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Verotoxin-1–induced up-regulation of adhesive molecules renders microvascular
endothelial cells thrombogenic at high shear stress
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Verotoxin-1 (VT-1)–producing Escherichia
coli is the causative agent of postdiarrheal
hemolytic uremic syndrome (D 1HUS) of
children, which leads to renal and other
organ microvascular thrombosis. Why
thrombi form only on arterioles and capil-
laries is not known. This study in-
vestigated whether VT-1 directly affected
endothelial antithrombogenic properties
promoting platelet deposition and throm-
bus formation on human microvascular
endothelial cell line (HMEC-1) under high
shear stress. Human umbilical vein endo-
thelial cells (HUVECs) were used for com-
parison as a large-vessel endothelium.
HMEC-1 and HUVECs were pre-exposed
for 24 hours to increasing concentrations
of VT-1 (2-50 pM) and then perfused at 60
dynes/cm 2 with heparinized human blood
prelabeled with mepacrine. Results
showed that VT-1 significantly increased
platelet adhesion and thrombus forma-
tion on HMEC-1 in comparison with un-
stimulated control cells. An increase in

thrombus formation was also observed
on HUVECs exposed to VT-1, but to a
remarkably lower extent. The greater sen-
sitivity of HMEC-1 to the toxin in compari-
son with HUVECs was at least in part due
to a higher expression of VT-1 receptor
(20-fold more) as documented by FACS
analysis. The HMEC-1 line had a compa-
rable susceptibility to the thrombogenic
effect of VT-1 as primary human microvas-
cular cells of the same dermal origin
(HDMECs). The adhesive molecules in-
volved in VT-induced thrombus formation
were also studied. Blocking the binding
of von Willebrand factor to platelet glyco-
protein Ib by aurintricarboxylic acid (ATA)
or inhibition of platelet aIIbb3-integrin by
chimeric 7E3 Fab resulted in a significant
reduction of VT-1–induced thrombus for-
mation, suggesting the involvement of
von Willebrand factor–platelet interaction
at high shear stress in this phenomenon.
Functional blockade of endothelial b3-
integrin subunit, vitronectin receptor,

P-selectin, and PECAM-1 with specific
antibodies was associated with a signifi-
cant decrease of the endothelial area
covered by thrombi. Confocal micros-
copy studies revealed that VT-1 in-
creased the expression of vitronectin re-
ceptor and P-selectin and redistributed
PECAM-1 away from the cell-cell border
of HMEC-1, as well as of HDMECs, thus
indicating that the above endothelial ad-
hesion molecules are directly involved
and possibly determine the effect of VT-1
on enhancing platelet adhesion and
thrombus formation in microvascular en-
dothelium. These results might help to
explain why thrombi in HUS localize in
microvessels rather than in larger ones
and provide insights on the molecular
events involved in the process of micro-
vascular thrombosis associated with
D1HUS. (Blood. 2001;98:1828-1835)

© 2001 by The American Society of Hematology

Introduction

Verotoxin (VT)–producingEscherichia coli infection has been
strongly implicated as the causative agent for most cases of
postdiarrheal hemolytic uremic syndrome (D1HUS), a disorder of
microangiopathic hemolytic anemia, thrombocytopenia, and acute
renal failure that mainly affects infants and small children.1-3 The
characteristic lesion, thrombotic microangiopathy, consists of swell-
ing and detachment of endothelial cells from the basement
membrane and deposition of platelet thrombi that occlude the
microcirculation of the kidneys and other organs.4 Why thrombi
form only in arterioles and capillaries is not known.

It is now clear that endothelial dysfunction plays a crucial role
in the sequence of events leading to the microangiopathic pro-
cesses, and evidence points to VT-1 and VT-2 as critical determi-
nants for the development of vascular lesions. Verotoxins (also
called Shiga toxins) are formed by a biologically active A subunit
and a number of B subunits by which the toxin binds to a specific
glycosphingolipid globotriaosyl ceramide (Gb3) receptor on the

endothelial surface.2,5 After binding, the toxin penetrates the
cytosol by endocytosis and exerts its cytotoxic effect by inhibiting
protein synthesis and causing cell death.6-8 Monocytes/macro-
phages in response to VT release cytokines such as interleukin-1
(IL-1) and tumor necrosis factor (TNF) that remarkably potentiate
sensitivity of vascular endothelial cells to VT by up-regulating
endothelial Gb3 receptor.9 Evidence also shows that renal micro-
vascular endothelial cells have a higher sensitivity to the cytotoxic
effect of VT as compared to endothelial cells derived from
large vessels.7,8

The interaction between leukocytes and endothelial cells is
instrumental in the development of microvascular injury in VT-
associated HUS. Thus, evidence suggests that neutrophils isolated
from children in the acute phase of D1HUS adhered to endothelial
cells in culture more than normal neutrophils and induced endothe-
lial injury by local release of proteases.10 We have demonstrated in
vitro that VT-1 directly induced a massive leukocyte adhesion to
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cultured endothelial cells under flow conditions, by up-regulating
the adhesive proteins E-selectin, intercellular adhesion molecule-1
(ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1).11

Furthermore, a preliminary report has shown that glomerular
endothelial cells exposed to VT became more susceptible to
neutrophil-mediated oxidant injury.12 Taken together these studies
indicate that VT causes cell injury by altering cell adhesive
properties and by increasing endothelial susceptibility to leukocyte-
mediated injury. The resulting injured endothelium changes its
normal thromboresistant phenotype and becomes thrombogenic,
initiating microvascular thrombus formation.

In HUS, structural damage of microvessels associated with
narrowing of the lumina determines major changes in fluid shear
stress, which would favor persistent endothelial damage, platelet
activation, and progression of microvascular thrombosis.13 Changes
in shear stress, the tractive force produced by blood flowing over
the endothelial surface, have a profound influence on von Wille-
brand factor (vWF) handling by enhancing its susceptibility to
proteolytic cleavage.14 Under conditions of high shear stress, vWF
undergoes conformational changes and serves to bridge the suben-
dothelial matrix to glycoprotein (GP) Ib expressed on platelet
membranes.15 The engagement of this receptor promotes activa-
tion of the plateletaIIbb3 (GPIIb/IIIa) complex that binds to the
RGD (Arg-Gly-Asp) sequence of vWF leading to thrombus
formation.15 Via the RGD sequence, vWF may also bind
vitronectin receptor (avb3), the major integrin expressed on
endothelial cells16 that promotes endothelial cell adhesion to the
vascular matrix.17 GPIb is also expressed on endothelial cells;
however, controversial results about its function have been
reported so far.18,19

Several distinct endothelial cell molecules have been reported
to be involved in the binding of platelets to endothelial cells.
P-selectin, which is stored in intracellular granules of platelets and
endothelial cells together with vWF and which rapidly mobilizes to
the cell surface on stimulation,20 is required for platelet rolling and
adhesion on activated endothelium.21 Increased plasma levels of
P-selectin have been measured in patients with HUS, possibly
reflecting activation/damage of platelets and endothelial cells.22

Evidence also indicates that platelet-endothelial cell adhesion
molecule-1 (PECAM-1) expressed on endothelial cells23 contrib-
utes to platelet adhesion and aggregation at sites of injured
endothelium, as documented by the finding that anti-PECAM-1
antibody injection delayed thrombus formation in laser-induced
microvessel injury of mouse brain.24

In the present study, we sought to (1) assess whether VT-1
directly affected the antithrombogenic properties of the endothe-
lium under high shear stress; (2) evaluate whether microvascular
endothelium had a higher sensitivity to VT-1–induced thrombus
formation, as compared to endothelium derived from large vessels;
and (3) identify platelet and endothelial cell adhesive proteins
involved in the thrombotic process promoted by VT-1.

Materials and methods

Endothelial cell culture and incubation

The human microvascular endothelial cell line of dermal origin (HMEC-1)25

was a kind gift from Dr Francisco J. Candal (Centers for Disease Control
and Prevention, Atlanta, GA). The growth medium consisted of MCDB 131
(Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum
(Gibco), 1 mg/mL hydrocortisone, 100 U/mL penicillin, 100mg/mL

streptomycin, 2 mM glutamine (Gibco), and 50mg/mL endothelial cell
growth factor prepared as described.26

Human umbilical vein endothelial cells (HUVECs) were obtained by
collagenase digestion according to the method of Jaffe´ and coworkers.27

The cells were grown in Medium 199 (Gibco) supplemented with 10%
newborn calf serum (Gibco) and 10% human serum, 5 mMN-2-
hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES; Sigma Chemi-
cal, St Louis, MO), 100 U/mL penicillin, 100mg/mL streptomycin, 2.5
mg/mL fungizone, 2 mM glutamine (Gibco), 15 U/mL heparin (Parke-
Davis, Milan, Italy), and 50mg/mL endothelial cell growth factor. Cultured
cells were identified as endothelial by their cobblestone morphology and the
presence of vWF, using indirect immunofluorescence microscopy. Conflu-
ent HUVECs were used for experiments between the first and fifth passage.

Primary human microvascular endothelial cells of dermal origin
(HDMECs) (Promocell, Heidelberg, Germany) were cultured in endothelial
cell growth medium MV plus SupplementMix (Promocell). HDMECs were
used between the second and sixth passage.

For the experiments, endothelial cells were plated on 603 20-mm
plastic coverslips (Thermanox; Nunc, Naperville, IL) and used 1 day after
reaching confluence.

To study the effect of VT-1 in inducing platelet adhesion and thrombus
formation, HMEC-1 and HUVECs were pre-exposed for 24 hours in static
condition to 2, 10, and 50 pM VT-1 (kindly provided by Dr M. A. Karmali,
Hospital for Sick Children, Toronto, ON, Canada; endotoxin content,0.05
EU/mL using Limulus amoebocyte lysate assay) in medium plus 2% fetal
calf serum (Hyclone Laboratories, Logan, UT); then cells were perfused at
60 dynes/cm2 in a parallel plate flow chamber with human blood. Blood was
drawn from an antecubital vein through a 19-gauge needle (infusion set)
directly into a polypropylene tube and prelabeled for 5 minutes with
fluorescent dye mepacrine (10mM, quinacrine dihydrochloride BP; Sigma
Chemical). Blood was then transferred (5-mL aliquots) to test tubes and not
disturbed until assay. The percentage of the surface occupied by thrombi
was calculated by analysis of fluorescent thrombus images acquired by
confocal microscopy.

The concentrations of VT-1 used for the adhesion experiments did not
affect cell count after 24 hours of incubation either in HMEC-1 (10 pM:
756 0.53 104, 50 pM: 756 5 3 104 versus control: 706 5 3 104 cells)
or in HUVECs (10 pM: 38.26 1.13 104, 50 pM: 37.46 0.73 104 versus
control: 36.56 0.53 104 cells).

To evaluate endothelial integrity, HMEC-1 pre-exposed for 24 hours to
VT-1 (10 pM) were perfused with blood without mepacrine and then fixed
with 0.5% glutaraldehyde (Fluka, Milan, Italy), dehydrated with methyl
alcohol, and stained with May-Grunwald Giemsa technique (Carlo Erba
Reagents, Milan, Italy).

By selected experiments we verified whether the HMEC-1 cell line
exhibited a similar sensitivity to VT-1—as for the VT effect to induce
thrombus formation—compared with primary HDMECs. For this purpose
HMEC-1 and HDMECs were exposed to VT-1 (10 pM) for 24 hours.
HUVECs were studied in parallel.

To compare the effect of VT-1 with respect to other thrombogenic
stimuli, HMEC-1 and HUVECs were exposed to thrombin (2 U/mL, 10
minutes; Biosciences, La Jolla, CA), TNF-a (100 U/mL, 4 hours; BASF
KNOLL, Ludwigshafen, Germany), IL-1b (100 U/mL, 4 hours; Becton
Dickinson, Milan, Italy), or VT-1 (10 pM, 24 hours) and perfused with
blood at 60 dynes/cm2.

To identify platelet receptors involved in VT-induced thrombus forma-
tion, HMEC-1 treated for 24 hours with VT-1 (10 pM) were perfused with
human blood preincubated with inhibitors of GPIb andaIIbb3 receptor
binding. We used polymeric aurin tricarboxylic acid (ATA; ATA trisodium
salt, Aldrich Chemical, Milwaukee, WI) that interacts with vWF and
inhibits its binding to platelet receptor GPIb.28 Because the most effective
inhibitors of vWF are ATA polymers of molecular weight greater than
2500 d,29 the higher molecular weight polymers of ATA were separated
from the lower molecular weight ones by a 30-kd cutoff dialysis membrane
concentrators (Centricon 30, Amicon, Beverly, MA). For experiments
blood samples were incubated with ATA (100mg/mL) for 5 minutes at 37°C
before perfusion on VT-treated HMEC-1. The platelet receptoraIIbb3 was
blocked by incubating blood samples with chimeric 7E3 Fab anti-aIIbb3
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(20mg/mL; Abciximab, Reopro; Eli Lilly, Indianapolis, IN)30 for 5 minutes
at 37°C before blood perfusion.

To determine the endothelial adhesive proteins involved in VT-induced
thrombus formation, HMEC-1 pretreated with VT-1 (10 pM) for 24 hours
were incubated with chimeric 7E3 Fab (20mg/mL) for 20 minutes, mouse
monoclonal antibody (mAb) antihuman vitronectin receptor LM609 (10
mg/mL; Chemicon International, Temecula, CA) for 10 minutes, mouse
mAb anti-GPIba LJ-Ib1 (100 mg/mL, a kind gift from Dr Zaverio M.
Ruggeri, The Scripps Research Institute, La Jolla, CA)—a competitive
inhibitor of vWF binding—for 20 minutes,31 mouse mAb antihuman
P-selectin (50mg/mL; Endogen, Woburn, MA) for 20 minutes, or mouse
mAb antihuman PECAM-1 (25mg/mL, Endogen) for 10 minutes; then the
adhesion assay was performed. Appropriate concentration and incubation
time for each antibody were identified by preliminary experiments.
Irrelevant antibody of mouse IgG1 (CAMfolio, Becton Dickinson) at
concentrations of 10, 25, and 50mg/mL were used.

The involvement of P-selectin and PECAM-1 in VT-1–induced throm-
bus formation on HDMECs was also assessed, using the same experimental
condition described above for HMEC-1.

Adhesion assay under flow conditions and fluorescence
confocal microscopy

Platelet adhesion assay was performed with whole blood perfused in a
chamber using a syringe pump. A flow chamber regulated at 37°C was used,
in which one surface of the perfusion channel was a coverslip (Thermanox;
Nunc, Naperville, IL) seeded with a monolayer of endothelial cells. The
chamber dimensions (303 1 mm and 150mm in thickness) allow us to
obtain a wide range of shear rates using low flow rates of blood. The flow
conditions are well characterized for this geometry and are predicted to be
laminar with very low Reynolds number (, 10); precise estimation of shear
stress conditions on the adhesion surface was also performed using the
computational fluid dynamic analysis (CFD package FIDAP, Fluid Dy-
namic International, Evanston, IL) to verify the inlet and outlet effect on
flow velocity profiles. The system was filled with 10 mM phosphate-
buffered saline (PBS) at pH 7.3; then the slide seeded with the endothelial
monolayer was mounted in the flow chamber. Heparinized whole blood was
incubated with the fluorescent dye mepacrine (10mM). Mepacrine concen-
trates in the dense granules of platelets and in the granules of leukocytes. At
this concentration it has no effect on normal platelet function.32 Any
fluorescence within the erythrocytes is quenched by hemoglobin. Blood
preincubated for 5 minutes at 37°C was then perfused into the chamber at
constant flow rate of 1500 1/sec (60 dynes/cm2). After 3 minutes, perfusion
was stopped and the slide with the endothelial cell monolayer was
dehydrated and fixed in acetone for 20 minutes.

Images of platelet thrombi on endothelial cell surface were acquired by
a confocal inverted laser microscope (InSight plus; Meridian Instruments,
Okemos, MI). An argon laser emission filter at 488 nm was used to excite
specimens. Fifteen fields, systematically digitized along the adhesion
surface, were acquired using a computer-based image analysis system. The
area occupied by thrombi was evaluated by automatic edge detection using
built-in specific functions of the software Image 1.61 (National Institutes of
Health, Bethesda, MD), and expressed asmm2/field analyzed (total area:
474 473mm2/field).

Scanning electron microscopy

For scanning electron microscopy analysis HMEC-1 grown on coverslips
were treated with VT-1 (10 pM, 24 hours), perfused with blood, and then
fixed overnight at 4°C with 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer, pH 7.4. The slides were rinsed in 0.1 M sodium
cacodylate buffer, osmicated for 1 hour, and then dehydrated in an
ascending series of ethanol. The dehydration series concluded with
2 3 15-minute exchanges in 100% ethanol. After drying, the slides were
coated with gold and examined in a scanning electron microscope
(Stereoscan 200, Cambridge Instruments, Cambridge, MA).

Flow cytometry analysis

The surface expression of VT-1 receptor on HMEC-1 and HUVECs was
evaluated by flow cytometry analysis (FACS; FACSort, Becton Dickinson).
Endothelial cells in suspension were incubated for 45 minutes at room
temperature with 1mg/100mL fluorescein isothiocyanate (FITC)–labeled
albumin (Sigma Chemical) as control or 1mg/100mL FITC-labeled VT-1B
subunit (a kind gift from Dr C. A. Lingwood, The Hospital for Sick
Children, Toronto, ONT),33 washed 3 times, fixed with 2% paraformalde-
hyde, and assayed within 1 hour.

Fluorescence confocal microscopy

The HMEC-1 line and HDMECs grown on coverslips were incubated with
medium alone or VT-1 (10 pM) for 24 hours and then fixed in 3%
paraformaldehyde plus 2% sucrose in PBS, pH 7.4, for 15 minutes at room
temperature. After 3 washings (5 minutes) with PBS plus 3% bovine serum
to prevent nonspecific antibody binding, cells were treated with anti-P-
selectin antibody (50mg/mL) or antivitronectin receptor antibody LM609
(10 mg/mL). For PECAM-1 assessment, cells were permeabilized with
Triton X-100 (0.1% in PBS; Sigma Chemical) for 4 minutes before
incubation with anti-PECAM-1 antibody (10mg/mL). Then cells were
incubated with FITC-conjugated F(ab9)2 goat antimouse IgG1 IgM
(Jackson Immunoresearch Laboratories, West Grove, PA).

Negative control experiments with FITC-conjugated antibody alone
were performed. Coverslips were washed, mounted in 1%N-propyl-gallate
in 50% glycerol, 0.1 M Tris-HCl, pH 8, and examined under confocal
inverted laser microscopy. Representative fields were digitized with mil-
lions of colors and printed.

Statistical analysis

Results are expressed as mean6 SE. Statistical analysis was performed
using ANOVA followed by the Tukey test for multiple comparisons, as
appropriate.34 Statistical significance was defined asP less than .05.

Results

VT-1 promotes platelet adhesion and thrombus formation
on endothelial cells

We studied the effect of VT-1 on platelet adhesion and thrombus
formation under laminar flow at high shear rate on HMEC-1.
HUVECs were used for comparison as large-vessel endothelium.
Heparinized blood was prelabeled with mepacrine and perfused at
60 dynes/cm2 over resting or VT-1–treated endothelial cells; then
thrombus formation was quantified by analyzing images acquired
by confocal microscopy. On resting HMEC-1 only limited platelet
deposits were observed, usually less than 0.3% of the total perfused
area, corresponding to about 1200mm2/field analyzed. Exposure of
HMEC-1 to VT-1 for 24 hours led to a significant (P , .01)
increase in platelet adhesion and thrombus formation in compari-
son to control cells, with a maximum effect at 10 pM (2 pM:
77546 1592; 10 pM: 10 0906 2246; 50 pM: 82446 2874 versus
control: 10776 140mm2 area covered by thrombi) (Figure 1).

In these experimental conditions the endothelial cell integrity
was preserved as indicated by staining with May-Grunwald
Giemsa of HMEC-1 treated with VT-1 (10 pM) and then perfused
with blood.

As shown in Figure 1, VT-1 also promoted platelet adhesion and
thrombus formation on HUVECs but to a remarkably lower extent
than on HMEC-1 (2 pM: 34066 297; 10 pM: 38496 540; 50 pM:
24976 99 versus control: 13116 263mm2).

Figure 2 depicts digitized images from a representative experi-
ment acquired by confocal fluorescent microscopy showing an
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increase in the number of mepacrine-labeled thrombi on HMEC-1
exposed to VT-1 in comparison to HUVECs.

Scanning electron microscopy evaluation of VT-treated HMEC-1
illustrates the attachment of platelets to the endothelial cell
monolayer to form organized thrombi in which leukocytes at
different stages of activation are entrapped (Figure 3).

In selected experiments, the behavior of the HMEC-1 cell line
in response to the thrombogenic effect of VT-1 was compared with
that of primary microvascular endothelial cells of similar dermal
origin. VT-1 (10 pM) induced thrombus formation on the HMEC-1
line and primary HDMEC to a similar extent (HMEC-1:
11 8316 1303; HDMEC: 92266 1979 mm2 area covered by
thrombi). HUVECs used in these settings for comparison were
significantly less susceptible to the effects of VT-1 (40616 553
mm2, P , .01 versus HMEC-1 andP , .05 versus HDMECs).

VT-1 is more thrombogenic than thrombin and cytokines

We compared the capability of VT-1 to induce thrombus formation
on HMEC-1 and HUVECs with other thrombogenic agonists like
thrombin, TNF-a, and IL-1b. As shown in Figure 4, thrombin and
cytokines were less effective in promoting platelet deposition than
VT-1 in both endothelial cell types. The superior thrombogenic
effect of VT-1 translated in larger thrombus size with respect to

thrombin, TNF-a, and IL-1b, indicating a selective pattern of
endothelial activation implemented by VT-1 (mean area of
thrombi, HMEC-1 1 VT-1: 25846 511 mm2; HMEC-1 1
thrombin: 11406 132 mm2; HMEC-1 1 TNF-a: 12046 588
mm2; HMEC-1 1 IL-1b: 9506 362mm2; and HUVEC1 VT-1:
17486 399 mm2; HUVEC 1 thrombin: 6376 128 mm2;
HUVEC 1 TNF-a: 4276 149 mm2; HUVEC 1 IL-1b:
14066 618mm2).

VT-1 receptor expression on endothelial cells

To investigate whether the higher sensitivity of HMEC-1 to VT-1
with respect to HUVECs was due to a different expression of VT-1
receptors, FACS studies were performed using fluorescent VT-1B
subunit. Surface expression of VT-1 receptor, as a percentage of
fluorescent cells, is depicted in Figure 5. The percentage of resting
HMEC-1 stained with fluorescent VT-1B subunit was approxi-
mately 20-fold higher than that observed for HUVECs. FITC-
albumin, used as control, bound to HMEC-1 and HUVECs at
comparable extents (1%6 0.08% and 0.9%6 0.1% of fluorescent
cells, respectively).

Effect of functional blockade of platelet and endothelial
adhesive molecules on VT-1–induced thrombus
formation in HMEC-1

To identify adhesive proteins involved in thrombus formation
induced by VT-1 at high shear rate, we first evaluated the effect of

Figure 1. Effect of VT-1 on platelet adhesion and thrombus formation on
HMEC-1 and HUVECs. HMEC-1 and HUVECs were treated for 24 hours with VT-1
(0, 2, 10, 50 pM) and then perfused with mepacrine-labeled blood at high shear stress
(60 dynes/cm2). The area occupied by thrombi was measured on images acquired by
confocal fluorescence microscopy, as described in “Materials and methods.” Data are
expressed as mean 6 SE of area covered by thrombi (n 5 8 experiments). *P , .01
versus untreated cells; °P , .05 HUVEC 1 VT-1(10 pM) versus HMEC-1 1 VT-1
(10 pM).

Figure 2. Thrombi formed after treatment with VT-1.
Micrographs show thrombi formed on HMEC-1 (A-D) and
HUVEC (E-H) treated with VT-1. Cells were incubated
with control medium (A,E) or with VT-1 at 2 pM (B,F), 10
pM (C,G), 50 pM (D,H) for 24 hours, perfused with blood
at 60 dynes/cm2, and examined by confocal microscopy.
Digitized representative fields are shown.

Figure 3. Scanning electron micrograph of thrombi on HMEC-1. HMEC-1 treated
with VT-1 (10 pM) reveal organized thrombi with entrapped leukocytes at different
stages of activation.
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blocking the interaction between vWF and platelet receptors GPIb
andaIIbb3. As shown in Figure 6, ATA, which inhibits vWF-GPIb
interaction, completely prevented platelet deposition and thrombus
formation induced by VT-1 (10 pM) on HMEC-1 surface (VT-11
ATA: 919 6 256mm2 versus VT-1: 95026 1475mm,2 P , .01). A
similar significant (P , .01) reduction in the area occupied by
thrombi was observed by blocking the plateletreceptoraIIbb3 with
the chimeric 7E3 Fab (VT-11 7E3: 9526 278mm2).

Considering that GPIb is also expressed on endothelial cells, we
investigated the role of this receptor on VT-1–induced thrombus
formation in HMEC-1. Functional blocking of GPIb with LJ-Ib1
mAb did not affect thrombus formation in response to VT-1
(VT-1 1 anti-GPIb: 12 0966 2716 mm2 versus VT-1: 12 6966
1677mm2), suggesting that in this experimental setting endothe-
lial GPIb was not involved in vWF-induced thrombi at high
shear stress.

Because it is known that vWF, besides binding extracellular
matrix proteins, can interact with endothelialb3-integrin subunit

via RGD sequence, we assessed the role ofb3-integrin and more
specifically ofavb3 in the thrombotic process induced by VT-1 in
HMEC-1. As shown in Figure 7, blocking ofb3-integrin subunit by
7E3 or inhibition of avb3-integrin complex by LM609 both
resulted in a significant (P , .01) reduction of the area covered by
thrombi (VT-1 1 7E3: 24776 515 mm2; VT-1 1 LM609:
30966 972mm2 versus VT-1: 11 6096 1961mm2).

To investigate endothelial adhesive proteins that can directly
interact with platelet receptors, HMEC-1 preincubated for 24 hours
with VT-1 were exposed to anti-P-selectin and anti-PECAM-1
antibodies. Anti-P-selectin antibody almost completely (P , .01)
prevented platelet adhesion (VT-11 anti-P selectin: 23866 826
mm2). Blocking of PECAM-1 had a less pronounced but still
significant (P , .05) inhibitory effect on VT-1–induced thrombus
formation with the area covered by thrombi averaging 45536 532
mm2 (Figure 7). Irrelevant antibody did not significantly modify
VT-1–induced platelet deposition (percent of reduction in area
covered by thrombi compared with VT-1 alone: 10mg/mL, 2%; 25
mg/mL, 9%; and 50mg/mL, 15%).

Figure 5. Flow cytometric analysis of VT-1 receptor expression on unstimu-
lated HMEC-1 and HUVECs using FITC-labeled VT-1B subunit. Percentage of
fluorescent HMEC-1 cells was 34% and of fluorescent HUVEC cells, 2%.

Figure 7. Effect of functional blockade of endothelial adhesion molecules on
VT-1–induced thrombus formation on HMEC-1. Cells pretreated with VT-1 (10 pM,
24 hours) were incubated with the following adhesion blocking antibodies: anti-b3-
integrin subunit (7E3 Fab 20 mg/mL for 20 minutes), anti-avb3 (LM609 10 mg/mL for
10 minutes), anti-P-selectin (50 mg/mL for 20 minutes), and anti-PECAM-1 (25 mg/mL
for 10 minutes) before blood perfusion at 60 dynes/cm2. Data are expressed as
mean 6 SE (n 5 6 experiments). °P , .01 versus untreated cells. *P , .05,
**P , .01 versus VT-1.

Figure 4. Effect of thrombin, TNF- a, and IL-1 b on thrombus formation on
HMEC-1 and HUVEC compared with VT-1. Endothelial cells were incubated with
thrombin (2 U/mL, 10 minutes), TNF-a (100 U/mL, 4 hours), IL-1b (100 U/mL, 4
hours), or VT-1 (10 pM, 24 hours), perfused with blood at 60 dynes/cm2, and
examined under confocal microscopy. Data are expressed as mean 6 SE of percent
of area covered by thrombi in respect to VT-1 (100%) (n 5 3 experiments). *P , .01
versus VT-1.

Figure 6. Effect of blockade of vWF binding to platelet GPIb or aIIbb3 with
specific inhibitors on VT-1–induced thrombus formation on HMEC-1. ATA (100
mg/mL), which inhibits vWF binding to GPIb, or 7E3 Fab (20 mg/mL), an anti-aIIbb3,
was added to blood 5 minutes before perfusion over HMEC-1. Data are expressed as
mean 6 SE (n 5 6 experiments). °P , .01 versus control; *P , .01 versus VT-1.
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The involvement of P-selectin and PECAM-1 in platelet
deposition elicited by VT-1 was also confirmed on primary
microvascular endothelial cells by using functional blocking anti-
bodies that reduced by 79%6 7% and 86%6 4%, respectively,
the area covered by thrombi (P , .01 versus VT-1).

Endothelial adhesive proteins involved in VT-1–induced
thrombus formation

We characterized by confocal fluorescence microscopy the distribu-
tion on the endothelial surface of the adhesive molecules found in
the above experiments to be implicated in the thrombotic process
induced by VT-1. As shown in Figure 8A,B, HMEC-1 treated with
VT-1 (10 pM, 24 hours) exhibited an increased expression of
vitronectin receptor, as small diffuse granules on the luminal
surface, in comparison to unstimulated cells.

The HMEC-1 cell line in a resting condition did not stain for
P-selectin on the apical surface (Figure 8C). In contrast, on VT-1
challenge a strong fluorescence was observed with the P-selectin
staining pattern of granules distributed on the apical side
(Figure 8D).

PECAM-1 localized to the cell-cell border of adjacent unstimu-
lated HMEC-1 as a linear staining (Figure 8E). After treatment with
VT-1 PECAM-1 redistributed away from intercellular junctions
and formed irregular patches of staining along the periphery of the

cell or diffuse granules on the luminal surface and/or at the intra-
cellular level (Figure 8F).

By studying the effect of VT-1 on the expression of these
adhesive proteins in primary HDMECs we observed a distribution
similar to that of the HMEC-1 line (Figure 9A-F).

Discussion

Verotoxin-producingE coli, the causative agent of D1HUS,
activates endothelial cells to acquire a prothrombotic phenotype
with corresponding lesions confined to microvessels mostly of
renal glomeruli.1-4

In this report we show for the first time that VT-1 directly
induces platelet adhesion and thrombus formation on cultured
endothelial cells perfused with whole blood in a flow chamber
system under shear stress levels high enough to mimic the ones
encountered in the microcirculation. The effect of VT-1 was
superior to that of other known thrombogenic agonists such as
thrombin and cytokines.

The area occupied by thrombi was more pronounced on
VT-1–treated endothelial cells of microvascular (HMEC-1) in
comparison with large-vessel (HUVEC) origin. The HMEC-1 line

Figure 8. Expression of adhesive molecules in HMEC-1 treated with VT-1.
Micrographs of HMEC-1 treated with control medium (A,C,E) or VT-1 (10 pM, 24
hours; B,D,F) and stained for vitronectin receptor avb3 (A,B), P-selectin (C,D), and
PECAM-1 (E,F). HMEC-1 exposed to VT-1 showed an increased surface expression
of vitronectin receptor and P-selectin as a diffuse granular pattern. PECAM-1
appeared redistributed away from the cell junctions after VT-1 treatment (n 5 3
experiments).

Figure 9. Expression of adhesive molecules in HDMECs treated with VT-1.
Micrographs of HDMEC treated with control medium (A,C,E) or VT-1 (10 pM, 24
hours; B,D,F) and stained for vitronectin receptor avb3 (A,B), P-selectin (C,D), and
PECAM-1 (E,F). HDMEC exposed to VT-1 showed an increased surface expression
of vitronectin receptor and P-selectin as a diffuse granular pattern. PECAM-1
appeared redistributed away from the cell-cell border and irregular patches of
staining were evident along the periphery of the cells after VT-1 treatment (n 5 3
experiments).
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had a similar sensitivity to the thrombogenic effect of VT-1
as HDMECs.

That microvascular endothelium is indeed more susceptible to
the prothrombotic activity of VT-1 is consistent with previous
findings. Thus, renal microvascular endothelial cell viability, as well as
their protein synthesis capacity, were reduced by VT concentrations that
were instead not cytotoxic for HUVECs.7 Basal Gb3 levels in renal
microvascular endothelial cells were 50-fold higher than in HUVECs,
which suggested a relationship between the degree of VT sensitiv-
ity and the amount of Gb3 receptor expressed by these cells.7

Similar to renal microvascular endothelial cells, we found that
HMEC-1 expressed about 20-fold more VT-1 receptors than
HUVECs, which might account for the different sensitivity of
different vascular beds to VT-mediated disease.

In the attempt to identify the adhesive proteins involved in
platelet-endothelial cell interactions elicited by VT-1, which even-
tually resulted in thrombus formation on HMEC-1, we first focused
on vWF, which is the indispensable adhesive substrate to promote
platelet thrombus formation in high shear stress environments.15

We found that ATA, an inhibitor of vWF-platelet GPIb interaction,
completely prevented the deposition of thrombi. Furthermore,
blockade ofaIIbb3 on activated platelets by chimeric 7E3 Fab
also abrogated platelet adhesion and thrombus formation. These
observations extend to our experimental condition what has been
documented in other settings,15,35 that is, at high shear stress the
mechanism supporting platelet adhesion and thrombus formation re-
quires binding of platelet GPIb to vWF. The engagement of this receptor
then promotes activation of platelet receptoraIIbb3 that mediates
irreversible adhesion by interacting with the RGD sequence of vWF.
Therefore, the inhibition of one of these steps with ATA or 7E3 would
result in a complete blocking of thrombus formation.

It has been widely described that interaction of vWF with
platelet GPIb/aIIbb3 is instrumental in mediating platelet adhesion
to subendothelial matrix at high shear rates.15 Here, we provide a
series of observations indicating that vWF-mediated platelet adhe-
sion on VT-1 challenge occurred mainly on the endothelial surface
rather than in the subendothelium. First, we have verified by light
microscopy that the integrity of the endothelial layer was still
preserved after blood perfusion at high shear stress. Moreover,
based on the evidence that vWF via the RGD sequence17 binds
vitronectin receptor (avb3), the major integrin expressed on endo-
thelial cells,16 we have documented by confocal fluorescence
microscopy that vitronectin receptors were up-regulated and/or
redistributed on the apical aspect of HMEC-1 after VT-1 exposure.
Finally, functional blocking of endothelial vitronectin receptor
avb3 with LM609 almost completely abrogated thrombus forma-
tion. Altogether these data indicate that VT-1 alters endothelial
thromboresistance by inducing changes in the surface expression of
vitronectin receptor that leads to platelet deposition via a vWF-
dependent bridging mechanism. These findings are in line with
recent studies showing that prothrombotic mediators such as
a-thrombin and IL-1b induced on the luminal surface of endothe-
lial cells up-regulation of vitronectin receptors that in turn pro-
moted platelet adhesion through an RGD-dependent pathway.36

Our finding that treatment of endothelial cells with anti-GPIb
antibody did not inhibit thrombus formation induced by VT-1
suggested that GPIb expressed on endothelium is not engaged in
the interaction with soluble vWF in a high shear stress environment.

The endothelial adhesive molecules P-selectin20and PECAM-123

have been involved in the process of platelet deposition on
activated or damaged endothelium by their direct binding to
platelets.21,24,37Thus, it has been shown by intravital fluorescence

microscopy that ischemia/reperfusion injury caused overexpres-
sion of P-selectin on intestinal microvascular endothelial cells, in
association with platelet rolling and adhesion.37 Antibodies against
P-selectin significantly reduced microvascular thrombosis, which
implied a direct role of this endothelial adhesive molecule in
platelet deposition under flow conditions.37 We have found that
inhibition of P-selectin with a specific antibody caused a significant
decrease in VT-induced thrombus formation on HMEC-1. These
data, along with our observation of a strong expression of
P-selectin on the apical surface of HMEC-1 after VT-1 challenge,
provide evidence for the involvement of P-selectin in the throm-
botic process elicited by VT-1 at high shear stress.

As for endothelial PECAM-1, its contribution to platelet
deposition was proved in a model of laser-induced endothelial
injury in mouse brain arterioles by the observation that anti–
PECAM-1 antibody reduced microvascular thrombosis over dam-
aged but not denuded endothelium.24 Our present study showed
that functional blocking of PECAM-1 resulted in a significant
reduction of the area covered by thrombi in HMEC-1 exposed to
VT-1. In addition, confocal microscopy experiments revealed that
VT-1 induced a redistribution of this protein away from cell
junctions, a pattern similar to that described in human endothelial
cells after cytokine stimulation.38 We speculate that PECAM-1
once redistributed on the endothelial surface may undergo phosphor-
ylation,23 which would render this adhesive receptor available for
platelet interaction.

In primary microvascular endothelial cells treated with VT-1,
expression of vitronectin receptor, P-selectin, and PECAM-1 was
similar to that observed in the HMEC-1 line. Moreover, as in
HMEC-1, blockade of P-selectin and PECAM-1 by specific
antibodies markedly limited VT-1–induced thrombus formation,
thus suggesting that thrombotic response elicited by VT-1 involved
activation of the same endothelial adhesive proteins in both line
and primary microvascular endothelial cells.

In conclusion, our results indicate for the first time that (1) VT-1
is a potent promoter of platelet adhesion and thrombus formation
on endothelial cells under high shear stress; (2) microvascular
endothelial cells demonstrate a remarkably greater sensitivity to the
thrombogenic effect of VT-1 than endothelium derived from large
vessels, possibly due to the higher expression of VT-1 receptor; (3)
at high shear stress interaction of vWF with platelet GPIb/aIIbb3

supports VT-1–induced platelet deposition through the binding to
vitronectin receptor on the endothelial luminal surface; and (4)
up-regulation and/or redistribution of endothelial vitronectin recep-
tors, P-selectin, and PECAM-1 appear instrumental in the process
of thrombus formation induced by VT-1.

These findings might help to clarify why thrombi in HUS
preferentially localize in microvessels and provide insights on the
determinants possibly involved in the process of microvascular
thrombosis associated with D1HUS.
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