive human fibroblasts. However, no plaque
formation was observed after .10 days (Figure 1E). On the other
hand, infected PB-CD34 cells cocultured with fibroblast monolayers
resulted in plaque formation by day 7, indicative of reactivation
(Figure 1E, arrows). In summary, HCMV strains Towne andMerlin can
establish latency with similar characteristics in PB-CD34 cells.

HCMV latent infection could modulate human fetal liver-derived
CD341 cell immune molecules4,42; therefore, we examined cell
surface expression of HLA-DR, MHC class I, CD80, CD83, and
CD86 by flow cytometry following mock- or Merlin-infected PB-
CD34 cells. Consistent to previous reports,4,43 HLA-DR expression
was downmodulated to the level of uninfected cells (supplemental
Figure 3), whereas MHC class I molecules and the costimulatory
molecules CD80 and CD83 (but not CD86) were significantly
upregulated (supplemental Figure 3). Thus, HCMV can establish
latent infection in PB-CD34 cells and appears to modulate immune
molecules.42,44

HCMV latently infected PB-CD34 cells are more

susceptible to HIV-1 infection

Because AIDS progresses faster in HCMV-seropositive individuals,
we next examined if latently infected PB-CD34 cells can favor HIV-1
infection. HCMV or mock infection of PB-CD34 cells at day 5 PI
were infected by HIV-1NL4-3 (X4-tropic; X4-HIV). Three days after
HIV-1 infection, DNA was extracted for digital PCR (for HIV-1 p17)
and qPCR (for CCR5) analysis. As shown in Figure 2A, HIV-1 DNA
was not detected in mock- and HCMV-infected cells, but direct
HIV-1 infection resulted in approximately 50 copies being detected
in 500 cells (ie, 10% infection). In contrast, HIV-1 infection of
PB-CD34 cells harboring latent HCMV resulted in ;threefold
increase in proviral DNA copies (ie, 26% infection; Figure 2A). In
addition, there was a higher level of intracellular p24 staining
among CD341 cells in HIV-1 infection with latent HCMV compared
with mock infection (Figure 2B). Similarly, a higher level of LTR
expression was observed with HIV-1 infection of HCMV latently
infected PB-CD34 cells than infection of mock CD341 cells that
increased over time in a time course experiment (Figure 2C). To
determine if there is a discrepancy between X4- or R5-tropic HIV-1,
we next infected mock or latent HCMV PB-CD34 cells at day 5 PI
with HIV-1NL4-3 and HIV-1JR-FL (R5-tropic; R5-HIV) for 2 days to
assess integrated DNA and found increased copy numbers in the
latter (Figure 2D).

Success of HIV-1 infection and integration is accompanied by a low
level of late RT products and 2-LTR circles, which are otherwise
characteristic of abortive infection.36,45 Using qPCR, analysis of late
RT products found a significant decrease with X4-HIV infection but
not R5-HIV, despite the presence of HCMV (Figure 2E). On the
other hand, 2-LTR circles appeared to be higher for R5-HIV
compared with X4-HIV infection of PB-CD34 cells and were not
affected by latent HCMV (Figure 2F). Together, these results
indicate that both X4-HIV and R5-HIV could successfully infect PB-
CD34 cells that and latent HCMV could support an increased level
of HIV-1 infection. Finally, to determine if HIV-1 infection could
reactivate latent HCMV, we examined supernatants from HCMV/
HIV-1–infected PB-CD34 cells up to 20 days of culture and no CPE
was observed in the plaque assay (data not shown). In addition,
HCMV DNA copy number following X4- or R5-HIV infection had no
significant increase, verifying that HCMV remains latent in PB-
CD34 cells despite HIV-1 (Figure 2G).

To further illustrate that PB-CD34 cells can support HIV-1 infection,
we made use of the dual-reporter construct RGH.34 RGH differen-
tiates between silent latent infection and active infection based on
Gag-enhanced green fluorescence protein (eGFP; green) and
Nef-mCherry (red) fluorescence: early eGFP indicates active infec-
tion, mCherry indicates latent infection, and dual positive of both
signals in 1 cell depicts de novo Gag expression and integrated latent
virus (Figure 3A). Using this tool, pseudoviruses with X4-tropic HxB2
(X4-RGH) and R5-tropic JR-FL (R5-RGH) envelopes were gener-
ated. The infectious ability of the RGH pseudovirus (inoculum 20 ng
p24) was first tested in Jurkat cells. As shown in Figure 3B, eGFP
and mCherry signals can be detected by day 2 PI using X4-RGH,
and some cells have dual signals. Similar results were obtained
for R5-RGH (data not shown). Next, mock or HCMV-infected
PB-CD34 cells at day 5 PI were infected with X4- or R5-RGH
pseudoviruses. After 2 days, PB-CD34 cells infected with RGH
viruses had mainly red signals in cells without HCMV,
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suggesting that latent infections were established by the
pseudovirus, albeit a low level of subsequent replication.
Consistently, latent HCMV in these cells resulted in significantly
higher active infection (yellow) for both X4- and R5-RGH,
whereas some cells still remained latent (Figure 3B-C). However,
for R5-RGH, a slight but significant increase in active infection
was observed and most cells still retained HIV-1 latency
(Figure 3B-C). Together, these results further demonstrate that
HCMV latent infection in CD341 cells led to an increased
permissiveness for HIV-1 infection.

HCMV/HIV-1 coinfection and differentiation of

PB-CD34 cells

Because these data show that latent HCMV exists in a majority of PB-
CD34 cells and that ;10% can harbor HIV-1 proviral DNA, we next
sought to demonstrate that coinfection of the same cell exists. By
immunofluorescence and confocal microscopy, HCMV gB and HIV-1
p24 proteins can be detected in the same cell following HCMV/HIV-1
infection of PB-CD34 cells and reactivation by GM-CSF/TNF-a
(Figure 4A). Furthermore, intracellular flow cytometry staining
revealed that approximately 15.6 6 4.4% of PB-CD34 cells are
coinfected by the 2 viruses and that HIV-1 preferably infected those
cells with preexisting latent HCMV (Figure 4B; supplemental
Figure 4). In addition, HCMV appears to influence the differentiation
state of the cells. Compared with mock, the GMP subset was
higher in latent HCMV-infected PB-CD34 cells (supplemental

Figure 5). Furthermore, HCMV/HIV-1 coinfected cultures retained
a high proportion of HSC similar to mock or HIV-1 alone, whereas
HCMV cultures had lower HSC and higher GMP subsets (supple-
mental Figure 6). Also, by lineage staining over the course of
experiment, HCMV latent infection alone does indeed induce
differentiation; there was an increase in lin1 cells that was otherwise
reverted after HIV-1 infection (supplemental Figure 7).

Latent HCMV enhances HIV-1 transmission between

infected PB-CD34 cells and autologous CD41 T cells

To determine if HIV-1–infected PB-CD34 cells can transmit virus to
permissive CD41 T cells, infected PB-CD34 cells were cocultured
with negatively isolated autologous naı̈ve CD41 T cells in a 1:5 ratio as
previously described.4 Forty-eight hours after coculture, cells were
analyzed for intracellular p24 signals on CD342CD41 cells
comparing between CD251 and CD252 subpopulations
(Figure 4C). As shown in Figure 4C, p24 signals were only found in
those CD41 T cells that express the activation marker CD25.
Compared with mock, HCMV-infected or HCMV/HIV-1–infected PB-
CD34 cell cocultures, HIV-1–infected PB-CD34 cells induced higher
naı̈ve CD41 T-cell activation indicated by upregulation of CD25
expression (Figure 4C). However, HCMV/HIV-1 coculture resulted
in an significantly increased level of p24 among the CD41CD251

T cells compared with HIV-1 (Figure 4C). Transwell showed that
cell–cell interaction is required for viral transfer for coinfected cells
to CD41 T cells (Figure 4C).
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Latent HCMV upregulates HIV coreceptors expressed

on PB-CD34 cells

Previous studies have indicated that CD341 progenitor cells express
both CXCR4 and CCR59,46,47; hence, we next examined if latent
HCMV infection of PB-CD34 cells alters HIV receptors expression,
which may allow increased infection by HIV-1. By flow cytometry, there
was an increase in expression of both CXCR4 and CCR5 on the cell
surface in 2 independent experiments at day 5 PI when compared with
HCMV-infected and mock PB-CD34 cells (Figure 5A). No significant
surface expression of CD4 was found by flow cytometry (Figure 5B);
however, RT-PCR using 2 sets of primers detected CD4 gene expres-
sion in PB-CD34 cells that was not affected by latent HCMV, nor was
the internal control GAPDHaltered (Figure 5C).38 Interestingly, the virally
encoded chemokine receptor US28 gene was found to be expressed
in HCMV-infected PB-CD34 cells, which is consistent with previous
findings using other latent CD341 models and further validates that
HCMV established latency.1,2,48 US28 was reported to be a possible
cofactor for HIV-1 entry.49 Blocking of CD4 or coreceptors, however, did
not completely abolish HIV-1 infection on PB-CD34 cells with or without
latentHCMV (supplemental Figure 8), which probably suggests that entry
receptor alone is not solely responsible for HIV-1 infection of these cells.

HIV-1 restriction factors are downregulated by HCMV

latent infection in PB-CD34 cells

Myeloid-lineage cells are less permissive to HIV-1 infection and
replication because of their high constitutive expression of HIV-1

restriction factors, including SAMHD1, Mx2, tetherin, APOBEC3G,
and APOBEC3A.50 Interestingly, the precursors of monocytes or
macrophages, which are CD341 myeloid progenitor cells, restrict HIV-
1 replication and could in turn induce the virus into latency.9,10 It remains
unclear whether HCMV latent infection would affect the expression of
HIV-1 restriction factors in CD341 cells. Therefore, to examine this,
SAMHD1, APOBEC3G, Mx2, and tetherin gene expression was
determined by qPCR in a time course experiment in PB-CD34
cells. Compared with mock-infected cells, HCMV infection led to
the significant decrease of these restriction factors from day 1 PI and
remained low through day 14 PI (Figure 6A). The downregulation of
these proteins was confirmed by western blotting, in which the
proteins were reduced upon HCMV latent infection in PB-CD34 cells
at day 5 PI (Figure 6B).

Because a unique subset of viral genes facilitates HCMV latency,1,2 we
next investigated if the downregulation of HIV-1 restriction factors is
dependent on de novo HCMV protein expression. HCMV strain Merlin
was inactivated by UV exposure before infecting PB-CD34 cells for
5 days (Figure 6C)1 with live virus and mock infection conducted in
parallel. UV-inactivated Merlin did not downregulate HIV-1 restriction
factors, suggesting that de novo synthesis of HCMV latent gene
products is likely responsible for this phenomenon. As a control, b-actin
was not affected by live or UV-inactivated virus infections. Further, to
illustrate if soluble factors can lead to the downregulation of HIV-1
restriction factors, supernatants from mock or HCMV-infected PB-
CD34 cultures were applied to fresh PB-CD34 cells for 5 days, but no
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difference was found (Figure 6D), suggesting that direct infection may
be required for such effect.

Discussion

HIV/AIDS remains a devastating human disease without effective
cure and poses a challenge for eradication despite the success of
antiretroviral therapy. One of the largest hurdles to cure HIV-1 is the
clearance of latent reservoirs that exist in different cell types and in
different tissue compartments. Apart from memory CD41 T cells,51

several studies have proposed that CD34 hematopoietic progenitor
cells could be another HIV-1 latent reservoir.9,10,52 Although still
controversial, the presence of HIV-1 restriction factors and innate
immune response could affect the efficiency of HIV-1 infection into
these cells. Naturally, it becomes complicated when the ubiquitous
HCMV establishes latency in CD341 progenitor cells.1,2,4,41,53 Al-
though HCMV/HIV-1 coinfected individuals had faster progression
toward AIDS,28,29 in this study, we delineated the interplay of these
viruses in an in vitro model of CD341 progenitor cells.
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Our model used a cytokine-conditioned long-term culture to
enhance the early HSC subset and total cell numbers (Figure 1A;
supplemental Figure 1). Comparatively, other models with CD341

cells derived from human bone marrow, cord blood, or fetal liver
often have limited cell numbers with heterogeneous subsets.
Also, these sources are more difficult to obtain compared with
PB. Using this PB-CD34 model, the hallmark characteristics of
HCMV latency for 2 HCMV strains (Towne and Merlin) were
shown. The copy number of HCMV genomes and infection rate
is similar to those found in HCMV latent infection of fetal liver-

derived CD341 cells1 (Figure 1B). The lack of increase in DNA copy
number over time and the absence of virus in the supernatant of
infected PB-CD34 cells indicate that no productive infection can be
detected (Figure 1B,E). Critically, the detection of latency-associated
transcripts UL111.5A, LUNA, UL138, and US28 (Figures 1C and
5C); absence of apparent productive genes (Figure 1D); and viral
reactivation by coculture with fibroblasts (Figure 1E), shows that
HCMV can successfully establish latency in the PB-CD34 cell
culture model. The versatility of this model may extend to the study
of clinical blood samples from HIV-1 and different diseases.
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Establishment of HCMV latency is facilitated by a unique subset of
viral genes as others and we have identified previously.1,2 Latent
HCMV genes can downregulate MHC-II molecules; regulate TNFR1

and MRP1, silencing of the MIEP viral gene region; and maintain the
viral genome.54 Our study identified additional functions encoded
by HCMV during latency in CD341 cells. Given that HIV-1 infects
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myeloid cells with difficulties because of intrinsic restriction factors
including SAMHD1, APOBEC3A, APOBEC3G, and Mx2,18,20,27

HCMV could likely affect these genes to favor HIV-1 infection in
CD341 cells. Our data show that latent HCMV can downregulate
HIV restriction factors (Figure 6) and upregulate CXCR4 and CCR5
(Figure 5A,C).47,55 Whether other receptors including DC-SIGN and
mannose receptor that were demonstrated for HIV-1 entry into
astrocytes, dendritic cells, and monocytes,56-58 play a role in CD341

cells or are affected by HCMV remains elusive. Recent reports
demonstrated that type I IFNs could induce HIV-1 restriction factors
in myeloid-lineage cells such as Mx2 and APOBEC3G.27,59-61

HCMV has also been shown to suppress type I IFN responses
during productive infection,51 but whether it occurs during latent
infection in PB-CD34 cells remains to be investigated. If so, this
would also affect interferon-induced innate sensors IFI16, cGAS,
and RIG-I as well as restriction factors that would potentially affect
HIV-1 infection and replication.59-62 Therefore, latent HCMV can
influence HIV-1 infection at multiple levels in CD341 cells.
Following viral entry, our data suggest that HIV-1 can successfully
integrate into the CD341 cell genome. As a consequence, infected
CD341 cells may facilitate cell–cell transfer to CD41 T cells under
certain conditions in vivo; therefore, the role of latent HCMV appears
to enhance HIV-1 infection as well as reactivation. One recent study
has shown that latent HCMV increases the expression of histone
deacetylases and thereby repress lytic replication during latency.63 As
with reactivating HIV-1, treatment with histone deacetylase inhibitor
leads to a transient induction of HCMV lytic genes, suggesting that
similar mechanisms exist for both viruses to remain latent and that cells with
latent HCMV have an increased latency potential advantage for HIV-1.

HIV-1 infection is influenced by the differentiation state of the target
cell. CD41 T cells are infected more efficiently following activation;
infection of other cell types such as CD14-derived osteoclasts are also
affected by their differentiation status.64 However, myeloid cells (such
as dendritic cells and monocytes) that HIV-1 infects poorly because of
viral restriction factors, are often associated with low activation state
and T-cell–stimulating potential.65 Interestingly, our analysis of the
differentiation state of CD341 cells indicates that HIV-1 infection can
maintain the cell in an early progenitor state. Although HCMV latently
infected PB-CD34 cells are more inclined to differentiate to GMP over
time, HIV-1 infection can somehow revert this process (supplemental
Figure 6) within a margin consistent with the frequency of HCMV/
HIV-1 coinfected cells detected in our experiments (;16%). Therefore,
HIV-1 may be advantageous for HCMV latency and further show their
cooperation in the infection of CD341 cells.

In the natural setting, it is estimated that a very small number of myeloid
progenitor cells harbor latent HCMV (0.004 to 0.01%) of total bone
marrow or mobilized mononuclear cells66 and is more prominent in
bone marrow CD341 cells, where the frequency ranges from 0.02% to
0.1%.67 Thus, it may be difficult to identify coinfected cells in natural
specimens, especially in normal PB. It is postulated that nondetectable
HCMV reactivation and replication can lead to new infections in other
cell types and in turn repopulate the latent viral genome in CD341 cells.
Therefore, the immune modulation of CD341 cells by HCMV latency
would clearly offer a relatively “safe” environment for HIV-1 survival,
forming a latent reservoir, and assist in HIV-1/AIDS progression. One
characteristic of chronic HIV-1 infection is persistent immune activa-
tion.68 When this occurs, the elevated level of cytokines may reactivate
HCMV from CD341 cells and lead to infections in other cell types or
allow HIV-1 to persist or replicate within these cells. Another advantage
for HIV-1 in infection of CD341HSCs is that these cells can pump out
drugs very efficiently,69 so that antiretroviral therapies may not be
effective against HIV-1 latently infected HSCs. Others have found that
plasma viral sequences in HIV-1 patients appear to be distinct from
those in the CD41 T cells,70 which points to a possibility that HIV-1
replication in CD341 cell compartment may be influenced by latent
HCMV and increase the diversity of the resulting viral progeny.
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