• A CD40/CD40-ligand interaction mediates WM cell–Tregs cross talk.

  • Blocking the CD40/CD40-ligand axis inhibits Treg-mediated immunosuppression and reduces WM cell growth.

Recent investigations have improved our understanding of the molecular aberrations supporting Waldenström macroglobulinemia (WM) biology; however, whether the immune microenvironment contributes to WM pathogenesis remains unanswered. First, we showed how a transgenic murine model of human-like lymphoplasmacytic lymphoma/WM exhibits an increased number of regulatory T cells (Tregs) relative to control mice. These findings were translated into the WM clinical setting, in which the transcriptomic profiling of Tregs derived from patients with WM unveiled a peculiar WM-devoted messenger RNA signature, with significant enrichment for genes related to nuclear factor κB–mediated tumor necrosis factor α signaling, MAPK, and PI3K/AKT, which was paralleled by a different Treg functional phenotype. We demonstrated significantly higher Treg induction, expansion, and proliferation triggered by WM cells, compared with their normal cellular counterpart; with a more profound effect within the context of CXCR4C1013G-mutated WM cells. By investigating the B-cell–to–T-cell cross talk at single-cell level, we identified the CD40/CD40-ligand as a potentially relevant axis that supports WM cell–Tregs interaction. Our findings demonstrate the existence of a Treg-mediated immunosuppressive phenotype in WM, which can be therapeutically reversed by blocking the CD40L/CD40 axis to inhibit WM cell growth.

1.
Gertz
MA
.
Waldenstrom macroglobulinemia: 2021 update on diagnosis, risk stratification, and management
.
Am J Hematol
.
2021
;
96
(
2
):
258
-
269
.
2.
Rajkumar
SV
,
Dispenzieri
A
,
Kyle
RA
.
Monoclonal gammopathy of undetermined significance, Waldenstrom macroglobulinemia, AL amyloidosis, and related plasma cell disorders: diagnosis and treatment
.
Mayo Clin Proc
.
2006
;
81
(
5
):
693
-
703
.
3.
Treon
SP
.
How I treat Waldenstrom macroglobulinemia
.
Blood
.
2015
;
126
(
6
):
721
-
732
.
4.
Treon
SP
,
Cao
Y
,
Xu
L
,
Yang
G
,
Liu
X
,
Hunter
ZR
.
Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia
.
Blood
.
2014
;
123
(
18
):
2791
-
2796
.
5.
Treon
SP
,
Xu
L
,
Hunter
Z
.
MYD88 Mutations and Response to Ibrutinib in Waldenstrom's Macroglobulinemia
.
N Engl J Med
.
2015
;
373
(
6
):
584
-
586
.
6.
Treon
SP
,
Xu
L
,
Yang
G
, et al
.
MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia
.
N Engl J Med
.
2012
;
367
(
9
):
826
-
833
.
7.
Xu
L
,
Hunter
ZR
,
Yang
G
, et al
.
Detection of MYD88 L265P in peripheral blood of patients with Waldenstrom's Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance
.
Leukemia
.
2014
;
28
(
8
):
1698
-
1704
.
8.
Xu
L
,
Hunter
ZR
,
Yang
G
, et al
.
MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction
.
Blood
.
2013
;
121
(
11
):
2051
-
2058
.
9.
Yang
G
,
Zhou
Y
,
Liu
X
, et al
.
A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia
.
Blood
.
2013
;
122
(
7
):
1222
-
1232
.
10.
Roccaro
AM
,
Sacco
A
,
Jimenez
C
, et al
.
C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma
.
Blood
.
2014
;
123
(
26
):
4120
-
4131
.
11.
Kaushal
A
,
Nooka
AK
,
Carr
AR
, et al
.
Aberrant extrafollicular B cells, immune dysfunction, myeloid inflammation, and MyD88-mutant progenitors precede waldenstrom macroglobulinemia
.
Blood Cancer Discov
.
2021
;
2
(
6
):
600
-
615
.
12.
Kawano
Y
,
Zavidij
O
,
Park
J
, et al
.
Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression
.
J Clin Invest
.
2018
;
128
(
6
):
2487
-
2499
.
13.
Curiel
TJ
,
Coukos
G
,
Zou
L
, et al
.
Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival
.
Nat Med
.
2004
;
10
(
9
):
942
-
949
.
14.
Sato
E
,
Olson
SH
,
Ahn
J
, et al
.
Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
51
):
18538
-
18543
.
15.
Ustun
C
,
Miller
JS
,
Munn
DH
,
Weisdorf
DJ
,
Blazar
BR
.
Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation?
.
Blood
.
2011
;
118
(
19
):
5084
-
5095
.
16.
Xu
Y
,
Mou
J
,
Wang
Y
, et al
.
Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway
.
Leukemia
.
2022
;
36
(
2
):
403
-
415
.
17.
Zou
W
.
Regulatory T cells, tumour immunity and immunotherapy
.
Nat Rev Immunol
.
2006
;
6
(
4
):
295
-
307
.
18.
Rodriguez
S
,
Celay
J
,
Goicoechea
I
, et al
.
Preneoplastic somatic mutations including MYD88(L265P) in lymphoplasmacytic lymphoma
.
Sci Adv
.
2022
;
8
(
3
):
eabl4644
.
19.
Ronca
R
,
Ghedini
GC
,
Maccarinelli
F
, et al
.
FGF trapping inhibits multiple myeloma growth through c-Myc degradation-induced mitochondrial oxidative stress
.
Cancer Res
.
2020
;
80
(
11
):
2340
-
2354
.
20.
Roccaro
AM
,
Sacco
A
,
Purschke
WG
, et al
.
SDF-1 inhibition targets the bone marrow niche for cancer therapy
.
Cell Rep
.
2014
;
9
(
1
):
118
-
128
.
21.
Roccaro
AM
,
Mishima
Y
,
Sacco
A
, et al
.
CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal-transition-like transcriptional activation
.
Cell Rep
.
2015
;
12
(
4
):
622
-
635
.
22.
Moschetta
M
,
Mishima
Y
,
Kawano
Y
, et al
.
Targeting vasculogenesis to prevent progression in multiple myeloma
.
Leukemia
.
2016
;
30
(
5
):
1103
-
1115
.
23.
Taiana
E
,
Ronchetti
D
,
Favasuli
V
, et al
.
Long non-coding RNA NEAT1 shows high expression unrelated to molecular features and clinical outcome in multiple myeloma
.
Haematologica
.
2019
;
104
(
2
):
e72
-
e76
.
24.
Ritchie
ME
,
Phipson
B
,
Wu
D
, et al
.
limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
.
2015
;
43
(
7
):
e47
.
25.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
26.
Chaudhry
A
,
Rudra
D
,
Treuting
P
, et al
.
CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner
.
Science
.
2009
;
326
(
5955
):
986
-
991
.
27.
Shevach
EM
.
Mechanisms of foxp3+ T regulatory cell-mediated suppression
.
Immunity
.
2009
;
30
(
5
):
636
-
645
.
28.
Zheng
Y
,
Chaudhry
A
,
Kas
A
, et al
.
Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses
.
Nature
.
2009
;
458
(
7236
):
351
-
356
.
29.
Ha
D
,
Tanaka
A
,
Kibayashi
T
, et al
.
Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
2
):
609
-
618
.
30.
Cao
Y
,
Hunter
ZR
,
Liu
X
, et al
.
CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenstrom macroglobulinaemia cells
.
Br J Haematol
.
2015
;
168
(
5
):
701
-
707
.
31.
Hunter
ZR
,
Xu
L
,
Yang
G
, et al
.
The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis
.
Blood
.
2014
;
123
(
11
):
1637
-
1646
.
32.
Ramazzotti
D
,
Angaroni
F
,
Maspero
D
, et al
.
Variant calling from scRNA-seq data allows the assessment of cellular identity in patient-derived cell lines
.
Nat Commun
.
2022
;
13
(
1
):
2718
.
33.
Chen
J
,
Song
Y
,
Bojadzic
D
, et al
.
Small-molecule inhibitors of the CD40-CD40L costimulatory protein-protein interaction
.
J Med Chem
.
2017
;
60
(
21
):
8906
-
8922
.
34.
Farinha
P
,
Al-Tourah
A
,
Gill
K
,
Klasa
R
,
Connors
JM
,
Gascoyne
RD
.
The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation
.
Blood
.
2010
;
115
(
2
):
289
-
295
.
35.
Cao
X
,
Cai
SF
,
Fehniger
TA
, et al
.
Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance
.
Immunity
.
2007
;
27
(
4
):
635
-
646
.
36.
Jalali
S
,
Price-Troska
T
,
Paludo
J
, et al
.
Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia
.
Blood Adv
.
2018
;
2
(
15
):
1985
-
1997
.
37.
Francisco
LM
,
Salinas
VH
,
Brown
KE
, et al
.
PD-L1 regulates the development, maintenance, and function of induced regulatory T cells
.
J Exp Med
.
2009
;
206
(
13
):
3015
-
3029
.
38.
Tournilhac
O
,
Santos
DD
,
Xu
L
, et al
.
Mast cells in Waldenstrom's macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling
.
Ann Oncol
.
2006
;
17
(
8
):
1275
-
1282
.
You do not currently have access to this content.
Sign in via your Institution