
Brief report

Ex vivo treatment of proliferating human cord blood stem cells with
stroma-derived factor–1 enhances their ability to engraft NOD/SCID mice
Hanno Glimm, Patrick Tang, Ian Clark-Lewis, Christof von Kalle, and Connie Eaves

Ex vivo proliferation of hematopoietic
stem cells (HSCs) is important for cellular
and gene therapy but is limited by the
observation that HSCs do not engraft as
they transit S/G2/M. Recently identified
candidate inhibitors of human HSC cy-
cling are transforming growth factor-�1

(TGF-�1) and stroma-derived factor–1
(SDF-1). To determine the ability of these
factors to alter the transplantability of

human HSCs proliferating in vitro, lin�

cord blood cells were first cultured for 96
hours in serum-free medium containing
Flt3 ligand, Steel factor, interleukin-3, in-
terleukin-6, and granulocyte colony-stimu-
lating factor. These cells were then trans-
ferred to medium containing Steel factor
and thrombopoietin with or without SDF-1
and/or TGF-�1 for 48 hours. Exposure to
SDF-1 but not TGF-�1 significantly in-

creased (> 2-fold) the recovery of HSCs
able to repopulate nonobese diabetic/
severe combined immunodeficiency mice.
These results suggest new strategies for
improving the engraftment activity of
HSCs stimulated to proliferate ex vivo.
(Blood. 2002;99:3454-3457)
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Introduction

Much interest is currently focused on improving in vitro proce-
dures for expanding hematopoietic stem cells (HSCs) that do not
compromise either their original developmental or engrafting
potential. Growth factor (GF) combinations have now been identi-
fied that promote self-renewal divisions in vitro of transplantable
human HSCs identified as competitive repopulating units (CRUs)
based on their ability to repopulate the marrow of nonobese
diabetic-scid/scid (NOD/SCID) mice with lymphoid and myeloid
progeny.1-7We have exploited the precision and selectivity afforded
by this assay to show that cord blood (CB) CRUs proliferating in
vitro lose their ability to engraft as they progress through the
S/G2/M phases of the cycle,8 as has also been shown for adult
human9 and murine HSCs10 detected by similar transplantation
assays. Previous approaches to increase the transplantability of
proliferating murine and human HSCs have exposed the cells to
transforming growth factor-�1 (TGF-�1) for 24 hours.8,11Although
this arrested many of the cells in G0/G1, no increases in transplant-
able HSC activity were seen. We subsequently found that a more
prolonged exposure to either TGF-�1 or the chemokine stroma-
derived factor–1 (SDF-1) can block the cycling of long-term
culture-initiating cells (LTC-ICs) as well as primitive human
colony-forming cell (CFC) progenitors both in vitro and in vivo.12

We therefore reasoned that such treatments might similarly affect
proliferating HSCs and thereby increase their ability to be detected
as CRUs. The experiments described here were designed to test this
hypothesis. Accordingly, CD34� cell-enriched suspensions of CB
were first cultured in the presence of a GF combination that we
have previously shown stimulates all of the CRU to proliferate

within 4 days.13 The cells were then switched to a different GF
cocktail to test the effect of added TGF-�1 and/or SDF-1 on HSC
detection. The GF cocktail selected for use in these secondary
cultures consisted of Steel factor (SF) plus thrombopoietin (TPO)
based on previous studies indicating that these GFs are less
mitogenic but still able to maintain the viability and stem cell
properties of HSCs.14-17

Study design

Short-term expansion cultures

CB was obtained with informed consent, lineage marker–positive (lin�)
cells removed using StemSep columns (StemCell Technologies, Vancouver,
BC) from previously cryopreserved low-density (� 1.077g/mL) cells
pooled from at least 5 donors, and the lin� cells then cultured at a density of
1 � 105/mL to 2� 105/mL for 4 days in serum-free medium (SFM)
containing a serum substitute (BIT9500, StemCell), 10�4 M 2-mercaptoetha-
nol (Sigma Chemicals, St Louis, MO), 40�g/mL low-density lipoproteins
(Sigma), and the following 5 recombinant human GFs: 20 ng/mL interleu-
kin-3 (Novartis, Basel, Switzerland), 20 ng/mL interleukin-6 (Cangene,
Mississauga, ON), 20 ng/mL granulocyte colony-stimulating factor (Stem-
Cell), 100 ng/mL SF (expressed and purified in the Terry Fox Laboratory),
and 100 ng/mL Flt3 ligand (Immunex, Seattle, WA) as previously de-
scribed.13 The cells were then harvested, washed twice in SFM, aliquots
removed for phenotype and functional measurements (see below), and the
remainder resuspended in new SFM and cultured further as indicated (either
with the same 5 GFs or with 50 ng/mL human SF and 50 ng/mL human TPO
(Genentech, Palo Alto, CA) with or without either 5 ng/mL TGF-�1 (R&D
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Systems, Minneapolis, MN) or 100 ng/mL SDF-1 (synthesized and purified
as previously reported18) or both.

Flow cytometry

Expression of CD34 was analyzed after staining aliquots of cells with
fluorescein isothiocyanate–conjugated 8G12 (anti-CD34) antibody (kindly
provided by P. M. Lansdorp, Terry Fox Laboratory) and of CXCR4 using a
phycoerythrin-conjugated anti-CXCR4 antibody (Pharmingen, Baie d’Urfe,
Quebec). The cell cycle distribution of CD34� cells was determined after
propidium iodide (PI) (Sigma) staining as previously described.8

In vitro progenitor assays

CFC and LTC-IC assays were performed as previously described.19

CRU assays

CRU frequencies were determined as described in detail previously.2

Briefly, 8- to 12-week-old NOD/SCID mice were given a sublethal dose of
350 cGy of total body 137Cs �-irradiation and were then injected intrave-
nously with test cells plus 106 irradiated (15 Gy) normal human bone
marrow cells as carriers. After 6 to 8 weeks, the presence of viable (PI�)
human B-lineage (CD34�CD19/20�) and human myeloid (CD45/71�CD15/
66b�) cells in the marrow of the mice was determined by fluorescence-
activated cell sorter (FACS) analysis. A detection limit of 5 human
lymphoid (CD34�CD19/20�) cells and/or 5 human myeloid (CD45/
71�CD15/66b�) cells per 2 � 104 PI� cells analyzed was used to identify
positively engrafted mice. Gates were set to exclude more than 99.99% of
nonspecifically stained PI� cells incubated with irrelevant isotype-matched
control antibodies labeled with the corresponding fluorochromes. CRU
frequencies (Table 1) were calculated from the data pooled from all
experiments using Poisson statistics and the method of maximum likeli-
hood (with L-calc software, StemCell). Engraftment levels varied from
0.2% to 71% human cells according to the number of CRU transplanted,
consistent with previous observations.2

Data analysis

Mean values (� SEM) were calculated from the data pooled from replicate
experiments. Differences between groups were assessed using the Student
t test.

Results and discussion

A first series of experiments were undertaken to determine the rate
at which proliferating CD34� CB cells would be arrested by
TGF-�1 and/or SDF-1. Proliferating CD34� cells were isolated by
FACS from 4-day primary (“proliferation” ) cultures originally
initiated with lin� CB cells. These cells were then transferred into

new SFM containing SF and TPO with TGF-�1 and/or SDF-1. As
shown in Figure 1A, exposure to TGF-�1 in the secondary cultures
caused a rapid increase (within the first 24 hours) in the proportion
of CD34� cells in G0/G1 (from an initial value of 54% � 2% to
	 75%). Maximum levels of G0/G1 cells (82% � 3%) were
reached another 24 hours later. In the same cultures, the proportion
of CD34� cells undergoing apoptosis (identified by a DNA content
of � 2n) also increased significantly but somewhat more slowly
(from 3.6% � 0.1% to 47% � 4%; P � .01, Figure 1B). In con-
trast, SDF-1 did not affect either of these parameters (P 	 .05).

Based on these findings, a 48-hour period of exposure to
TGF-�1 (and/or SDF-1) was chosen to evaluate the effects of these
agents on the functional activities of various progenitors identified
by quantitative in vitro and in vivo assays. Accordingly, a second
series of similar experiments were set up with larger numbers of
lin� CB cells. In these, all of the cells (not just the CD34� subset)
harvested from the 4-day primary proliferation cultures were
transferred into secondary cultures. Forty-eight hours later, aliquots
were removed for FACS analyses of their cell cycle parameters and
expression of CD34 and CXCR4 and also for assessment of the

Figure 1. Time course study of the effect of TGF-�1 and SDF-1 on the cell cycle
progression and frequency of apoptotic cells in cultured CD34� CB cells.
Primary cultures of lin� CB cells were set up in SFM containing 5 GFs and then, after
4 days, CD34� cells were isolated and transferred to secondary cultures containing
SF and TPO (both at 50 ng/mL) either without (control) or with TGF-�1 (5 ng/mL), or
SDF-1 (100 ng/mL), or both. Values shown are the mean � SEM of measurements
made after PI staining of cells from 3 independent experiments. (A) Proportion of
CD34� cells in G0/G1. (B) Proportion of apoptotic cells.

Table 1. Results of CRU assays of cells from secondary cultures of lin� CB cells

Experiment no.

SF/TPO SF/TPO � SDF-1 SF/TPO � TGF-�1 SF/TPO � SDF-1 � TGF-�1 5 GFs*

Cells per
mouse, � 106 L� � M�

Cells per
mouse, � 106 L� � M�

Cells per
mouse, � 106 L� � M�

Cells per
mouse, � 106 L� � M�

Cells per
mouse, � 106 L� � M�

1 1.3 5/6 1.3 6/6 1.3 6/6 1.3 5/6 1.3 6/6

0.3 3/6 0.3 4/6 0.3 4/6 0.3 4/6 0.3 2/6

2 1.0 5/6 1.0 6/6 1.0 5/6 1.0 5/6 1.0 5/6

0.4 1/6 0.4 3/6 0.4 1/5 0.4 1/6 0.4 3/6

3 2.0 6/6 2.0 5/5 2.0 6/6 2.0 6/6 2.0 6/6

0.4 5/6 0.4 3/3 0.4 2/4 0.4 2/6 0.4 2/6

CRUs per 106 input cells

in second cultures

(range defined by SEM) 2.0 (1.6-2.6) 4.6 (3.4-6.2) 2.3 (1.8-3.0) 1.7 (1.3-2.2) 2.0 (1.5-2.5)

In each of the 3 experiments performed, more than 90% of all the cells from each culture were injected at the doses shown into a minimum of 8 irradiated NOD/SCID mice.
L� indicates lymphoid engraftment with human cells (CD34�CD19/20�); M�, myeloid engraftment with human cells (CD45/71� CD15/66b�)

*The 5 GFs were Flt3 ligand, SF, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor, as described in “Materials and methods.”
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number of CFCs and LTC-ICs present. The remainder (	 90% of
all the cells harvested from the secondary cultures) were injected
into irradiated NOD/SCID mice. Cell cycle analyses revealed
similar distributions of the total cell population as shown in Figure
1A for the CD34� compartment (data not shown). Despite the
inhibition of proliferation seen in all cultures exposed to TGF-�1,
the total number of CFCs present increased over the 2 days of
incubation in all of the secondary cultures (Figure 2). However, this
expansion was generally less in the TGF-�1–containing cultures
and, as expected,20 the presence of TGF-�1 selectively suppressed
the output of erythroid CFCs (P � .01). Yields of LTC-ICs from all
cultures were more variable, but neither TGF-�1 nor SDF-1 had a
significant effect on their numbers (P 	 .1, data not shown). Also
as expected,21 exposure to SDF-1 (but not TGF-�1) down-regulated
expression of the SDF-1 receptor (CXCR4), resulting in a decrease
of CXCR4� CD34� cells from 72% � 3% to 45% � 6%
(P 
 .012). The results of the NOD/SCID repopulation assays are
shown in Table 1. Significantly more CRUs (2.3-fold, P � .02)
were detectable in the cells harvested from the secondary cultures
containing SDF-1 than in those containing SF plus TPO alone or in
those maintained in the original 5-GF cocktail used in the primary
cultures. In contrast, TGF-�1 did not affect the number of CRUs
detected and even antagonized the enhancing effect of SDF-1.

There are 3 ways that SDF-1 could have elicited the increases in
CRU numbers seen. One mechanism could be the stimulation of a
faster rate of CRU proliferation (faster cell cycle transit time).
However, given the evidence that SDF-1, like TGF-�1, inhibits the
proliferation of primitive hematopoietic cells, including LTC-
ICs,12,22,23 such a possibility seems unlikely. A second mechanism
would be the induced dedifferentiation of cells that had already
progressed to a later progenitor stage prior to their exposure to
SDF-1. Although such a possibility cannot be formally ruled out,
the increased numbers of CFCs seen do not favor this explanation;
nor was there any evidence of an increase in LTC-ICs, which are
generally viewed as closely related to CRUs. A third way that
increased numbers of CRUs could have been produced is by
recruitment from a previously undetectable, but developmentally
equivalent, cell population. Such a situation is known to exist
because proliferating HSCs transit S/G2/M,8,10 and the recent
evidence of a cytostatic effect of SDF-1 on closely related
progenitor types12 is consistent with a proliferation blockade of
HSCs.12,22,23 Moreover, the 2-fold higher number of CRUs detected
when the cells were exposed to SDF-1 is exactly what would be
anticipated from an arrest in G1 of those that would otherwise have
entered S/G2/M. Alternatively, SDF-1 may exert its effects on the
transplantability of HSCs independent of effects on HSC cycling.
However, incubation of freshly isolated quiescent CB HSCs with
SDF-1 has been found to decrease the ability of these HSCs to

engraft NOD/SCID mice.21 An SDF-1–mediated arrest of cycling
HSCs thus seems a more plausible explanation for the enhancing
effect observed here. The effectiveness of SDF-1 in the absence of
stroma also suggests that a direct action on HSCs was obtained.
Similar results have been recently reported for preactivated primate
HSCs maintained for 4 days in secondary cultures containing SF
and retronectin (but no other GFs or chemokines).24

At first glance, our finding that TGF-�1 did not have a similar
effect on the number of CRUs detected seems contradictory.
However, given the high frequency of apoptotic cells seen in the
CD34� compartment when these cells were exposed to TGF-�1,
such an effect may have offset any increase in CRU numbers. In
line with this interpretation was the finding that a net increase in
CRUs detected was also not obtained when the cells were cultured
in TGF-�1 as well as SDF-1. However, regardless of the mecha-
nism(s) ultimately found to explain the findings described here,
they suggest an interesting new approach to enhancing HSC yields
in a variety of cellular and gene therapy strategies that involve
stimulating HSCs to proliferate ex vivo prior to their transplanta-
tion in vivo.
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