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Key Points

• A 19-year-old
ataxia-telangiectasia
patient with T-cell pro-
lymphocytic leukemia
harbored 2 JAK3-
activating hotspot
mutations.

• The patient suffered
toxicities with
chemotherapy, but
demonstrated a clinical
response to novel use
of a JAK3 inhibitor
(tofacitinib).

Introduction

T-cell prolymphocytic leukemia (T-PLL) is an aggressive T-cell leukemia with a mature postthymic
immunophenotype.1,2 T-PLL is rare (,2% of lymphoid leukemias), with a median age at diagnosis of
61 years3; however, it also accounts for nearly 3% of malignancies in patients with ataxia-telangiectasia
(AT), where patients are diagnosed with T-PLL at 20 years and older.4 AT is a rare, autosomal-recessive
disorder associated with progressive cerebellar ataxia, telangiectasias, genomic instability, immunode-
ficiency,4 and cancer predisposition; 10% to 25% of patients develop malignancy, particularly T-cell
neoplasms.4-6 The responsible gene (ATmutation [ATM]), located on chromosome 11q22-23, encodes
a 350-kDa serine-threonine kinase involved in DNA repair and damage response.5 Nonsense ATM
mutations are common in AT, whereas missense mutations are common in sporadic T-PLL.5,7 Although
mechanisms of malignancy in ATM are under exploration, biallelic ATM mutations are frequently
detected in sporadic T-PLL patients8 and monoallelic carriers of the ATMmutation are at risk of cancers,
especially breast cancer.9 With risk of excess toxicities, treating malignancies in AT poses
challenges.4,10 There are no reports of T-PLL treatment in AT to our knowledge. We describe an
adolescent AT patient with T-PLL harboring JAK3mutations, and her response to standard and targeted
therapy.

Case description

A 19-year-old woman with AT presented with a 3-week history of fatigue, anorexia, and 5-kg weight
loss. At baseline, she was cognitively intact but wheelchair-dependent. Her family history included a
maternal history of breast cancer. Physical examination revealed scoliosis, ocular telangiectasias,
diffuse lymphadenopathy (0.5-2 cm), and hepatosplenomegaly. Complete blood count revealed mild
normocytic anemia (hemoglobin, 10.2 g/dL), leukocytosis with lymphocytosis (white blood cell count
[WBC], 18.3 3 109/L; lymphocytes, 5.5 3 109/L), and thrombocytopenia (platelets, 79 3 109/L).
Imaging (ultrasound, computed tomography) revealed bilateral pleural effusions, hepatosplenomegaly,
abdominal lymphadenopathy, and ascites. Left cervical lymph node excisional biopsy showed
complete effacement of the lymphoid architecture by atypical monotonous medium-sized lymphocytes
(Figure 1A). By immunostains, the atypical lymphocytes were CD81 lymphocytes (Figure 1B) positive
for CD3 and TCL1 (a subset) and negative for CD1a, CD4, CD56, CD57, and TdT. Epstein-Barr virus
in situ hybridization was negative. Clonal T-cell receptor gene arrangement was documented. Review
of peripheral blood smears (Figure 1C) and cytospin preparations of the pleural fluid (Figure 1D)
revealed medium-sized lymphocytes with nongranular basophilic cytoplasm, occasional cytoplasmic
blebs, irregular nuclei, and a visible nucleolus. Bone marrow biopsy was packed (.95% cellularity)
with a diffuse interstitial infiltrate of atypical lymphocytes. Chromosomal analysis showed a normal
female karyotype. Flow cytometry revealed atypical lymphocytes (CD1a2, CD21, CD31, CD42,
CD51, CD71, CD81, CD162, CD232, CD252, CD302, CD342, CD521, CD562, and CD572). She
received intrathecal cytarabine (70 mg) during a diagnostic lumbar puncture, which showed no
evidence of leukemia. The final diagnosis was T-PLL associated with AT.
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Methods

She required mechanical ventilation and chest tube placement prior
to treatment with IV alemtuzumab (day 1, 3 mg; day 3, 10 mg; day 5
then 3 times weekly, 30 mg]. St. Jude Children’s Research Hospital
AT supportive care guidelines were followed.10 After 14 days of
alemtuzumab (day A14), she was without supplemental oxygen or
chest tubes. Her peripheral blood lymphocytes were trending down
(Figure 2A). However, bone marrow biopsy day A33 revealed
a packed marrow (.95% cellularity) with diffuse infiltration by
CD81 lymphocytes (Figure 1E-F) and pleural fluid showed leukemic
cells (92% abnormal CD81 lymphocytes by flow cytometry). She

continued alemtuzumab (30 mg 3 times weekly). Pentostatin
(4 mg/m2) was added. Despite pre- and posthydration along with
continuous IV fluids, she developed acute renal failure requiring
hemodialysis (peak creatinine, 2.7 mg/dL; cystatin-C, 3.71 mg/L;
glomerular filtration rate, 21 mL per minute). No further pentostatin
was given. She required mechanical ventilation and bilateral chest
tube placement. Due to her underlying disease and clinical status, it
was felt she would not tolerate alkylators or comparable treatment.
After review of the literature, a JAK3 inhibitor (tofacitinib) was added
(5 mg daily due to renal compromise and concomitant fluconazole,
a strong CYP3A4 inhibitor) to alemtuzumab. Deep sequencing of
the lymph node (results returned after urgent initiation of therapy)
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Figure 1. T-PLL involving lymph node, peripheral blood,

pleural fluid, and bone marrow. Diffuse infiltrate of T-PLL

in the cervical lymph node by morphology (A [original

magnification 3400, hematoxylin and eosin stain]) and CD8

immunostain (B [original magnification 3400]). T-PLL in the

peripheral blood (C [original magnification 31000, Wright-

Giemsa stain]) and pleural fluid (D [original magnification

31000, Wright-Giemsa stain]). Persistent and diffuse involve-

ment of bone marrow by T-PLL status post–4-week treatment

with alemtuzumab by morphology (E [original magnification

340, hematoxylin and eosin stain]) and CD8 immunostain

(F [original magnification 340]). Addition of JAK inhibitor

tofacitinib to alemtuzumab markedly decreased the leukemic

cells in a repeat bone marrow biopsy by morphology (G

[original magnification 340, hematoxylin and eosin stain]) and

CD8 immunostain (H [original magnification 340]).
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revealed 2 activating mutations of JAK3 (A573V, M511I), nonsense
mutation of ATM R457, and missense mutation of vascular
endothelial growth factor receptor-3 (FLT4) G71R; the latter has
not been previously reported in T-PLL, and its functions have not
been characterized.

Two days after starting tofacitinib (day T2), she was extubated and
chest tubes were removed (day T3, day T9). Pleural fluid (day T8)
showed reduced CD81 lymphocytes (0.7% of abnormal CD81

lymphocytes by flow cytometry). Pleural effusions and ascites
reaccumulated on day T23 and tofacitinib was increased to 5 mg
twice daily, with normalized creatinine and fluconazole discon-
tinued. She weaned off supplemental oxygen; day T52 bone
marrow showed reduced cellularity with 10% of CD81 lympho-
cytes (Figure 1G-H). Figure 2 presents a summary of peripheral
counts through treatment.

Results and discussion

The patient was in rehabilitation (on room air) on day T62 when
she developed progressive abdominal pain and subcutaneous
nodules. Peripheral blasts became evident (18%) on day T70,
she resumed supplemental oxygen, and palliative chest tubes
were placed to avoid intubation. On day T72, she completed 16
weeks of alemtuzumab, and her WBC rose to 57 000 (66%
blasts). She was discharged home with hospice on day T75

with a WBC of 171 000 (90% blasts). She died peacefully on
day T77.

Despite responses to chemo/immunotherapy (alemtuzamab11,12

with/without pentostatin,13 hematopoietic cell transplantation,14

fludarabine/mitoxantrone/cyclophosphamide,15 or methylprediniso-
lone16 and other alkylators),17 the median progression-free survival
(8-12 months) and overall survival (20-24 months) in T-PLL remain
dismal.18 Longer survival is seen with hematopoietic cell trans-
plantation; however, 33% to 47% of patients relapse within 36
months and treatment-related mortality is almost as high.3 AT
patients face surplus treatment-related toxicities4 due to underlying
hypersensitivity to DNA-damaging agents. However, AT patients
who achieve a response to cancer treatment see increased
survival.4 Thus, it is crucial to identify approaches to T-PLL in
patients with AT that are tolerable and avoid end-organ complica-
tions in order to optimize quality and quantity of life.

Targeted agents provide precision in therapy that is well suited to
patients at high risk of end-organ complications, but use in these
patients is not widely documented. AT patients with malignancy are
ideally suited to this approach due to their additional risks.
Mutational analysis in sporadic T-PLL (n 5 51) revealed mutations
in ATM (73%), JAK1 (6%), and JAK3 (21%), among which JAK3
mutation is associated with poor prognosis.19 Similarly, whole-
exome sequencing of sporadic T-PLL (n 5 50) detected JAK1
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Figure 2. Trends of peripheral counts through treatment.

Absolute lymphocyte count (A), hemoglobin (B), and platelet

count (C) in the peripheral blood before and after treatment

are shown in the y-axis; x-axis represents timeline in days. The

time points at which alemtuzumab and tofacitinib were added

are indicated by arrows. The time points at which the patient

received red blood cell transfusions for panel B and platelet

transfusions for panel C are indicated by blue arrows.

Hb, hemoglobin; PB, peripheral blood; Plt, platelet.
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(8%) and JAK3 mutations (30%).20 An additional TPLL series
detected JAK3 missense mutations (43%), with M511I and
A573V identified as primary and secondary hotspot-activating
mutations21; M511I led to the most efficient oncokinase with the
highest transforming activities.22 Both mutations were identified
concurrently in our patient. However, findings regarding the lack of
correlation between specific mutations (JAK3) and successful ex
vivo inhibition (tofacitinib) are consistent with the occasional poor
correlation between appropriately targeted therapy and clinical
outcome.23 However, tofacitinib additionally salvaged refractory
T-PLL in 1 elderly patient,24 and 9 T-cell large granular lymphocytic
leukemia patients,25 including 8 with associated rheumatoid arthritis;
tofacitinib is currently US Food and Drug Administration approved
for refractory rheumatoid arthritis. Separating the independent
effects of JAK3 inhibition in this case is challenging; prospective
studies are necessary to evaluate JAK3 inhibition in T-PLL, especially
with combination therapies.

This case identifies a promising response to JAK3 inhibition with
tofacitinib in T-PLL with underlying AT, providing the opportunity for
rehabilitation and meaningful interaction before allowing natural

death to progress from disease. It is conceivable that had a targeted
agent without surplus toxicity been tried earlier in her course, quality
and quantity of life could have been optimized.
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