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Platelets have classically been well recognized for their crucial role in hemostasis; however, it is increas-
ingly evident that platelets are more versatile than originally thought because they possess a large variety of
nonhemostatic immunologic functions as well.1 Crosstalk exists between these 2 major functions as
inflammation influences both coagulation2 and the immune functions of platelets.3 In this report, we will
focus on and advocate for the emerging role of platelet immune functions in a nonhemostatic and
inflammatory setting. This includes the ability of platelets to battle invading pathogens during inflammation
and to communicate with a large variety of effector cells through an array of different mechanisms.

Platelets initiate their antimicrobial host defense by sensing the presence of pathogens or inflammation
through, for example, their multiple immune receptors such as immunoglobulin or complement receptors
and Toll-like receptors (TLRs).4 This enables them to bind and recognize invading pathogens and/or their
derived microbial products. For instance, platelet TLR4 can bind lipopolysaccharide (a bacterial gram-
negative endotoxin) and was shown to induce thrombocytopenia in vivo.5-11 In addition, platelet TLR7
has been suggested to mediate host survival and platelet counts during infection with encephalomyo-
carditis virus in mice, independently of thrombosis.12

Platelets are also able to retain pathogens by harboring viruses, bacteria, or parasites on their plasma
membrane or intracellularly.13-19 Activated platelets were shown to inhibit the growth of the bacterium
Staphylococcus aureus through encapsulating the bacteria and secreting the anti-microbial peptide
b-defensin to promote the formation of neutrophil extracellular traps (NETs).20 Alternatively, bacterial
trapping of methicillin-resistant S aureus and Bacillus cereus has also been shown to occur on hepatic
Kupffer cells through a mechanism dependent on engagement of the platelet adhesion receptor
glycoprotein (GP)1b.21 In addition, during sepsis, platelet TLR4 was shown to activate neutrophils
causing them to release NETs, thereby trapping bacteria in hepatic and pulmonary blood vessels.22

Platelets cannot only detect and retain the pathogens they encounter, they are also able to eliminate
them. An elegant example of this was illustrated in studies showing that activated platelets killed the
intraerythrocytic malarial parasite Plasmodium falciparum14 through a mechanism involving platelet
factor 4 (PF4 or CXCL4) and the erythrocyte Duffy antigen receptor (Fy).23 In another study, it was
demonstrated that platelet TLR2 was required for the formation of platelet–neutrophil aggregates that
enhanced the phagocytosis of periodontopathogens.24 Furthermore, platelets were found to redirect the
course of the blood-borne bacteria Listeria monocytogenes from less immunogenic phagocytes toward
the more immunologically active splenic CD8a1 dendritic cells (DCs) in a GPIb- and complement
C3–dependent manner.25 Taken together, platelets have the ability to increase the clearance rate of
infectious agents and strongly enhance the development of immunity to the infection.

Another way that platelets can actively modulate immune responses is through release of several
immune mediators such as platelet CD40L, which is released into the circulation on platelet activation.
CD40L can trigger T-cell responses following infection with L monocytogenes26,27 and is able to bind to
DCs, thereby impairing DC differentiation, suppressing proinflammatory cytokines, and increasing the
secretion of the anti-inflammatory cytokine interleukin-10 (IL-10).28 Through CD40L, platelets are also
able to stimulate B-cell differentiation and antibody class switching.29,30 Furthermore, platelets have the ability
to secrete a plethora of cytokines and chemokines,4 which not only affects hemostasis and wound repair31

but also various pro- and anti-inflammatory immune responses. For example, the platelet-derived
immunosuppressive cytokine transforming growth factor-b is present at low levels during active immune
thrombocytopenia; however, on successful treatment of immune thrombocytopenia, the levels of transforming
growth factor-b were observed to normalize.32 This correlated with normalized T-regulatory cell numbers and
suppression of the immune response.33 In addition, platelet-derived IL-33 was recently suggested to induce
eosinophilic airway inflammation.34 On the other hand, PF4 was found to be a negative regulator of Th17
differentiation, thereby limiting cardiac allograft rejection in a murine cardiac transplant model.35
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Platelets also release microparticles, which are small extracellular
vesicles (the majority are ;200 nm in diameter) produced via
blebbing and fission of the plasma membrane. Although several cells
can produce microparticles, platelets appear to be highly effective in
their production compared with other cell types.36 Platelet micropar-
ticles express membrane phosphatidylserine37 but express only
modest levels of tissue factor and appear to have a less defined
role in coagulation compared with monocyte-derived microparti-
cles, which express both phosphatidylserine and tissue factor on
their surface.38 Platelet microparticles have been associated with
immunologic conditions such as platelet activation during
inflammation.39,40 For instance, an elevation of platelet microparti-
cles was observed in the blood and synovial fluid of patients with
rheumatoid arthritis.41 Several platelet surface receptors have been
shown to trigger the formation of platelet microparticles such as
GPVI during rheumatoid arthritis,41 TLR4 signaling via lipopolysac-
charide during sepsis,42 and FcgRIIa, which may be targeted by
immune complexes (of bacterial components or influenza viral

epitopes).43,44 The GPVI- and TLR4-mediated signals were also
associated with increased IL-1 levels, illustrating their proinflammatory
effects. Functionally, platelet microparticles can facilitate communi-
cation of platelets with other cells as they can carry a large variety of
substances such as various cytokines or chemokines (eg, IL-1,
RANTES), lipid mediators, enzymes, surface receptors like CD40L,
autoantigens, transcription factors, and respiratory competent
mitochondria, all of which can regulate immune functions.3,39,40,45-48

In addition, anucleate platelets contain significant amounts of RNA
including mRNA, microRNA, ribosomal and transfer RNA, and
antisense RNA (noncoding RNA).49-65 Interestingly, platelets carry
the molecular machinery for mRNA translation into proteins and the
RNAs may also be transferred to target cells such as endothelial
cells via platelet microparticles.49,61-63,65 The interaction between
platelets and endothelial cells is complex and well described in
the literature, particularly in the setting of atherosclerosis, an
inflammatory disease state characterized by immune cell interac-
tions with the vascular wall.29,66
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communication. RA, rheumatoid arthritis.
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Platelets contain 2 different types of major histocompatibility
complex (MHC) class I molecules: plasma-membrane bound or
intracellular.67 The plasma-membrane–bound platelet MHC class I is
denatured as it is adsorbed from the plasma and induces an
immunosuppressive effect on CD81 T cells during, for example, skin
graft rejection.68 On the other hand, the intracellular MHC class I
molecules are intact but are only expressed upon platelet activation
and can activate antigen-specific CD81 T cells, as was demonstrated
in vivo using an experimental mouse model of cerebral malaria.69

In conclusion, platelets have prominent capabilities in antimicrobial host
defense and in regulating the immune functions of a large number of
immune cells through their diverse surface receptors and secretion of
several mediators. They can also traffic their shed platelet micropar-
ticles carrying a heterogeneous immunoregulatory cargo. The immune-
sensing functions of platelets are schematically summarized in
Figure 1. We therefore strongly encourage further research into the
immune-sensing capacity of platelets, which may potentially open up
new therapeutic avenues to explore in various disease settings.
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43. Boilard E, Paré G, Rousseau M, et al. Influenza virus H1N1
activates platelets through FcgRIIA signaling and thrombin
generation. Blood. 2014;123(18):2854-2863.

44. Sun D, Popescu NI, Raisley B, et al. Bacillus anthracis
peptidoglycan activates human platelets through FcgRII and
complement. Blood. 2013;122(4):571-579.

45. Cloutier N, Tan S, Boudreau LH, et al. The exposure of
autoantigens by microparticles underlies the formation of
potent inflammatory components: the microparticle-associated
immune complexes. EMBO Mol Med. 2013;5(2):235-249.

46. Boudreau LH, Duchez AC, Cloutier N, et al. Platelets release
mitochondria serving as substrate for bactericidal group IIA-
secreted phospholipase A2 to promote inflammation. Blood.
2014;124(14):2173-2183.

47. Ray DM, Spinelli SL, Pollock SJ, et al. Peroxisome proliferator-
activated receptor gamma and retinoid X receptor transcription
factors are released from activated human platelets and shed
in microparticles. Thromb Haemost. 2008;99(1):86-95.

48. Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K,
Hunt DF. The platelet microparticle proteome. J Proteome
Res. 2005;4(5):1516-1521.
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