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Abstract:
SRY-related HMG-box gene 11 (SOX11) is a transcription factor overexpressed in mantle cell lymphoma
(MCL), a subset of Burkitt lymphomas (BL) and precursor lymphoid cell neoplasms but is absent in
normal B-cells and other B-cell lymphomas. SOX11 has an oncogenic role in MCL but its contribution
to BL pathogenesis remains uncertain. Here, we observed that the presence of Epstein-Barr virus
(EBV) and SOX11 expression were mutually exclusive in BL. SOX11 expression in EBV- BL was
associated with an IG∷MYC translocation generated by aberrant class switch recombination, while in
EBV-/SOX11- tumors the IG∷MYC translocation was mediated by mistaken somatic hypermutations.
Interestingly, EBV- SOX11 expressing BL showed higher frequency of SMARCA4 and ID3 mutations
compared to EBV-/SOX11- cases. By RNA-sequencing, we identified a SOX11-associated gene expression
profile, with functional annotations showing partial overlap with the SOX11 transcriptional program
of MCL. Contrary to MCL, no differences on cell migration or BCR signaling were found between
SOX11- and SOX11+ BL cells. However, SOX11+ BL showed higher adhesion to VCAM-1 than SOX11- BL cell
lines. Here we demonstrate that EBV- BL comprises two subsets of cases based on SOX11 expression.
The mutual exclusion of SOX11 and EBV, and the association of SOX11 with a specific genetic
landscape suggest a role of SOX11 in the early pathogenesis of BL.
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ABSTRACT 

SRY-related HMG-box gene 11 (SOX11) is a transcription factor overexpressed in 

mantle cell lymphoma (MCL), a subset of Burkitt lymphomas (BL) and precursor 

lymphoid cell neoplasms but is absent in normal B-cells and other B-cell lymphomas. 

SOX11 has an oncogenic role in MCL but its contribution to BL pathogenesis remains 

uncertain. Here, we observed that the presence of Epstein-Barr virus (EBV) and SOX11 

expression were mutually exclusive in BL. SOX11 expression in EBV- BL was 

associated with an IG∷MYC translocation generated by aberrant class switch 

recombination, while in EBV-/SOX11- tumors the IG∷MYC translocation was mediated 

by mistaken somatic hypermutations. Interestingly, EBV- SOX11 expressing BL 

showed higher frequency of SMARCA4 and ID3 mutations compared to EBV-/SOX11- 

cases. By RNA-sequencing, we identified a SOX11-associated gene expression profile, 

with functional annotations showing partial overlap with the SOX11 transcriptional 

program of MCL. Contrary to MCL, no differences on cell migration or BCR signaling 

were found between SOX11- and SOX11+ BL cells. However, SOX11+ BL showed 

higher adhesion to VCAM-1 than SOX11- BL cell lines. Here we demonstrate that 

EBV- BL comprises two subsets of cases based on SOX11 expression. The mutual 

exclusion of SOX11 and EBV, and the association of SOX11 with a specific genetic 

landscape suggest a role of SOX11 in the early pathogenesis of BL. 
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INTRODUCTION 

Burkitt lymphoma (BL) is a highly proliferative B-cell neoplasm that originates 

from germinal center B-cells.
1
 It is the most common B-cell lymphoma in children and 

adolescents but also occurs in adults.
2,3

 Three clinical variants are distinguished: 

endemic BL (eBL), sporadic BL (sBL) and immunodeficiency-related BL. eBL is 

usually positive for Epstein-Barr virus (EBV), occurs mainly in countries of central 

Africa in which malaria is endemic, and presents with jaw or facial bone involvement in 

pediatric patients. Clinically sBL differs from eBL as it involves mostly the abdomen 

(Peyer’s patches), head and neck lymph nodes, and in some cases, bone marrow.
1,4,5

 

Moreover, sBL is less commonly positive for EBV. However, when detected in sBL, 

EBV is more frequent in adult cases.
6,7

  

The genetic hallmark of BL is the MYC rearrangement to one of the 

immunoglobulins (IG) loci, leading to the constitutive overexpression of MYC.
8–10 

MYC 

dysregulation in B-cells is not sufficient for BL development and additional genomic 

changes are required.
11,12

 Interestingly, several studies have revealed important genetic 

and molecular differences depending on the EBV status of BL patients.
13–21  

 

BL is one of the few lymphomas that shows expression of the SRY-related 

HMG-box gene 11 (SOX11).
22–24 

SOX11 expression in BL occurs in 25-55% of tumors 

predominantly in pediatric patients.
7,24,25

 Moreover, SOX11 expression is included in 

the transcriptional molecular signature used to classify BL.
26 

SOX11 expression in MCL 

is characteristic of the conventional molecular subtype (cMCL) with worse outcome 

than the SOX11-negative (SOX11-) leukemic non-nodal MCL subtype (nnMCL).
27

 In 

contrast, no association between SOX11 expression and survival has been found in 

BL.
24

 Several in vitro and in vivo studies have shown the oncogenic role of SOX11 in 
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the pathogenesis of MCL.
28–34

 However, the contribution of SOX11 expression to BL 

pathogenesis remains unknown.  

To understand the relevance of SOX11 in BL, we have investigated the 

relationship of SOX11 expression with different molecular variables in primary tumors 

and evaluated the modulation of gene expression profiles (GEP) and functional changes 

upon SOX11 overexpression and knockout in BL cell lines. 
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METHODS 

Cell lines 

SOX11- BL cell lines Ramos and DG75 (ATCC CRL-1596 and ATCC CRL-2625, 

respectively); and the SOX11-positive (SOX11+) BL cell line BL2 (DSMZ ACC 625) 

were used to generate stable transduced DG75 ER-SOX11+ and Ramos SOX11+, 

ectopically overexpressing SOX11, and BL2-SOX11 knockout (KO) BL cell lines. 

Moreover, we used the stable transduced Z138-SOX11KO
34 

and JVM2 (JVM2-

SOX11+)
32,34

 and its control (Z138CT and JVM2CT) MCL cell lines, previously 

generated by our laboratory. See more details on cell culture, plasmid, and generation of 

stable transduced BL cell lines at supplemental methods.  

 

BL patient cohorts 

Four previously published BL series were used to correlate SOX11 expression or 

positivity with different BL molecular characteristics. Duplicated cases between series 

have been considered and ruled out from one of the duplicated series. The BL Genome 

Sequencing Project (BLGSP)
21

 includes 117 pediatric BL (96 endemic and 21 sporadic) 

with available RNA-sequencing (seq) and molecular data, including EBV status, 

breakpoint of IG::MYC and recurrently mutated genes, obtained by whole genome 

sequencing (WGS). Richter et al. cohort
7
 includes 138 sBL patients (80 children and 58 

adults) with available SOX11 immunohistochemistry (IHC), EBV-encoded small 

nuclear RNA (EBER) in situ hybridization (ISH) and targeted DNA-seq data (79 cases). 

Burkhardt et al. cohort
35

 includes sBL cases with deep targeted DNA-seq data. ICGC 

MMML-Seq cases
16

 includes 24 pediatric sBL cases with available SOX11 IHC and 

molecular data, including EBV status, breakpoint of IG::MYC and recurrently mutated 
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genes, obtained by WGS. All pediatric patients were aged <20 years, and the adults ≥20 

years. 

The study was approved by the Ethics Committee of the Medical Faculty of the 

University of Kiel (D 429/13) and conducted in accordance with the Decla-ration of 

Helsinki. 

 

SOX11 status 

IHC of SOX11 was performed for 51 pediatric BL cases with available FFPE 

tissue
35

 on an automated strainer (Leica) by using a mouse monoclonal antibody against 

SOX11 (Cell Marque, MRQ-58) and a pH6 antigen retrieval solution, as previously 

described.
36,37

 SOX11 IHC was previously obtained for ICGC MMML-Seq
16

 and 

Richter et al. cohort.
7
 SOX11 was scored positive when at least 10% of lymphoma cells 

showed unambiguous nuclear staining although in most cases the majority of neoplastic 

cells rather than small subsets were positive for SOX11. In BLGSP cases for which no 

IHC was possible,
21

 SOX11+ expression was defined as >10.5 log2 transformed value, 

obtained by RNA-seq data. 

 

EBV studies  

We performed EBER ISH in 51 pediatric BL cases with available FFPE biopsy 

specimens
35

 using Leica Bond-MAX staining systems and reagents (Leica). EBV-

positivity was defined as most tumor cells being positive. Presence of EBV traces were 

investigated by droplet digital PCR (ddPCR) for EBNA1 and BamHI in a cohort of 37 

BL specimens negative for EBER (n=12 SOX11+ and n=25 SOX11-) as previously 

described (supplemental methods).
38,39

 Combined IHC for CD10 and the RNAscope for 

EBNA1 was performed using Leica Bond III automated system (Leica, Germany) in 
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FFPE BL samples EBER-ISH negative but positive by ddPCR (supplemental 

methods).
38,39

   

 

Molecular profiling 

The IG region involved and the mechanism leading to the IG::MYC 

translocation were evaluated in 89 BL cases from BLGSP
21

 and 24 BL cases from 

ICGC MMML-Seq.
16

 IG::MYC translocations with breakpoints on the IG loci localized 

inside or near (<500 base-pairs) of class switch regions of IGH were classified as 

translocations mediated by class switch recombination (CSR), while those inside V(D)J 

regions but far from recombination signal sites (RSS) (>15 base-pairs) were classified 

as mediated by somatic hypermutation (SHM). Translocations with breakpoints 

localized close to RSS (<15 base-pairs) were classified as mediated by RAG during 

V(D)J recombination. 

For mutational analysis in BL patients, lists of mutated driver genes were 

obtained from the different publications for a total of 267 patients after excluding 

overlapped cases.
7,16,21,35

 Some of the data was obtained by WGS and other by targeted 

mutational analysis. For targeted mutational analysis, only mutations with a variant 

allele frequency (VAF) ≥10% were considered.  Only genes that were mutated in ≥10% 

of the BL cases were used for oncoprint analysis and comparisons between groups. 

 

RNA-sequencing 

RNA was obtained using the RNeasy® Mini RNA extraction kit (Qiagen) 

following manufacturer instructions. RNA quality was checked using a Bioanalyzer 

(Agilent) and mRNA libraries were prepared using the TruSeq stranded mRNA kit for 

DG75 cell lines or the TruSeq RNA Library Prep Kit v2 for Ramos and BL2 cell lines 
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(Illumina). Samples were sequenced on NovaSeq or NextSeq2000 sequencers. For each 

condition, three technical replicates were analyzed. 

RNA-seq data from DG75 cell lines were analyzed using the open source web-

based Galaxy.
40

 Paired-end fastq files were aligned to the human genome (GRCh38) 

using HISAT2. Counts files were generated with featureCounts using GRCh38.102.gtf 

as gene annotation file. For Ramos and BL2 cell lines, single-end sequencing reads 

were processed and aligned as previously described. Gene count matrix was obtained 

for BLGSP
21

 BL primary cases. RNA-seq data analyses are detailed in supplemental 

methods.  

 

Statistics 

Methods are described in the supplemental methods.  

 

The study was approved by the Ethics Committee of the Medical Faculty of the 

University of Kiel (D 429/13) and conducted in accordance with the Decla-ration of 

Helsinki. 
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RESULTS 

SOX11 expression and EBV infection are mutually exclusive in BL  

We first investigated the association between SOX11 expression and different 

molecular characteristics of the tumors and clinical features of the patients. Using 

previously published RNA-seq and clinical data from 117 pediatric BLs,
21

 we observed 

significantly higher SOX11 mRNA levels in EBV- than EBV+ tumors (Figure 1A-B, 

respectively). To confirm this observation, we used 189 cases of two independent series 

of pediatric and adult sBL patients,
7,35

 performing SOX11 IHC and EBER ISH in the 

FFPE tissue sections of tumors in which these data were not available (Supplemental 

Table S1 and Supplemental Figure S1A-F). None of the 17 EBV+ BL (0% with CI95% 

= 0%, 19.5%), whereas 81 of the 172 EBV- BL were positive for SOX11 (47.1% with 

CI95% = 39.5%, 54.8%), showing mutual exclusivity between SOX11+ and EBV+ (p-

value=0.003) (Figure 1C). SOX11 expression was significantly associated with sBL, but 

not exclusively since 3 BL from endemic areas showed high SOX11 mRNA expression, 

all of them EBV-, comparable to those observed in SOX11+ sBL cases (Figure 1B, red 

circle). No other molecular or clinical features differed between these three cases 

compared to the rest of eBL cases (all three were HIV negative (R. Morin, K. Dreval 

personal communication). Unfortunately, SOX11 IHC was not available for these 

cases.
21

  

Together these results suggest that SOX11 expression delineates a different 

molecular subtype of EBV- BL. To analyze this hypothesis, we established three 

different groups of patients according to their EBV and SOX11 status: EBV+ (all 

SOX11-), EBV-/SOX11- “double negative” and EBV-/SOX11+ and analyzed its 

association with different molecular BL features. 
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IG::MYC translocation is predominantly generated by CSR in EBV-/SOX11+ BL 

and by SHM in EBV-/SOX11- BL 

To study the IG partners and the mechanisms involved in the generation of 

IG::MYC translocation according to EBV and SOX11 status in BL cases, we used the 

breakpoints of the IG::MYC translocation in 24 and 89 pediatric BL patients from the 

ICGC MMML-Seq
16

 and BLGSP
21

, respectively, for which these data was available. 

The SOX11 status was determined by IHC in ICGC MMML-Seq BL cases, and by 

RNA-seq data in the BLGSP BL cases (Supplemental Figure S1G). We observed that 

56/69 (81%) EBV+, 25/26 (96%) EBV-/SOX11+ and 12/18 (67%) EBV-/SOX11- 

“double-negative” BL carried an IGH::MYC translocation, and in lower proportion, 

IGL::MYC or IGK::MYC translocations with IG partner frequencies being significantly 

different in EBV-/SOX11- “double-negative” and EBV-/SOX11+ cases (p-

value=0.0134) (Figure 2A, and Supplemental Table S2). 

The potential mechanism mediating the translocation, considering the three IG 

loci, were determined in 105 of the total 113 BL cases for which these data was 

available, finding significant differences between the three groups (p-value=0.0002). 

We found the breakpoint in a class switch region of the IGH, in 87% of the EBV-

/SOX11+ (21/24) but only in 47% of the EBV-/SOX11- “double-negative” (7/15) BL 

and 38% of the EBV+ BL (25/66). At the same time, 12.5% of the EBV-/SOX11+ 

(3/24), 53% of the EBV-/SOX11- “double-negative” (8/15), and 61% of the EBV+ 

(40/66) BL cases had the breakpoint located in the V(D)J region as a result of SHM 

process. Only one case showed evidence of acquisition of the translocation by aberrant 

V(D)J recombination mediated by RAG in the group of EBV+ BLs (Figure 2B and 

Supplemental Table S2). Pairwise comparisons showed significant differences in the 

mechanism mediating the translocation between EBV-/SOX11+ and EBV-/SOX11- 
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“double-negative” (p-value=0.005), and between EBV-/SOX11+ and EBV+ BLs (p-

value=4.6e-05).  

As previously described,
21

 significantly lower AICDA mRNA expression levels 

were observed in EBV-/SOX11+ (pval=2.4e-09) and EBV-/SOX11- (pval=0.052) 

compared to EBV+ BLs. However, no significant differences were observed between 

EBV-/SOX11- and EBV-/SOX11+ BLs (pval=0.21) (Supplemental Figure S2). 

Together, these data suggest that among EBV-negative BL SOX11 status is 

associated with the early pathogenetic event of the MYC-translocation. 

 

SOX11+ cases have a distinct mutational landscape among EBV- BL 

Several genes are recurrently mutated in BL, promoting oncogenic mechanisms 

responsible for the development of tumor cells.
14

 We combined previously published 

data on recurrently mutated genes obtained by WGS from 117 pediatric eBL and sBL 

patients from the BLGSP,
21

 and from 24 pediatric sBL cases from the ICGC MMML-

Seq,
16

 and targeted mutational data on driver BL genes of two different series with 79 

pediatric and adults,
7
 and 47 pediatric

35
 sBL cases. We identified 17 coding genes 

mutated in ≥10% of BL cases (Figure 3A and Supplemental Table S3).  

Then, we analyzed the frequency of mutations of these 17 genes in the three 

groups of BL patients previously established: EBV+ (all SOX11-), EBV-/SOX11- and 

EBV-/SOX11+. We observed significant differences in the frequency of CCND3, 

DDX3X, FBXO11, FOXO1, ID3, MYC, SIN3A, SMARCA4 and TP53 mutations between 

these groups of patients (q-value<0.1) (Figure 3B and Supplemental Table S4). Pairwise 

comparisons showed that EBV-/SOX11- “double negative” and EBV-/SOX11+ BLs 

share a higher frequency of mutations in CCND3, ID3 and TP53 genes, and lower in 
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FOXO1 gene relative to EBV+ BLs (q-value<0.1). However, EBV+ cases showed a 

significant higher frequency of mutations in DDX3X and SIN3A, and fewer in MYC 

compared to EBV-/SOX11+, but not to EBV-/SOX11- “double negative” BL (q-

value<0.05), suggesting that these differences cannot be attributed to the EBV status 

alone. In addition, among EBV- cases, EBV-/SOX11+ BL had a significantly higher 

frequency of mutations in SMARCA4 and ID3 (43% and 80%, respectively) compared 

to EBV-/SOX11- “double negative” (18% and 63%, respectively; q-value=0.14 in both 

comparisons). As expected SMARCA4 and ID3 were also less frequently mutated in 

EBV+ compared to EBV-/SOX11+ cases (9% and 35%, respectively; q-values<0.001) 

(Figure 3B and Supplemental Table S5). Thus, both EBV infection
7,20,21

 and  SOX11 

expression in BL are associated with a distinct mutational pattern. 

 

Highly sensitive detection of EBV in SOX11/EBER “double negative” BL 

Since SOX11 expression and EBV detected by the gold standard method EBER 

ISH leaves a third group of BL, being negative for both features (“double negative”), 

more common in adult patients (Figure 3A), we asked if EBER ISH may miss the 

detection of EBV in these BL. Thus, a cohort of 37 BL samples that were negative for 

EBER (n=14 SOX11+ and n=23 SOX11-) were blindly tested for traces of EBV by 

ddPCR for both EBNA1 and BamHI-W conserved regions of the EBV genome as 

previously described.
38

 Twelve cases (32.4%) were positive for BamHI-W (0.19-18 

copies/µl) of which nine were also positive for EBNA1 (0.19-2.7 copies/µl). In six cases 

the presence of EBV sequences in tumor cells were confirmed by dual staining with 

RNAscope for EBNA1 and IHC for CD10, showing colocalization of EBV specific 

signals in CD10+ lymphoma cells. The vast majority of BLs with traces of EBV were 

SOX11- (10/12; 83.3%), while only two (2/12; 16.7%) were SOX11+ (Table 1).  
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The biological relevance of EBV-traces may be debatable. However, traces of 

EBV “corrected” the EBV-status of BL almost exclusively among SOX11- but not 

among SOX11+ BL, ruling out that we miss a relevant number of EBV+/SOX11+ 

double positive cases by EBER, and reinforcing that SOX11 and EBV positivity are 

mutually exclusive in BL. Limited molecular data were available for cases tested for 

traces of EBV. 

 

Oncogenic pathways regulated by SOX11 in BL cell lines 

Mutual exclusivity of SOX11 and EBV status in BL was also demonstrated in 

the analysis of SOX11 expression in established BL cell lines (Supplemental Figure 

S3A-B). To identify oncogenic pathways regulated by SOX11 in BL cells, we first used 

a SOX11- BL cell line, DG75, to ectopically express the SOX11 protein fused to the 

hormone binding domain of the estrogen receptor (ER-SOX11). Fusion with the ER 

makes SOX11 activatable upon treatment with 4-Hydroxytamoxifen (4-OHT). As 

shown in Figure 4A and B, although expressed, the ER-SOX11 protein translocate to 

the nucleus only when cells are treated with 4-OHT. As we found weak background 

nuclear expression in absence of 4-OHT, we decided to compare RNA-seq GEPs of 

DG75 ER-SOX11 and control DG75 ER cells, both treated with 4-OHT for 8 or 24 

hours.  

Principal component analysis (PCA) showed that the variability between 

samples was significantly higher due to SOX11 overexpression (85% of the variance, 

PC1) than by time of induction (8 or 24 hours) (4% of the variance, PC2) (Supplemental 

Figure S4A), showing that more than 65% of differential expressed genes (DEG) 

overlapped upon SOX11 expression between 8h and 24h of 4-OHT treatment 

(Supplemental Figure S4B). 
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SOX11-specific GEP in DG75 BL cell line, grouping two-time point samples, 

showed 866 upregulated and 828 downregulated genes in 4-OHT treated DG75 ER-

SOX11 compared to control cells (Figure 4C-D and Supplemental Table S6). Pathway 

enrichment analysis showed that upregulated genes in DG75 ER-SOX11 were enriched 

in angiogenesis, integrins and G-protein signaling pathways, whereas downregulated 

genes were enriched in genes related to cadherin and Wnt signaling, among other 

regulatory pathways (Figure 4E). 

Two more cell model systems were generated to investigate the effect of SOX11 

expression on BL transcriptome: the SOX11- Ramos BL cell line ectopically 

overexpressing a FLAG-SOX11 protein (Ramos-SOX11+), and the SOX11+ cell line 

BL2 where we knocked out the SOX11 gene using the CRISPR-Cas9 gene editing 

system (BL2-SOX11KO) (Figure 5A). Changes in global gene expression were 

investigated in both cell systems by RNA-seq (Supplemental Figure S5A-B and S5C-D 

and Supplemental Tables S7 and S8, respectively). Pathway enrichment analysis 

performed in Ramos cells showed enrichment of pathways in Ramos-SOX11+ similar 

than the observed in DG75 ER-SOX11 cell lines (Supplemental Figure S5E) 

 

SOX11-associated BL signature 

Using RNA-seq, we overlapped the DEGs obtained between Ramos-SOX11+ 

and Ramos-CT (Supplemental Table S7); between BL2 CT and BL2-SOX11KO cell 

lines (Supplemental Table S8), and between DG75 ER-SOX11 and DG75 ER 

(Supplemental Table S6). 79 genes commonly regulated by SOX11 in at least two 

different BL cell lines were considered to define a SOX11-associated BL signature 

(Figure 5B and Supplemental Table S9). 
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We performed k-means clustering analysis in the previously published 117 

pediatric BL primary cases from the BLGSP
21

 with RNA-seq data available, using the 

SOX11-associated BL signature. We observed that BL cases clustered separately 

according to SOX11 high and low expression levels (Figure 5C). Moreover, most of the 

genes included in the SOX11-associated BL signature significantly correlated between 

them and with SOX11 expression in this BL series (Figure 5D). Finally, by GSEA we 

observed that the SOX11-associated BL signature (Supplemental Table S9) was 

enriched in SOX11
high

 compared to SOX11
low

 BL cases
21

 (SOX11 mRNA cut-off=10.5 

log2 transformed values) (Supplemental Figure S6). These results suggest a similar 

SOX11 transcriptional activity in cell lines and primary BLs. 

 

SOX11 functional role in MCL and BL 

SOX11 directly regulates the transcription of genes involved in MCL oncogenic 

pathways.
27

 To determine whether SOX11 regulated genes in MCL were also 

modulated in BL, we investigated by GSEA the expression of SOX11-target genes 

identified in our previously studies in MCL cell lines
28

 and primary samples
34

 

(Supplemental Table S10), in SOX11+ and SOX11- BL cell lines (DG75 ER-SOX11 

vs. DG75 ER; Ramos SOX11+ vs Ramos CT; BL2CT vs BL2-SOX11KO) (Figure 6A). 

On the other hand, the SOX11-associated BL signature was significantly enriched in 

SOX11+ compared to SOX11- MCL cell lines and primary samples (Supplemental 

Figures S7A-B, respectively). Together, these results demonstrate that SOX11 regulates 

common genes in the two lymphoma entities.   
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Moreover, we observed that 11% (185/1660) of the DEG in DG75 ER-SOX11 

BL cell line overlapped with those differentially expressed in Z138 SOX11+ vs Z138-

SOX11KO MCL cell line. An 8% (134/1660) of the DEG in DG75 ER-SOX11 BL cell 

line overlapped with SOX11-direct target genes in Z138 MCL cell line. Furthermore, 22 

genes overlapped between the three comparisons.
 
Together, these 297 genes (Figure 6B, 

red circle) were involved in oxidative stress, heterotrimeric G-proteins, chemokines, and 

cytokines, integrins, angiogenesis and PDGF signaling pathways (Figure 6C). We 

validated the upregulation of some of the overlapped genes, specifically the mRNA of 

PLXNB1, MEX3A and CD24, and the protein levels of MEX3A and CD24 upon 

SOX11 overexpression and knockout, in both MCL and BL transduced cell lines 

(Figure 6D-F). The upregulated mRNA levels of PLXNB1, CD24 and MEX3A 

significantly decreased, reaching similar levels as in DG75 ER control, in DG75 ER-

SOX11 cells upon 4-OHT washout (Supplemental Figure S8).  

In BL cells, we observed that CXCR5, CCR7 and ITGB7 were significantly 

upregulated in 4-OHT treated DG75 ER-SOX11 compared to DG75 ER control cells 

(Figure 6G). However, contrary to MCL, we did not observe a significant higher tumor 

cell migration towards CXCL13 or adhesion to SNKT stromal cells,
32 

nor an increase in 

the activation of BCR signaling pathway
30

 comparing SOX11+ and SOX11- BL cell 

line models (data not shown). Interestingly, we observed a significantly higher adhesion 

of SOX11+ to VCAM-1, glycoprotein that interacts with integrin α4β7 (ITGA4 and 

ITGB7), compared to SOX11- BL cells (Figure 6H).   
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DISCUSSION 

EBV infection is considered a crucial and early event in BL development, 

particularly in eBL. EBV- and EBV+ BLs exhibit distinct molecular characteristics 

whereas the clinical features of both groups are variable.
13–18,21

 SOX11 is expressed in a 

broad range of BLs,
22,23

 with a higher frequency in pediatric patients.
7
 Several studies 

have described oncogenic functions of SOX11 in MCL.
28–34

 However, the functional 

role of SOX11 in BL and its relation to EBV remains unknown. 

Our results have revealed a clear negative association between SOX11 

expression and EBV infection. The absence of SOX11 in EBV+ BL seems associated 

with the presence of the virus rather than the historical epidemiologic subtype as we 

also observed high SOX11 expression in the few EBV- BL from Africa. 

The IG::MYC translocation is considered the genetic hallmark of BL. EBV+ 

BLs mainly acquire the translocation during SHM, whereas the EBV- BLs acquire it 

through CSR.
16,18,20

 Here we add another layer of information. Among EBV- BL, we 

found differences in IG partners according to SOX11 expression. We observed 

significant differences between IG partner in MYC translocations among the three 

different groups analyzed, detecting lower proportion of IGH and higher of IGL in 

EBV-/SOX11+ cases. EBV-/SOX11+ BLs acquired the IG::MYC translocation during 

the CSR process. These data suggest that among EBV- BL SOX11-expression is 

associated with one of the earliest events in the pathogenesis of the tumor, the 

occurrence of the MYC translocation.  

Recently, Roco et al suggested that CSR occurs outside the germinal center 

earlier in the B-cell differentiation process than SHM.
41

 One might speculate, that in 

EBV-/SOX11+ BL predominant CSR-mediated IG::MYC translocations reflect this 

situation arising before the cell enters the germinal center. SOX11 represses BCL6 and 
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AICDA expression in conventional MCL possibly preventing the entrance of the tumor 

cell in the germinal center.
29

 However, no significant differences in AICDA mRNA 

levels were observed between EBV-/SOX11- and EBV-/SOX11+ BLs.  

BL is the lymphoma entity second to MCL with most SOX11+ cases. 

Nevertheless, the expression levels in BL are approximately two times lower than in 

MCL cases,
23

 suggesting that its levels in SOX11+ BL are not sufficient to fully block 

the entrance into the germinal center. However, to confirm this idea needs further 

functional studies. 

EBV+ BL cells have fewer driver gene mutations than EBV-, indicating that 

EBV infection may relieve the pressure towards selection of mutagenic 

mechanism.
7,15,16,19–21

 Differences in the genetic profile between EBV+ and EBV- BL 

cases have been previously described,
14-17,21

 however we have observed that EBV-

/SOX11+ BLs display a distinctive mutational landscape, with significant higher 

frequency of mutations in SMARCA4 and ID3, compared to EBV-/SOX11- and EBV+ 

cases. Interestingly, concomitant SMARCA4 mutations and SOX11 expression has been 

also observed in MCL cases.
42

 In addition, EBV+ BLs exhibited significant higher 

frequency of mutations in DDX3X and SIN3A, and fewer in MYC compared to SOX11+ 

but not to SOX11- BLs. These findings suggest that EBV+, EBV-/SOX11- and EBV-

/SOX11+ cases might have different oncogenic mechanisms driving their pathogenesis.  

By the overlap of SOX11-mediated DEG in three different BL cell lines, we 

obtained a SOX11-associated BL signature that consistently grouped separately 

SOX11+ and SOX11- BL cases. Furthermore, SOX11 overexpression in BL 

recapitulated in part the SOX11-associated transcriptional program found in MCL cells, 

overlapping with some of the validated pathways directly regulated by SOX11 in 

MCL
27

 as the overexpression of PLXNB1 and CD24 involved in tumor cell 
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migration,
43,44

 and MEX3A involved in the chemoresistance of colorectal cancer 

quiescent cells.
45

 However, in vitro experiments suggest that the activation of tumor cell 

migration
32

 or BCR pathways
30

 observed in MCL may not be so relevant in BL.   

ITGB7 integrin controls the cell homing to Peyer’s patches through the binding 

to VCAM-1.
46,47

 We observed a significant upregulation of ITGB7 gene expression and 

significantly higher adhesion to VCAM-1 in SOX11+ compared to SOX11- BL cell 

lines. sBL, the clinical subtype that contains more SOX11+ cases, shows predominantly 

abdominal tumor presentation and class switch to IgA isotype,
16,48

 specifically seen in 

mucosal tissues,
49

 such as Peyer’s patches, all suggesting that BL SOX11+ cells might 

have a higher migration to Peyer’s patches, through the upregulation of ITGB7, than 

SOX11- BL cells. However, further studies are needed to validate this last hypothesis. 

In conclusion, SOX11 expression and EBV infection occur in alternative subsets 

of BL with different profile of somatic mutations and different mechanism generating 

MYC translocations. The predominance of IGH class switch mediated MYC 

translocation in SOX11+ BL suggests an earlier development than in SOX11- tumors. 

Further studies are required to define the functional role of SOX11 in BL.  
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TABLES 

Table 1. Detection of EBV genome traces obtained by ddPCR of BamHI-W and 

EBNA1, and RNAscope of EBNA1, in a cohort of 37 BL specimens. 

Study 

ID 

EBER 

ISH 

SOX11 

IHC 

BamHI-W 

(copies/ul) 

EBNA1 

(copies/ul) 

EBNA1 mRNA 

(score) 

BL-42 EBV- SOX11- 1.01 0 NA 

BL-53 EBV- SOX11- 6.3 1.7 9 

BL-48 EBV- SOX11- 0 0 NA 

BL-54 EBV- SOX11- 0.19 0 NA 

BL-3 EBV- SOX11- 15 2.6 9 

BL-34 EBV- SOX11- 0 0 NA 

BL-17 EBV- SOX11- 15 1.42 7 

BL-1 EBV- SOX11- 0 0 NA 

BL-29 EBV- SOX11- 18 1.25 6 

BL-10 EBV- SOX11- 0.2 0.2 NA 

BL-7 EBV- SOX11- 0 0 NA 

BL-31 EBV- SOX11- 0 0 NA 

BL-56 EBV- SOX11- 0 0 NA 

BL-51 EBV- SOX11- 0.31 0 NA 

BL-46 EBV- SOX11- 0 0 NA 

BL-43 EBV- SOX11- 0.62 0.25 6 

BL-15 EBV- SOX11- 0 0 NA 

BL-89 EBV- SOX11- 0 0 NA 

BL-2 EBV- SOX11- 0 0 NA 

BL-18 EBV- SOX11- 0 0 NA 

BL-

113 EBV- SOX11- 1.31 0.5 NA 

BL-

119 EBV- SOX11- 0 0 NA 

BL-38 EBV- SOX11- 0 0 NA 

BL-

143 EBV- SOX11+ 0 0 NA 

BL-

144 EBV- SOX11+ 0 0 NA 

BL-41 EBV- SOX11+ 0 0 NA 

BL-

105 EBV- SOX11+ 0.66 0.19 NA 

BL-25 EBV- SOX11+ 0 0 NA 

BL-12 EBV- SOX11+ 15.9 2.7 11 

BL-32 EBV- SOX11+ 0 0 NA 

BL-50 EBV- SOX11+ 0 0 NA 

BL-

116 EBV- SOX11+ 0 0 NA 

BL-72 EBV- SOX11+ 0 0 NA 
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BL-

145 EBV- SOX11+ 0 0 NA 

BL-

146 EBV- SOX11+ 0 0 NA 

BL-

147 EBV- SOX11+ 0 0 NA 

BL-

148 EBV- SOX11+ 0 0 NA 

 

FIGURE LEGEND 

Figure 1. SOX11 is exclusively expressed in EBV- BL cases. (A-B) SOX11 mRNA 

expression (log2 transformed values) according to EBV status (EBV- and EBV+) (A) 

and epidemiological variant (eBL and sBL) (B) of 117 pediatric BL cases. Red circle 

highlights high SOX11 expression in 3 BL from endemic areas. Wilcoxon text was 

performed to test differences between groups. (C) Frequency of SOX11+ and SOX11- 

patients (by IHC) in an independent series of pediatric and adult sBLs (n=189), 

according to EBV status. The Cochran-Mantel-Haenszel test was performed to test 

differences between the frequency in EBV- and in EBV+, while adjusting for cohort 

and group. 

 

Figure 2. IG::MYC translocation in BL primary cases according to SOX11 

expression levels and EBV status. (A-B) Frequency of IGH::MYC, IGK::MYC and 

IGL::MYC translocations (A), and frequency of translocations generated by CSR, SHM 

or V(D)J processes (B), in the total group of EBV+, EBV-/SOX11- and EBV-/SOX11+ 

BLs. Fisher test was performed to evaluate differences between group frequencies. 

 

Figure 3. Mutational profile of BL primary cases according to EBV status and 

SOX11 expression. (A) Mutational analysis in recurrently mutated driver genes 
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(mutated in ≥10% of cases) of 267 BL. Mutations, EBV and SOX11 status, age group 

(pediatric or adult) and epidemiological variant (endemic or sporadic) are shown. The 

cases in the heatmap are ordered by SOX11 and EBV status. (B) Frequencies of 

mutated cases in EBV+ (n=110), EBV-/SOX11- (n=76) and EBV-/SOX11+ (n=81) for 

each gene are shown. Fisher’s exact test with FDR correction was performed to evaluate 

differences in the frequencies between groups. **** q-value <0.0001, *** q-value 

<0.001, ** q-value <0.01, * q-value <0.15. 

 

Figure 4. Gene expression analysis upon SOX11 overexpression in DG75-ER-

SOX11 BL cell line. (A) Western blot experiment showing the levels of ER-SOX11 

protein in DG75 ER-SOX11 BL cell line. DG75-ER was used as negative SOX11 

expressing cell line and tubulin as loading control. (B) Immunofluorescence 

experiments showing the nuclear localization of the SOX11 protein in DG75 ER-

SOX11 cells, induced (+) or not induced (-) with 4-OHT for 24h. DG75 ER cell line 

was used as SOX11 negative control. DAPI mark the cellular nucleus, and merge of the 

two immunofluorescences images (DAPI and SOX11) was done. (C) Heatmap 

illustrating the scaled expression (Z-score) of 1694 DEG (866 upregulated and 828 

downregulated genes; Supplementary Table S7) in DG75 ER-SOX11 compared to 

DG75 ER cell lines induced with 4-OHT for 8 and 24h, obtained by RNA-seq. Genes 

with an adjusted P-value <0.1 and absolute log2-transformed fold change >0.65 were 

considered. (D) Volcano plot showing genes differentially expressed, obtained by RNA-

seq, upon SOX11 overexpression in DG75 ER-SOX11 compared to DG75 ER BL cell 

lines treated with 4-OHT. The graph shows on the y-axis –log10(P-value) and on the x-

axis the log2-transformed fold change. Genes upregulated and downregulated in DG75 

ER-SOX11 vs DG75 ER with an adjusted P-value <0.1 and log2-transformed fold 
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change >0.65 or <-0.65 are colored in red and blue, respectively, and genes with an 

adjusted P-value < 0.00005 and absolute log2-transformed fold change >3 are labeled 

with their Gene Symbol. (E-F) Panther pathway enrichment analysis using DEG 

upregulated (E) and downregulated (F) between DG75 ER-SOX11 and DG75 ER after 

4-OHT treatment. Number of genes, fold enrichment and –log10(P-value) for each 

pathway are shown. Only pathways with a p-value <0.05 were considered. 

 

Figure 5. SOX11-associated BL signature found in transduced cell lines is also 

detected in BL primary cases. (A) Western blot experiment showing the SOX11 

protein levels in Ramos SOX11 (SOX11 is FLAG-tagged) cell line, Ramos CT, BL2 

CT and BL2-SOX11KO BL cell lines. Tubulin protein was used as loading control. (B) 

Overlap between DEG (adjusted P-value <0.1 and absolute log2 transformed fold 

change >0.65) in DG75 ER-SOX11 vs DG75 ER (in purple, 1694 genes, Supplemental 

Table S6), BL2 CT vs BL2-SOX11KO (in red, 107 genes, Supplemental Table S8) and 

Ramos SOX11+ vs Ramos CT (in green, 151 genes, Supplemental Table S7). (C) Row 

scaled expression (Z-score) of genes from the SOX11-associated BL signature (79 DEG 

overlapping between at least two comparisons in Figure 5B) in RNA-seq data of 117 

pediatric endemic and sporadic BLs. K-means clustering was performed to separate 

samples in k=3 groups. SOX11 expression, EBV status and BL epidemiological variant 

are shown at the top panel. (D) Correlation plot between genes from the SOX11-

associated BL signature in RNA-seq data of 117 pediatric endemic and sporadic BLs. 

Blue and red showed positive and negative Pearson correlation coefficients, 

respectively. P-values from Pearson correlation are shown: * <0.05, ** <0.01, *** 

<0.001. 
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Figure 6. SOX11 shares similar transcriptional roles in MCL and BL. (A) Dot plot 

showing at x-axis the normalized enrichment score (NES), and at y-axis SOX11-target 

genes identify in our previously studies in MCL cell lines  by ChIP-chip (SOX11-direct 

targets in MCL), upregulated (SOX11 MCL signature-UP) or downregulated (SOX11 

MCL signature-Down) in SOX11+ compared to SOX11- MCL cell line (Z138CT vs 

Z138SOX11KO) and primary samples (cMCL vs nnMCL)), enriched in SOX11+ 

compared to SOX11- BL cell lines (DG75 RE-SOX11 vs. DG75 ER; Ramos SOX11+ 

vs Ramos CT; BL2CT vs BL2-SOX11KO). Outlined in colour codes the false discovery 

rate (FDR). Size of bubbles represent number of enriched genes. (B) Overlap between 

DEG in 4-OHT treated DG75 ER-SOX11 BL cell line (in yellow, 1660 genes with 

Gene Symbol), upon SOX11 KO in Z138 MCL cell line (in green, 686 genes with Gene 

Symbol), and SOX11-direct target genes in MCL found by ChIP on chip in Z138 cell 

line (in blue, 1909 genes with Gene Symbol). (C) Pathway enrichment analysis on 

common genes between DEG in DG75 ER-SOX11 BL cells, and upon SOX11 KO in 

Z138 MCL cells and SOX11 targets genes obtained by ChIP on chip in Z138 MCL cells 

(red circle). Number of genes, fold enrichment and –log10(p-value) for each pathway 

are shown. (D) PLXNB1, CD24 and MEX3A relative mRNA expression (normalized to 

GUSB endogenous control) in BL and MCL SOX11-overexpressing cell lines (left, 

Ramos-SOX11+, DG75 ER-SOX11 and JVM2-SOX11+), and in SOX11-KO BL and 

MCL cell lines (right, BL2-SOX11KO and Z138-SOX11KO). Data is shown as mean ± 

standard deviation of the fold change between SOX11-overexpressing or SOX11-KO 

and its respective control cell values, obtained in 3 independent experiments. Statistical 

significance was obtained by unpaired two-tailed Student t-test. (E) Western blot 

experiments showing MEX3A and SOX11 protein levels (ER-SOX11, SOX11-FLAG 

or endogenous SOX11) in BL2-SOX11KO, DG75 ER-SOX11, and Ramos-SOX11+ 
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and their control cell lines BL2 CT, DG75 ER and Ramos CT. Tubulin was used as a 

loading control. (F) Histograms showing CD24 protein levels analyzed by flow 

cytometry in Z138- and BL2-SOX11KO MCL and BL cell line models and their 

respective controls. CD24 staining is shown in filled dark blue histograms for SOX11+ 

cells and in filled light blue histograms for SOX11- cells, whereas isotype controls are 

shown in non-filled and long dashed histograms. (G) CXCR5, CCR7 and ITGB7 

mRNA expression levels (log2 transformed values) in DG75 ER and DG75 ER-SOX11, 

obtained by RNA-seq. (H) Relative adhesion to VCAM-1 measured as the ratio of 

fluorescence emission of calcein-labeled cells between those that have been attached to 

untreated microplate wells precoated with VCAM-1 and those attached in an unspecific 

way (VCAM-1 adhesion/unspecific cell adhesion in BSA 0.5%). Statistical significance 

was obtained by unpaired two-tailed Student t-test. * P-value <0.05, ** P-value < 0.01, 

*** P-value <0.001, **** P-value < 0.0001. 
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The molecular dichotomy between EBV and SOX11 in BL 

Conclusions: SOX11 expression and EBV infection occur in alternative subsets of 
BL. Expression of SOX11 in EBV- BLs associates with SMARCA4 and ID3 mutations 
and CSR mechanism generating IG::MYC translocation.  
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