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Perturbation of B-cell development in mice overexpressing the Bcl-2 homolog A1
Peter I. Chuang, Samantha Morefield, Chien-Ying Liu, Stephen Chen, John M. Harlan, and Dennis M. Willerford

Decisions about cell survival or death are
central components of adaptive immunity
and occur at several levels in immune
system development and function. The
Bcl-2 family of homologous proteins plays
an important role in these decisions in
lymphoid cells. Bcl-2, Bcl-xL, and A1 are
differentially expressed during B- and T-
cell development, and they have shared
and distinct roles in regulating cell death.
We sought to gain insight into the role of
A1 in immune system development and
function. A murine A1-a transgene was
expressed under the control of the E �

enhancer, and mice with A1 overexpres-

sion in B- and T-cell lineages were de-
rived. Thymocytes and early B cells in
E�-A1 mice showed extended survival.
B-lineage development was altered, with
expansion of the pro–B cell subset at the
expense of pre–B cells, suggesting an
impairment of the pro– to pre–B-cell tran-
sition. This early B-cell phenotype re-
sembled E �–Bcl-xL mice but did not pref-
erentially rescue cells with completed
V(D)J rearrangements of the immuno-
globulin heavy chain. In contrast to E �–
Bcl-2 transgenes, A1 expression in pro–B
cells did not rescue pre–B-cell develop-
ment in SCID mice. These studies indi-

cate that A1 protects lymphocytes from
apoptosis in vitro but that it has lineage-
and stage-specific effects on lymphoid
development. Comparison with the ef-
fects of Bcl-2 and Bcl-xL expressed under
similar control elements supports the
model that antiapoptotic Bcl-2 homologs
interact differentially with intracellular
pathways affecting development and apo-
ptosis in lymphoid cells. (Blood. 2002;99:
3350-3359)
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Introduction

Regulation of cell survival is a critical process in the development
and function of multicellular organisms.1,2 The family of proteins
sharing homology with Bcl-2 plays key roles in regulating cell fate
and includes members that antagonize and others that promote cell
death.3,4 Available studies suggest a role for the antiapoptotic
proteins Bcl-2, Bcl-xL, and A1 in the development, function, or
both of the immune system. In mice, Bcl-2 plays a critical role in
the survival of mature T and B cells.5-7 Variations in its expression
may enhance specific immunity or may limit the extent of antigen
responses.4,8 Bcl-xL is developmentally regulated in the thymus
and is required for the survival of immature thymocytes, suggesting
a potential role in the generation of central tolerance.9-11 In the bone
marrow, Bcl-xL is expressed in pre–B cells and is required for the
survival of early B-lineage cells.10,12 Bcl-xL is down-regulated at
later stages of B-cell development, but it is induced in activated
lymphocytes and may play a role in the selection of beneficial
clones.12-14 Less is known regarding A1, which is inducible as an
early-response gene to a variety of stimuli in myeloid, lymphoid,
and endothelial cells.15-20 Like Bcl-2 and Bcl-xL, A1 is developmen-
tally regulated in the immune system and is induced on cellular
activation, suggesting a role in development and immune re-
sponses.18 A1 is unusual in that it is encoded by 4 distinct genes in
mice, termed A1-a through A1-d.21 Aside from A1-c, which bears a
frameshift insertion, A1-a, A1-b, and A1-d are 97% identical, and in
neutrophils all 3 isoforms are expressed. Increased apoptosis of
neutrophils has been demonstrated in mice with targeted inactiva-

tion of the A1-a isoform, but this subtle phenotype likely reflects
functional compensation by the other genes.

Although Bcl-2, Bcl-xL, and A1 all have the property of
enhancing cell survival, it remains unclear whether the individual
functions of these proteins represent the same fundamental activity
targeted to particular developmental and physiologic circum-
stances. Alternatively, these homologs could have important indi-
vidual activities within the cell, such as regulating different
categories of death signals or other types of cellular stimuli. To
study the functional properties of A1 in lymphoid cells in vivo, we
have constructed transgenic mice that overexpress A1-a under the
control of the immunoglobulin intronic enhancer E�. This control
element has been well characterized in transgenic systems. More-
over, numerous studies have been performed using Bcl-2 and
Bcl-xL overexpressed under E� control. By comparing the similari-
ties and differences in the phenotypes of E�–Bcl-2, E�–Bcl-xL,
and E�-A1 mice, we sought to gain insight into the distinct cellular
functions of these homologs.

Materials and methods

E�-A1 transgenic mice

Murine cDNA corresponding to positions 1 to 676 of the A1-a gene15 was
amplified from mouse spleen RNA by reverse transcription–polymerase
chain reaction (RT-PCR), subcloned into the pT7BlueR vector (Novagen,
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Madison, WI), and verified by DNA sequencing. The A1-a cDNA sequence
was recloned into the BamH1 site in the pHSE3� expression cassette22

(Figure 1A). This vector includes the H-2Kb promoter and the E� enhancer,
and it directs expression to the B- and T-lymphoid lineages.22 The E�-A1
transgene construct was liberated from the plasmid vector using a XhoI
digest and was introduced into C57BL/6 eggs by pronuclear injection using
standard techniques. Founder mice were detected by Southern blot analysis
of tail DNA and were bred with C57Bl/6 mice to generate individual mouse
lines. Offspring were typed using PCR for wild-type and transgene-specific
A1-a sequences using the following primers: 5�-GCG ATC ACC AAG AAC
CAA TC-3� (5� H-2Kb primer); 5�-GCC ATC TTC CCT GGC AGA GC-3�
(5� A1 primer); and 5�-GCCATCTTCCCTGGCAGAGC-3� (3� A1 primer).
All mice were housed in a specific pathogen-free facility. E�-A1 line 8
mice were bred with SCID mice maintained on a C57Bl/6 background in
our facility. Transgene-positive offspring were interbred, and SCID/SCID
offspring were identified by screening peripheral blood for T cells using
flow cytometry.

To assess transgene expression, total RNA was harvested from thymus,
spleen, bone marrow, and kidney using Tri-reagent (Sigma, St Louis, MO),
according to the manufacturer’s instructions. RNA (1.5 �g per sample) was
used in a ribonuclease protection assay (Multi-probe RPA; BD PharMingen,
San Diego, CA) as previously described.17,23 The probe used in this assay
protected nucleotides 140 to 503 in the A1-a cDNA. Within the range of this
A1-a probe, there were 6 mismatches for the A1-b mRNA subtype, 9
mismatches for A1-c, and 4 mismatches for A1-d. As a result, only the A1-a
subtype mRNA was expected to yield the longest (364 base pair [bp])
protected fragment. Quantitation of protected bands was performed using
densitometric analysis of autoradiograms (National Institutes of Health
Image software, version 1.62).

Polymerase chain reaction assays

Semiquantitative PCR assays for DJ and V(D)J rearrangement were
performed using purified genomic DNA as described.24 Equivalence of

sample DNA was assessed in parallel PCR amplifications performed to
amplify CD14 and was analyzed on ethidium bromide–stained agarose gels.
RT-PCR was performed on RNA extracted from 107 bone marrow cells with
the RNA-Easy mini kit (Qiagen, Valencia, CA), according to the manufac-
turer’s instructions. Four microliters RNA preparation was treated with 10
U RNase-Free DNase I (Roche Molecular Biochemicals, Mannheim,
Germany) in Superscript-II RT buffer (Life Technologies/Invitrogen, Carls-
bad, CA) for 10 minutes at 25°C, followed by inactivation at 65°C for 10
minutes. One half of the reaction mixture was immediately reverse
transcribed with Superscript-II, according to the manufacturer’s standard
protocol. The other half was carried through identical reactions, except that
the reverse transcriptase was omitted to verify the lack of a signal derived
from genomic DNA. For PCR, 1 �L reverse-transcribed reaction mixture
was used under conditions shown to be semiquantitative, with primer pairs
(30 �M each) specific for �-actin, �5, RAG-1, and RAG-2, as described by
Li et al.25 In similar PCR reactions, the murine c� primer sequences used
were TAA GAA TCT GGT GGC CAT GG (5� c� primer) and TTG TTC
TCG ATG GTC ACC G (3� c� primer) and yielded a single 453-bp product.
The E�-A1 primers used were the 5� H-2Kb primer and the 3� A1 primer
detailed above; it yielded a single 250-bp product.

Analysis of lymphoid development

Serum immunoglobulin levels were determined using enzyme-linked
immunosorbent assays as described.26 Flow cytometry was performed
using antibodies conjugated to fluorescein isothiocyanate, phycoerythrin,
biotin, Cychrome, or allophycocyanin obtained from BD PharMingen.
Biotin-conjugated antibodies were developed with streptavidin–Cychrome
(PharMingen). Cell suspensions were stained as described27 and were
analyzed using a FACScalibur instrument equipped with dual lasers
(Becton Dickinson, San Jose, CA). Data were analyzed using FlowJo
software (Treestar, San Carlos, CA). Cell-sorting experiments were per-
formed on bone marrow cells pooled from 2 to 4 animals and were stained
with fluorescein isothiocyanate–anti-IgM, phycoerythrin–anti-CD43, and
Cychrome–anti-B220 (BD PharMingen). Using a FACSVantage cell sorter
(Becton Dickinson), pre–B (B220�IgM�CD43�) and pro–B (B220�

IgM�CD43�) subsets were sorted. Reanalysis of sorted cells indicated
greater than 94% purity. Cell-cycle analysis was performed using simulta-
neous surface staining with anti-B220 antibodies and DAPI (4,6-diamidino-
2-phenylindole) staining for DNA content. Antibody-stained bone marrow
cells were resuspended in Tris-buffered saline containing 10 mg/mL DAPI
and 0.1% Nonidet-P40 (both from Accurate Chemical, Westbury, NY).
Samples were analyzed on a dual-laser LSR instrument (Becton Dickinson)
with UV and 488-nm excitation. Data were analyzed using FlowJo software
and were gated to exclude doublets. Cycling cells were calculated using the
Watson pragmatic algorithm.

Cell survival assays

Thymocyte survival in vitro was assessed after disrupting thymic lobes over
nylon mesh and plating cells at a density of 1 � 106/mL in RPMI 1640
supplemented with 10% fetal calf serum, 2 mM L-glutamine, nonessential
amino acids, and antibiotics. Cells were cultured in 24-well plates at 37% in
a humidified 6% CO2 incubator in medium or in dexamethasone (0.2 or 1
�M) or were exposed to �-irradiation (2.5 or 10 Gy) and were studied for
the ensuing 4 days. Cells were counted using a hemacytometer, and
viability was determined by trypan blue exclusion. Bone marrow survival
was studied as described.28

Results

Increased A1 mRNA expression in lymphoid
tissues of E�-A1 transgenic mice

To study the in vivo effects of A1 overexpression on immune
system development, we inserted cDNA representing the A1-a
isoform into an expression system based on the IgH intronic

Figure 1. E�-A1 transgenic mice. (A) E�-A1 transgene construct, containing
full-length A1-a cDNA, E� enhancer, and H-2Kb promoter. (B) A1 mRNA expression
in transgenic mice and wild-type littermates. Ribonuclease protection assays for A1-a
and GAPDH control are shown for the indicated tissues for line 8 mice. (C)
Overexpression of A1-a mRNA in 3 E�-A1 transgenic mouse lines. Figures represent
-fold increases in A1-a mRNA in the indicated tissues over those of wild-type
littermates. Results are the mean from 2 animals of each genotype and are
normalized to the GAPDH signal.
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enhancer E� and the H-2Kb promoter22 (Figure 1). Steady-state
levels of A1-a mRNA were studied using RNase protection assays
in 3 independent transgenic lines. We found that A1-a mRNA levels
were substantially increased in thymus, bone marrow, and spleen
but not in kidney in 3 independent transgenic lines. Expression of
transgenic mRNA was subsequently confirmed using PCR to detect
A1 transcripts containing sequences from the heterologous control
element (see below and Figure 7). The observed expression pattern
was consistent with previous studies using this transgene regula-
tory system.22

Effects of A1 overexpression on immune system development

Four independent lines of E�-A1 transgenic mice were analyzed
for effects on primary and secondary lymphoid tissues using flow
cytometry. In all lines, no discernible effects on thymic cellularity
or subsets defined by CD4 and CD8 expression were observed
(data not shown). B lymphopoiesis was analyzed using 3-color
flow cytometry with markers for IgM, B220, and CD43. In all 4
lines, an increase in the percentage of B220�IgM�CD43� pro–B
cells was observed (Figure 2, Table 1). This effect was most
pronounced in line 8, which was selected for more detailed studies.
Analysis of absolute cell numbers contained in 2 femurs from line 8
or control mice indicated that the proportional increase in the ratio
of pro– to pre–B cells was the result of an increase in pro–B-cell
numbers and a decrease in pre–B-cell numbers. B-cell developmen-

tal subsets were further analyzed using 4-color flow cytometry
according to the scheme of Li et al25 and Hardy et al29 (Figures 2,
3). This analysis showed that the expanded population of
B220�IgM�CD43� pro–B cells was accounted for primarily by an
increase in fraction B (heat-stable antigen [HSA�] BP1�), a
population that precedes delivery of the pre–B-cell receptor signal
(Figure 3). Taken together, these data indicate that the E�-A1
transgene led to an expansion of pro–B cells, and they suggest that
this was in part caused by impaired progression from the pro–B-
cell to the pre–B-cell stage.

The pro–B-cell stage is characterized by ordered D to J,
followed by V to DJ rearrangement of the IgH locus. Successful
in-frame IgH rearrangement leads to expression of the �H protein
and signals the transition to the pre–B-cell stage.30 We assessed IgH
DJ and V(D)J rearrangement in the expanded pro–B-cell popula-
tion in E�-A1 transgenic mice. B220� bone marrow cells represent-
ing pro– and pre–B-cell subsets were purified by cell sorting
(Figure 4). Genomic DNA from equivalent cell numbers was
extracted and subjected to PCR as previously described24 using a
primer downstream of JH3, paired with a degenerate primer
complementary to 5� DH segments or to VH segments. Amplifica-
tion of polyclonal B-lineage populations gives a 3-part ladder
representing rearrangements to JH1, JH2, and JH3. The CD14 gene
was amplified from each sample as a control. As expected, the
V(D)J signal was lower in pro–B cells than in pre–B cells,

Figure 2. Flow cytometric analysis of bone marrow B-lineage cells in E�-A1
mice. Comparison with Rag-2�/� mice and wild-type (WT) littermates. (A, B) Bone
marrow cells stained with antibodies to B220, IgM, and CD43 and gated on
lymphocytes by scatter characteristics. (C) Four-color analysis of bone marrow cells
stained with antibodies to B220, CD43, BP-1, and HSA and gated on B220�CD43�

pro–B cells.

Figure 3. Analysis of bone marrow B-cell lineage development. Flow cytometric
analysis in E�-A1 transgenic mice (shaded bars) and wild-type littermates (open
bars) using the convention devised by Hardy et al.29 Flow cytometry data were gated
as described “Materials and methods.” Data are presented as the mean (	 SD)
percentage of the B220� lymphocyte population for 4 mice of each genotype.
Statistically significant differences (P 
 .05) were found in fraction B (subset of pro–B
cells) and fraction D (pre–B cells), signified by asterisks.

Table 1. Expansion of bone marrow pro–B cells in 4 independently derived mouse lines bearing an E�-A1 transgene

Line N

IgM� B Pre-B Pro-B

Pre-B/Pro-B% Cells (� 10�6) % Cells (� 10�6) % Cells (� 10�6)

Wild-type 9 47 	 2.0 2.0 	 0.93 46 	 13 2.5 	 0.15 6.7 	 2.4 0.41 	 0.21 7.4

8 8 41 	 8 1.5 	 0.61 34 	 10 1.3 	 0.57 25 	 3.4 0.94 	 0.44 1.4

6 2 39 ND 42 ND 19 ND 2.3

14 2 58 ND 28 ND 10 ND 2.8

95 5 40 	 5.3 ND 47 	 7.2 ND 9.8 	 3.1 ND 5.5

Bone marrow cells from mice 4 to 8 weeks of age were analyzed using 3-color flow cytometry for the expression of B220, IgM, and CD43. Populations were expressed as a
percentage of B220� cells, including IgM� B cells, IgM�CD43� pre–B cells, and IgM-CD43� pro–B cells. In WT and line 8 mice, absolute cell numbers contained in 2 femurs are
also given. Ratios of pre– to pro–B cells are also given. Mean 	 SD are given for the indicated number of mice analyzed, except for lines 6 and 14, in which only 2 mice were
studied. ND indicates not done.
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indicating that only a fraction of IgH alleles in the former
population had completed rearrangement. There were no signifi-
cant differences in DJ or V(D)J rearrangements when pro–B cells
from wild-type and E�-A1 transgenic mice were compared,
suggesting that rearrangement of the IgH locus was not blocked by
the transgene and that pro–B-cell expansion did not represent
selective accumulation of cells with completed V(D)J rearrange-
ments of the IgH locus.

Peripheral lymphoid populations were analyzed in line 8 mice
(Table 2). We noted a modest but statistically significant decrease
in splenic B cells in transgene-positive mice. Similar analyses
performed on the other E�-A1 lines showed no definable differ-
ence in peripheral B cell number compared with littermate controls
(data not shown). Serum immunoglobulin levels were also ana-
lyzed in 6- to 8-week-old line 8 mice and showed a correspond-
ingly modest decrease in mean levels of serum IgG1 and IgG2a but
not of IgM (Table 3).

Increased survival of E�-A1 transgenic thymocytes
and B-cell precursors in vitro

Enforced expression of A1 in cell lines leads to enhanced survival
in the absence of growth signals or in response to apoptotic

stimuli.31 Similar effects are noted when other antiapoptotic Bcl-2
homologs are overexpressed in lymphoid cells in vivo.32-34 To
verify the expression of A1 protein in E�-A1 transgenic lymphoid
cells, we studied the survival of thymocytes and bone marrow
B-lineage cells. Compared with nontransgenic controls, thymo-
cytes from transgenic animals survived better ex vivo in tissue
culture medium and were more tolerant toward death-inducing
stimuli, including �-irradiation (2.5 Gy) and 0.2 �M dexametha-
sone (Figure 5A). Similar protective effects were observed with
higher doses of �-irradiation (10 Gy) and dexamethasone (1 �M)
over the same culture period (data not shown). Survival of bone
marrow B-lineage cells was studied by in vitro culture, followed by
flow cytometric analysis of surviving cells defined by light-scatter
characteristics (Figure 5B). In 2 independent experiments, after 11
and 12 days, respectively, substantially more cells survived in the
lymphoid gate in transgenic mice. When these events were
analyzed, essentially all cells were B220�. In wild-type mice, rare
surviving B-lineage cells were almost exclusively IgM�, whereas
in E�-A1 mice, surface IgM� B-precursor cells and IgM� B cells
survived. Short-term in vitro survival assays were also performed
on lymph node and spleen cells in which no significant differences
were found between wild-type and E�-A1 transgenic mice (data
not shown). These data demonstrate that E�-A1 transgenic thymo-
cytes and bone marrow B-lineage cells exhibit a survival advantage
in vitro, and they suggest that the transgene leads to overexpression
of functional A1 protein.

Failure of the E�-A1 transgene to rescue V(D)J
recombination and pre–B cells in SCID mice

In SCID mice, mutation of the Prkdc gene, encoding the DNA-
dependent protein kinase catalytic subunit, leads to impairment of
V(D)J recombination and failure of T- and B-cell development.30

The defect is leaky, and T and B cells accumulate in these mice as
they age. E�–Bcl-2 transgenes expressed in the SCID background
lead to rescue of pre–B-cell development, a phenotype that is
dependent on functional IgH rearrangement.35,36 To determine
whether the expression of A1 in SCID B-lineage cells had a similar
effect on developmental progression, we introduced the E�-A1
transgene into the SCID background. The number of B220� cells
recovered from both femurs in E�-A1 SCID mice was comparable
to that in SCID littermates (Table 4). Surprisingly, we found no
effect on the phenotype of early B-lineage cells in the bone marrow

Figure 4. IgH locus rearrangements in pre– and pro–B-cell subsets from E�-A1
transgenic mice. DNA from IgM�B220�CD43� and IgM�B220�CD43� bone mar-
row populations purified by cell sorting was amplified using PCR for DJ and V(D)J
rearrangements under semiquantitative conditions. Southern blots of PCR products
were hybridized with internal oligonucleotide probes (see “Materials and methods”).
Parallel amplification of CD14 served as a control and was assessed by ethidium
bromide staining.

Table 3. Serum immunoglobulin levels in 6- to 8-week-old
E�-A1 transgenic mice and wild-type littermates

Wild-type (�g/mL) E�-A1 (�g/mL)

IgM 128 	 100 116 	 34

IgG1 427 	 417 223 	 216

IgG2a 114 	 72 75 	 49

Mean 	 SD for 5 mice tested in each group.

Table 2. Peripheral lymphoid subsets in E�-A1 line 8 mice compared with wild-type littermates

B220�IgM� CD4� CD8�

% Cells (� 10�6) % Cells (� 10�6) % Cells (� 10�6)

Wild-type spleen 56.0 	 6.9 23.0 	 9.4 24.0 	 7.2 9.0 	 5.6 15.0 	 5.3 5.4 	 2.9

E�-A1 spleen 49.0 	 7.4* 15.0 	 5.1* 23.0 	 14 6.3 	 4.3 17.0 	 7.5 4.9 	 3.2

Wild-type lymph node 25.0 	 5.0 2.2 	 1.1 36.0 	 13 3.0 	 1.5 28.0 	 8.9 2.3 	 1.2

E�-A1 lymph node 18.0 	 5.5 1.6 	 0.71 38.0 	 11 3.2 	 1.7 33.0 	 7.1 2.6 	 1.2

Lymph node and spleen cells from 4- to 8-week-old mice were counted and analyzed for the indicated subsets using flow cytometry. Values indicate the average
percentage or absolute numbers of cells for the indicated subset (	 SD) for 6 mice analyzed in each group. For splenic B-cell numbers, the difference is statistically significant.

*P 
 .02, compared to wild-type.
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of transgenic SCID mice (Figure 6A). We next assayed bone
marrow cells from SCID and E�-A1 SCID mice for DJ and V(D)J
rearrangements (Figure 6B). Faint DJ signals were seen more
strongly in E�-A1 SCID than in SCID bone marrow, suggesting
that there might have been a small difference in the number of cells
undergoing the first step of IgH rearrangement in the presence of
the E�-A1 transgene. However, no V(D)J rearrangements were
detected in either E�-A1 SCID or SCID mice. These findings
indicate that A1 overexpression does not lead to successful V(D)J
rearrangement in SCID pro–B cells or to rescue of pre–B cells as
seen in E�-Bcl-2 SCID mice. Bcl-2 expression in either the SCID
or the Rag-2�/� background leads to the accumulation of B220�

cells in the spleen.35,36 SCID mice expressing the A1 transgene had
no such accumulation of B-lineage cells (Table 4).

To understand potential reasons for the developmental delay of
pro–B cells in E�-A1 transgenic mice, pro–B cells arrested at this
stage by the SCID defect were examined. Cells at this developmen-
tal stage express Rag-1 and Rag-2 endonuclease genes, transcribe

the unrearranged IgH locus, and express pre–B-cell receptor
signaling components. After successful IgH rearrangement and
expression of C� protein, pre–B-cell receptor signals lead to
proliferation and phenotypic changes that characterize the pre–B-
cell compartment. We used semiquantitative RT-PCR to character-
ize the levels of mRNA for Rag-1, Rag-2, C� sterile transcripts,
and �5 in bone marrow from E�-A1 SCID mice (Figure 7A). Cells
at this stage were confirmed to express E�-A1 transgene mRNA.
We identified no effect of A1 overexpression on the level of these
early B-cell transcripts, suggesting that the pro–B-cell phenotype in
E�-A1 transgenic mice was not caused by defective expression of
these components. Bcl-2 expression has been shown to affect
cell-cycle entry, and early B cells in E�-Bcl-2 mice have reduced
proliferation rates.37,38 Because defective cell-cycle progression
could affect the pro– to pre–B-cell transition, we analyzed pro–B-
cell proliferation in vivo in E�-A1 SCID pro–B cells (Figure 7B).
We identified no effect of the transgene on the cell cycle profile in
this compartment, suggesting that A1 overexpression did not have
an overall effect on cell-cycle entry in vivo.

Irradiation of newborn SCID mice leads to the partial rescue of
thymocyte development, with an increase in thymic cellularity and
appearance of CD4�CD8� immature thymocytes that bear func-
tional T-cell receptor (TCR)-� rearrangements.39 Because A1, like

Figure 5. Survival analysis of developing lymphoid cells in E�-A1 transgenic
mice. (A) Thymocytes from E�-A1 transgenic or wild-type (WT) littermates (3 mice
aged 5 weeks in each group) were cultured in vitro with medium alone, after
�-irradiation (2.5 Gy), or in the presence of 0.2 �M dexamethasone. Viability on the
indicated days was ascertained by trypan blue exclusion. Representative results from
1 of 2 independent experiments are shown. (B) Survival analysis of B-lineage bone
marrow cells. Bone marrow was cultured for 11 days and subjected to flow cytometric
analysis for the indicated markers. Analysis is based on 100 000 events. Upper
panels show light-scatter parameters on B220� events and gate used to classify
viable lymphoid cells. Lower panels show B220 and IgM expression on gated data.
Percentages within each gate are shown. Data are representative of 2 experiments
(the second was assayed after 12 days), each containing 2 or 3 mice of each genotype.

Figure 6. B-lineage development in E�-A1 SCID mice. (A) Flow cytometric
analysis of bone marrow of SCID mice with and without the E�-A1 transgene.
B-lineage cells were IgM� and CD43� and were indistinguishable from nontransgenic
SCID littermates. Results are representative of 7 mice analyzed for each genotype.
(B) Analysis of IgHI DJ and V(D)J rearrangements in SCID and E�-A1 SCID bone
marrow using PCR. A faint DJ rearrangement signal is seen in the E�-A1 SCID
samples, but no V(D)J rearrangements were detected. Wild-type bone marrow and
kidney are shown for comparison. The V(D)J signal in the kidney sample likely
reflects low levels of lymphoid cells in the organ.

Table 4. Expression of E�-A1 transgene in the SCID background

B220� cells (� 10�3)

Bone marrow Spleen

SCID 570 	 32 940 	 940

E�-A1 SCID 510 	 30 570 	 210

Bone marrow and spleen cells were analyzed for B220 expression using flow
cytometry. Mean absolute cell numbers (	 SD) are given for 2 femurs or whole
spleen from 7 mice of each genotype. Differences between SCID and E�-A1 SCID
groups were not statistically significant.
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other antiapoptotic Bcl-2 homologs, partially protects against
apoptosis induced by DNA damage, we assessed whether the
E�-A1 transgene might enhance the ability of radiation to rescue T-
or B-cell development in the SCID background (Figure 8, Table 5).
Progeny of E�-A1 SCID � SCID mouse crosses were irradiated
within 3 days of birth. After 12 to 22 days, the thymus and bone
marrow were examined for markers of T- and B-cell development.
We found that radiation-induced rescue of SCID thymocytes was
less efficient than previously reported for SCID mice of a distinct
genetic background,39 requiring a higher dose and greater observa-
tion time to observe robust rescue of double-positive thymocyte
development. The degree of rescue varied from individual to

individual; however, no overall differences were observed between
E�-A1 SCID and SCID littermates. We found no evidence for
rescue of pre–B- or B-cell development in SCID mice at any dose
or time point examined, and the results were identical in E�-A1
SCID littermates.

E�-A1 mice do not develop lymphoid tumors

Overexpression of Bcl-2 in B cells is associated with the develop-
ment of tumors as mice age.32,40 Similarly, overexpression of
Mcl-1, another cytoprotective member of the Bcl-2 family, also
leads to B-cell tumors.41 In multiple lines of E�-A1 transgenic
mice followed up for as long as 18 months, no B-cell tumors were
observed. One E�-A1 SCID mouse had thymic lymphoma at age 4
months. These observations suggest that the oncogenic potential
for A1 overexpression in lymphoid cells may be less than that
for Bcl-2 or Mcl-1.

Discussion

The immune system uses unique forms of targeted genomic
instability to randomize parts of the primary sequences of immuno-
globulin and TCR genes to create a nearly unlimited repertoire of
antigenic specificities. This process generates many out-of-frame
or otherwise nonfunctional or deleterious alleles, and selective
processes ensure the survival of a primary repertoire of cells with
functional and self-tolerant antigen receptors. Further diversifica-
tion of immunoglobulin genes occurs in B cells during immune
responses, requiring additional selection events to ensure survival
of the small minority of cells with improved affinity for antigen.
These processes illustrate a fundamental aspect of adaptive immu-
nity: survival or death decisions are required on a cell-by-cell basis
at several points in immune system development and function. Cell
fate decisions in immunity represent a complex integration of

Figure 7. Analysis of bone marrow pro–B cells in SCID and E�-A1 SCID mice.
(A) Expression of mRNA for genes required for pre–B-cell development in 6-week-old
mice. Bone marrow RNA was amplified using RT-PCR under semiquantitative
conditions. Actin mRNA was amplified in parallel as a loading control. E�-A1 mRNA
transcript is specific for the transgene. (B) Cell-cycle analysis of pro–B cells. Analysis
of DNA content by DAPI staining was gated on B220� cells. Percentages of cells in S
and G2�M phases of the cell cycle were determined using FlowJo software.

Figure 8. Analysis of B- and T-lymphoid development after irradiation of
newborn SCID mice. Mice were analyzed 22 days after irradiation with 150 cGy
shortly after birth. (A) Flow cytometric analysis of bone marrow with markers
indicated. No rescue of pre–B-cell development was observed. (B) Rescue of
CD4�CD8� thymocytes, in comparison with unirradiated SCID control. Plots show
CD8� cells (which also expressed CD4) in comparison with CD25� prothymocytes,
which were negative for both CD4 and CD8.

Table 5. Rescue of CD4�CD8� thymocytes by radiation
in SCID and E�-A1 SCID mice

Group Genotype Double positive, %

Experiment 1 (100 cGy, 16 d) SCID 80

SCID 0.67

SCID 0.78

E�-A1 SCID 1.7

E�-A1 SCID 9.6

E�-A1 SCID 2.1

Experiment 2 (150 cGy, 12 d) SCID 1.3

SCID 19

SCID 70

SCID 91

E�-A1 SCID 66

Experiment 3 (150 cGy, 22 d) SCID 84

SCID 54

E�-A1 SCID 89

E�-A1 SCID 12

Control SCID 0.77 	 0.43

E�-A1 SCID 0.89 	 0.51

Offspring of E�-A1 SCID � SCID crosses were irradiated at birth with 100 or 150
cGy. At the indicated interval, thymus and bone marrow were analyzed for lymphoid
development. Rescue of double-positive thymocytes was calculated as the percent-
age of cells in lymphoid scatter gates expressing CD4 and CD8 and is given for
individual animals. As controls, 5 mice aged 3 to 5 weeks were used, and values
reflect the mean 	 SD for these groups.
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signals delivered by antigen receptors, coreceptors, cytokines, and
cell death surface receptor proteins such as Fas. Among the
intracellular consequences of several of these signals is the
modulation of Bcl-2 family proteins, which may promote or
antagonize the activation of downstream apoptotic pathways.8,42

Among the antiapoptotic Bcl-2 homologs, little is known
regarding the function of A1 in vivo. Analysis of gene-deficient
mice is complicated by the apparent redundancy engendered by the
presence in mice of 4 nearly identical A1 genes, 3 of which are
expressed.43 Although these animals can be shown to have
increased neutrophil and macrophage apoptosis,21,44 lack of an
apparent phenotype in the lymphoid lineage is difficult to interpret
because of gene redundancy. An A1-a transgene under the control
of the E�/H2K expression cassette led to broad overexpression of
A1-a mRNA in the T- and B-cell lineages (Figure 1), consistent
with previous results using these control elements.22 We were
unable to detect A1 protein in vivo using antibodies available
commercially or antibodies generated in our laboratory that
interacted specifically with A1 protein in vitro or using a reagent
previously shown16 to detect A1 in macrophages with highly
inducible A1 expression (P.I.C., D.M.W., unpublished observa-
tions, January 2001; May 2001). However, we did find evidence of
extended in vitro survival of bone marrow B-lineage cells and
thymocytes derived from transgenic mice (Figure 5). For thymo-
cytes, these studies indicated that A1 antagonized apoptosis
induced not only by ex vivo culture but also by treatment with
death agonist dexamethasone and DNA damage induced by
�-irradiation. In thymocytes, the magnitude of apoptosis inhibition
by the E�-A1 transgene was considerably less than it was in 2
previous studies of transgenic mice with Bcl-2 overexpression in
the thymus.33,34 These data could reflect differences in protein
expression or differences in the relative activity of Bcl-2 and A1 in
antagonizing cell death. Taken together, these studies indicate that
the E�-A1 transgene led to the overexpression of functional A1
protein in the developing B- and T-cell compartments, though the
degree of overexpression and potential stage-specific differences
cannot be accurately quantified. The fact that the phenotype of
pro–B-cell expansion was seen in multiple transgenic lines also
offers strong genetic evidence for the expression of the transgene,
at least within the affected cellular compartment.

Despite evidence for A1 overexpression in the thymus of
E�-A1 transgenic mice, we saw no discernible effect on thymic
cellularity or composition. Maturation of immature CD4�CD8�

double-positive T-cell precursors to the CD4� or CD8� single-
positive stage is largely determined by positive and negative
survival signals, which govern the selection of cells bearing major
histocompatibility complex–reactive, self-tolerant TCR specifici-
ties.30,45 Bcl-xL and A1 are both expressed at high levels at the
double-positive stage and are down-regulated with maturation,
whereas Bcl-2 expression exhibits the reverse pattern.9,19,46 The
limited thymic phenotype of E�-A1 mice is similar to that reported
for E�–Bcl-2 and E�–Bcl-xL mice.9,33,34,47-49 Partial inhibition of
negative-selection processes and rescue of cells otherwise dying
for lack of positive selection has been reported in E�–Bcl-2 and
E�–Bcl-xL mice, suggesting that the modulation of antiapoptotic
Bcl-2 homologs may play a role in thymic maturation.33,47,50,51 The
antiapoptotic effect of these proteins appears to balance the
activities of proapoptotic Bcl-2 homologs.4,8 For example, mice
lacking the proapoptotic homolog Bim display an accumulation of
thymocytes in early life and a defect in peripheral lymphoid

homeostasis.52 In the thymus, CD4�CD8� pre–T cells undergo
massive apoptosis in Bcl-xL–deficient mice, implicating Bcl-xL in
thymic selection processes.10,11 This result also indicates that A1
expression at physiologic levels is not functionally redundant with
Bcl-xL at this stage. Despite transgene expression in T- and B-cell
lineages, including significant increases in A1-a mRNA in periph-
eral lymphoid tissue, we saw no accumulation of T cells in the
periphery of E�-A1 transgenic mice. Although we cannot rule out
poor A1 protein expression in this cellular subset, these results
suggest that enforced A1 expression is insufficient to overcome
normal homeostatic control of peripheral T-cell populations, simi-
lar to findings in E�–Bcl-2 mice with T-lineage expression.33,48 In
contrast, E�–Bcl-xL mice expressing the transgene in the T-cell
lineage exhibited 3- to 5-fold increases in lymph node T-cell numbers.9

The major phenotype we observed in E�-A1 transgenic mice
was the expansion of B-cell progenitors at the pro–B-cell stage.
This finding was present in multiple independent mouse lines,
indicating that it was a function of the transgene per se, indepen-
dent of variability conferred by insertional effects (Table 1). The
central differentiation event within the pro–B-cell compartment is
the V(D)J rearrangement of the IgH locus, which, if successful and
in-frame, leads to synthesis of the Ig� protein. Expression of Ig� in
the context of the pre–B-cell receptor complex delivers an intracel-
lular signal that leads to cellular proliferation and maturation to the
pre–B-cell stage.30 Differentiation events within the pro–B-cell
compartment correlate with distinct cellular subfractions defined
by the expression of HSA and BP-1.25,29 Within fraction A (HSA�

BP-1�), the IgH locus begins to show initial D-to-J rearrange-
ments. In fraction B (HSA� BP-1�), DJ rearrangements are seen
and V(D)J rearrangements appear at low levels. Fraction C
contains cells with functionally rearranged IgH alleles and includes
cells that are rapidly cycling and in transition to the pre–B-cell
stage. Expansion of pro–B cells in E�-A1 mice specifically
affected fraction B (Figure 3) and was accompanied by a relative
decrease in fraction D (pre–B cells). These findings might be
explained in one of 3 ways: (1) a partial block in the pre–B-cell
receptor signal; (2) accumulation of a subset of fraction B cells that
might otherwise die without progressing to the pre–B-cell stage; or
(3) slowing of the V(D)J rearrangement process.

Mice with defective pre–B-cell receptor signals—for example,
through mutation of �5 or the Syk tyrosine kinase—accumulate
pro–B cells that have completed V(D)J rearrangement of the IgH
locus.53,54 In contrast, our data indicate that the expanded pro–B-
cell pool in E�-A1 transgenic mice had normal, low levels of
completed V(D)J joins (Figure 4). The pro– to pre–B-cell transition
could also be affected if the E�-A1 transgene slowed cell-cycle
entry that coincides with this event.37 For example, in E�–Bcl-2
transgenic mice, the percentage of B-cell precursors in the
S�G2�M stages of the cell cycle are substantially diminished. In
wild-type mice, cycling pro–B cells were reduced more than
2-fold, whereas in SCID mice, cycling cells were reduced more
than 3-fold.38 In contrast, we found no effect of the A1 transgene on
cell cycle within the pro–B-cell compartment (Figure 7). Muta-
tional studies suggest that the cell-cycle effects of Bcl-2 can be
separated from apoptosis pathways and that they rely on interac-
tions involving the BH4 domain.55 Data from in vitro expression
studies suggest that A1 expression does not engender the negative
effects on cell cycle seen with Bcl-2.56 Our data suggest that the
latter finding is also relevant to properties of A1 in vivo.
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Fang et al28 found that pro–B cells were expanded in E�–
Bcl-xL transgenic mice, similar to the phenotype observed in
E�-A1 mice. The expanded population of pro–B cells in these mice
had increased levels of IgH V(D)J rearrangements and contained an
increased frequency of IgH alleles with nonproductive V(D)J
rearrangements, leading to the suggestion that pro–B-cell accumu-
lation reflected the survival of cells that had failed to achieve an
in-frame IgH rearrangement and that would normally undergo
apoptosis. As noted above, the pro–B-cell accumulation in E�-A1
mice did not reflect a bias toward cells with completed V(D)J
joining of IgH alleles (Figure 4), suggesting that this explanation
does not apply. A reduction in the efficiency of IgH gene assembly
at the pro–B-cell stage could explain the phenotype of E�-A1
transgenic mice. We did not observe a significant effect of the
transgene on the expression of Rag-1 or Rag-2 mRNA or on
germline transcription of the IgH locus. However, these data do not
exclude subtle effects or differences at the level of Rag protein
expression. A final question is whether the apparent block in pro– to
pre–B-cell development could simply reflect differences in expres-
sion of the A1 transgene in these compartments. Although this is
not the expected expression pattern based on the E� control
element, the lack of reagents capable of detecting A1 protein in
vivo precludes direct testing of this possibility. However, this
scenario would not readily explain the absolute reduction in pre–B
cells observed in transgenic mice.

To further investigate the properties of A1 overexpression in
pro–B cells, we studied the effects of this transgene in the SCID
background. The SCID defect impairs rejoining of coding DNA
ends in V(D)J recombination, leading to a developmental block at
the pro–B stage that is similar to the developmental block in
Rag-1�/� or Rag-2�/� mice, except that lymphoid precursor cells
carry Rag-mediated DNA breaks within antigen receptor loci.57

The SCID defect is leaky, and these DNA breaks may be repaired
by alternative mechanisms, permitting the accumulation of mature
T and B cells over time. Bcl-2 family members, including A1,
antagonize cell death associated with the induction of DNA breaks.
In the SCID background, E�–Bcl-2 expression leads to a dramatic
rescue of pre–B-cell development, a process that involves IgH
rearrangement and expression of Ig� or D� protein.35,36,58 Despite
the significant effect of A1 expression on the pro–B-cell subset in
the wild-type background, we did not observe an increase in
B220�CD43� pre–B cells when the transgene was expressed on
the SCID background (Figure 6). This result corresponded with a
failure to rescue V(D)J joining of the IgH locus. One potential
explanation for these results is that Bcl-2 and A1 have different
spectrums of activity in early B-lineage cells and that cell death
pathways activated by unresolved Rag-mediated DNA breaks
could be antagonized better by Bcl-2 than by A1. An alternative
explanation for these data could involve differences in the relative
expression levels of A1 and Bcl-2 in the different transgenic lines.

Exposure of newborn SCID mice to low levels of �-radiation
leads to partial rescue of TCR-� rearrangement and the appearance
of CD4�CD8� thymocytes.39 For unknown reasons, similar effects
were not observed in the B-cell compartment. The E�-A1 trans-
gene antagonized cell death in thymocytes exposed to �-irradiation
in vitro (Figure 5); however, there appeared to be no potentiation of
the radiation-induced rescue of T-cell development in SCID mice
(Figure 6). Similarly, we did not observe the rescue of B-cell
development in these animals. The mechanism by which SCID
thymocyte development is promoted by radiation remains obscure.
One explanation invokes increased rejoining of Rag-mediated

DNA breaks in early thymocytes by an alternative DNA repair
pathway up-regulated by radiation.39 However, the radiation of
SCID bone marrow cells can also produce similar results, suggest-
ing that the relevant cellular target for this effect may be one that
precedes thymic colonization.59 If this is the case, such a cell might
not express the E�-A1 transgene.

A1 is normally expressed at low levels in early B cells and is
up-regulated in long-lived peripheral B cells, where it may enhance
B-cell memory.18 In contrast, Bcl-2 is expressed in pro–B and
mature B cells and is down-regulated at the pre–B-cell and
immature B-cell stages, whereas Bcl-xL is expressed in pre–B cells
and is down-regulated at the mature B stage.12,60,61 A1 and Bcl-xL
are up-regulated in response to CD40 signals, by which they appear
to contribute to cell survival in the context of B-cell receptor
signaling.23,62-68 These data suggest that the physiologic role of A1
is more likely to be important in later stages of B-cell function than
at the pro–B-cell stage. It is probable that E�-A1 mice express the
transgene in peripheral B cells based on the known properties of
E�-dependent transgenes and on the observed increases in splenic
A1-a mRNA. Unexpectedly, we observed a decrease in peripheral
B cells in E�-A1 transgenic mice, in contrast to B-cell accumula-
tion reported in E�–Bcl-2 and E�–Bcl-xL transgenic mice.12,28,32,48

This observation corresponded with a modest decrease in serum
immunoglobulin levels of switched subclasses; however, serum
immunoglobulin levels in mice continued to increase up to 6
months of age, and it remains unknown whether the E�-A1
transgene would affect steady state immunoglobulin levels. These
observations may reflect the early developmental effects of the
transgene in the B-cell lineage rather than indicating a negative
effect of A1 overexpression on peripheral B cells.

Bcl-2, Bcl-xL, and A1 share the property of antagonizing cell
death. Genetic experiments show that overexpression of Bcl-xL in
the T-cell lineage can rescue the Bcl-2 null phenotype in mature T
cells,49 illustrating the functional overlap in these proteins in vivo.
Because the regulation of these proteins differs, the extent to which
they may have distinct individual functions remains unclear.
Transgenic mice made under the control of similar expression
elements permit comparison of the effects of Bcl-2 homologs on
the development and function of the immune system. Our studies
indicate that the phenotype of E�-A1 mice most resembles that of
E�–Bcl-xL mice in that the pro–B-cell compartment is strongly
affected. However, differences in the IgH rearrangement status of
the accumulated pro–B cells suggest that the underlying causes of
this phenotype may be different in the 2 strains. In contrast, Bcl-2
appears to have a less prominent effect on the pro–B-cell compart-
ment. Despite these observations, Bcl-2 can rescue the pro– to
pre–B-cell transition in SCID mice, whereas A1 does not. Inas-
much as neither the complete spectrum of cellular effects nor the
relative activity of antiapoptotic Bcl-2 family members is known, it
cannot be ruled out that differences in expression levels among the
different transgenic mouse lines reported are responsible for these
phenotypic contrasts. However, given the consistency of these
phenotypic differences across numerous individual mouse lines,
these studies lend further support to the notion that antiapoptotic
Bcl-2 homologs interact differentially with intracellular pathways
affecting cell fate in lymphoid cells. It is unclear whether all the
available data can be accounted for by differences in cell-survival
effects of these proteins. Further consideration of the potential roles
for Bcl-2 homologs in other cellular pathways are, therefore,
warranted in future studies.
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