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Role of protein kinase Cz isoform in Fas resistance of immature myeloid
KG1a leukemic cells
Aurélie de Thonel, Ali Bettaı̈eb, Christine Jean, Guy Laurent, and Anne Quillet-Mary

Leukemic CD34 1 immature acute myeloid
leukemia (AML) cells express Fas recep-
tor but are frequently resistant to Fas
agonistic reagents. Fas plays an impor-
tant role in T-cell–mediated cytotoxicity,
and recently it has been suggested that
altered Fas signaling may contribute to
drug resistance. Therefore, Fas resis-
tance could be one of the mechanisms by
which AML progenitors escape chemo-
therapy or T-cell–based immune interven-
tion. However, the molecular mechanism
of Fas resistance in AML cells has not
been identified. Fas signaling can be inter-
rupted at 3 mains levels: Fas clustering,
alteration of death-inducing-signaling-

complex (DISC) formation, and effector
caspase inhibition of downstream
caspase-8. This study shows that in the
Fas-resistant CD34 1CD382 KG1a cells,
Fas agonists resulted in Fas aggregation
but not in caspase-8 activation, related to
a defect in DISC formation. However, pre-
treatment with chelerythrin, but not with
calphostin C, resulted in the restoration
of Fas-induced caspase-8 activation and
cytotoxicity, suggesting that some atypi-
cal protein kinase C (PKC) isoforms con-
tributed to the lack of DISC formation.
Indeed, treatment with antisense oligonu-
cleotides directed against PKC z and en-
forced expression of Par-4, a negative

regulator of PKC z activity, restored Fas-
induced caspase-8 activity and apopto-
sis. Moreover, it was found that PKC z

interacts with FADD and that PKC z immu-
noextracts prepared from KG1a cells are
able to phosphorylate FADD in vitro,
whereas this phosphorylation is dramati-
cally reduced in Par-4 transfectant cells.
In conclusion, it is suggested that in AML
cells, PKC z plays an important role in Fas
resistance by inhibiting DISC formation,
possibly by phosphorylating FADD.
(Blood. 2001;98:3770-3777)

© 2001 by The American Society of Hematology

Introduction

Fas (APO-1/CD95) is a 45-kd membrane protein that belongs to the
tumor necrosis factor (TNF)–nerve growth factor receptor family, a
group of type 1 transmembrane receptors.1 Mutational analysis of
Fas and the human TNF receptor (TNFR-1) proteins demonstrates
that the cytoplasmic domains share a homologous region necessary
to transduce the apoptotic signal. This conserved region of
approximately 70 amino acids was, therefore, designated as the
death domain (DD). The only known physiological ligand of Fas,
Fas-L (CD95L), belongs to the family of TNF-related cytokines.2

Fas-L is synthesized as a transmembrane molecule, and soluble
Fas-L trimers can be generated through processing by a metallopro-
tease.3,4 Engagement of Fas by agonistic anti-Fas antibodies or by
Fas-L triggers apoptosis in a variety of cell types. However, only
membrane-bound or multimerized Fas-L induces cell death.3,4

Moreover, ligand-dependent activation of Fas death pathway
requires the oligomerization of Fas receptor, but ligand-indepen-
dent activation can occur on Fas aggregation induced by Fas
overexpression or treatment with anticancer drugs or radiation.5-9

Clustering of Fas recruits Fas-associated death domain (FADD)–
containing protein, which is a bipartite molecule with a death
effector domain (DED) at the amino terminus and a DD at the
carboxyl terminus. FADD binds to Fas through a DD–DD interac-
tion and recruits the DED-containing procaspase-8 through a
DED–DED interaction. The formation of this death-inducing
signaling complex (DISC) results in caspase-8 activation, believed

to be the first step of a proteolytic cascade that triggers the
activation of other caspases such as caspase-3, -7, and -6.10,11

Although other cell death pathways could be initiated from Fas
activation,12-14 analysis of lymphocytes from FADD2/2 mice has
demonstrated the prominent role of the FADD/caspase-8 pathway
in Fas-mediated cell death.15

Normal CD341 hematopoietic cells, including the most imma-
ture CD341CD382 subset, express Fas at a low level and are
resistant to Fas-induced apoptosis unless they are treated with
TNF-a or interferon (IFN)-g.16-19 These studies have shown also
that these cytokines enhanced Fas expression in CD341 cells;
however, they did not provide direct evidence that TNF-a– or
IFN-g–induced sensitization to Fas-induced apoptosis was attrib-
uted to increased Fas expression. Moreover, when cultured in the
presence of hematopoietic growth factors, CD341 cells expressed
functional Fas; indeed, the CD341 Fas1 cell population gradually
lost CD34 expression and shifted to a CD342 Fas1 and Fas-
sensitive cell population.18 These results suggest that Fas is
expressed as part of a differentiation program of hematopoietic
cells; in fact, functional Fas is expressed in terminally differenti-
ated myeloid cells, including neutrophils, eosinophils, and mono-
cytes.20,21 Fas distribution and function appear to be not very
different in leukemic myelopoiesis. Indeed, most fresh CD341

acute myeloid leukemia (AML) cells express Fas, whereas they are
frequently resistant to Fas-induced apoptosis.22,23 These results
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suggest that in AML cells, as in early normal progenitors, potent
negative regulators interfere either upstream or downstream of
DISC formation. This may have important physiopathologic and
therapeutic implications in AML. First, based on a recent study
suggesting that the Fas–Fas-L system exerts a negative regulatory
effect on committed progenitor expansion,24 it may be that Fas
resistance contributes to leukemic clone expansion. Second, be-
cause the Fas–Fas-L system plays an important role in T-cell–
mediated cytotoxicity, it is conceivable that resistance to Fas
decreases the efficiency of graft-versus-leukemic reaction after
allogeneic bone marrow transplantation or donor lymphocyte
infusion. Third, because it has been reported that the ligand-
dependent and the ligand-independent Fas–caspase-8 death path-
ways may play a role in drug-induced apoptosis,9,25-29one can also
speculate that the alteration of Fas–caspase-8 signaling may
contribute to the natural drug resistance of AML progenitors and
subsequently to the high rate of relapse. For these reasons, it could
be important to determine the negative regulators of Fas signaling
in Fas-expressing AML cells. Among different parameters and
based on the influence of protein kinase C (PKC) activity on
Fas-induced apoptosis,30-33 we hypothesized that, in AML cells,
some isoforms of PKC exert a protective function against Fas
death pathway.

CD341CD382 KG1a AML cells represent an interesting model
for investigating Fas resistance in immature AML cells. Because of
their immature phenotype, they could be considered representative
of early leukemic myelopoiesis. KG1a cells exhibit a high level of
Fas expression, whereas they are totally resistant to agonistic
anti-Fas antibody.22 In addition, KG1a cells are highly resistant to
TNFa, a cytokine that shares common signaling pathways with
Fas.34 The goal of this study was to investigate in KG1a cells the
early steps of Fas signaling, including Fas clustering, DISC
formation, and caspase-8 activation, and to evaluate the role of
PKC in KG1a cell Fas resistance.

Materials and methods

Cell cultures

KG1a (promyeloblastic), U937 (monocytic), and Jurkat (T-lymphoid) cells
were obtained from the American Type Culture Collection (ATCC,
Rockville, MD). Cells were maintained in Iscoves modified Dulbecco
medium supplemented with 20% fetal calf serum (KG1a) or RPMI-1640
medium supplemented with 10% fetal calf serum (U937, Jurkat). All media
were supplemented with 2 mM L-glutamine, 200 U/mL penicillin, and 100
mg/mL streptomycin (Life-Technology, Cergy-Pontoise, France). Cells
were maintained at 37°C in a fully humidified 5% CO2 incubator.

Reagents

Anti-Fas (clone CH11), neutralizing anti-Fas (clone ZB4), and secondary
monoclonal antibodies were from Beckman/Coulter (Villepinte, France).
Fas-L-FLAG was purchased from Alexis (Coger, France). Recombinant
Fas-L was produced by transfected Neuro-2A35 (a kind gift from A.
Fontana, Lausanne, Switzerland). Anti-PKCz, anti-actin monoclonal anti-
bodies, and FADD-agarose were purchased from Euromedex (Souffelwey-
ersheim, France); anti-FADD monoclonal antibodies were purchasedfrom
Becton Dickinson (Le Pont de Claix, France); anti–caspase-8 and -3 and
anti–Par-4 were purchased from Santa Cruz Biotechnology (TEBU, Le
Perray-en-Yvelines, France). Sense and antisense oligonucleotides di-
rected against PKCz were designed and manufactured by Biognostik
(Göttingen, Germany; product number 01669). Other products were
purchased from Sigma (Saint-Quentin-Fallavier, France).

Fas clustering and confocal analysis

For the detection of Fas monomer aggregation, KG1a and U937 cells were
treated or not treated with 0.5mg/mL Fas-L for 4 hours, fixed for 10 minutes
in 3% paraformaldehyde, and washed twice with phosphate-buffered saline
(PBS) for 10 minutes. After 15-minute pre-incubation with 2% bovine
serum albumin, cells were incubated for 2 hours at room temperature with
or without anti-Fas monoclonal antibody (IgG1 clone ZB4, 1/100) diluted in
PBS containing 1% bovine serum albumin. Nonimmune mouse IgG1 was
used as a negative control. Samples were then washed in PBS and incubated
for 45 minutes with FITC-conjugated goat anti-mouse monoclonal anti-
body. Subsequently, cells were fixed in paraffin on slides and were
examined with a confocal imaging system (Zeiss, Oberkochen, Germany)
scanning assembly incorporating argon and helium–neon lasers coupled to
a Zeiss Axiovert 100 fluorescence microscope.

Western blot analysis

Exponentially growing cells were pre-incubated in the presence or absence
of inhibitors and then treated by CH11 monoclonal antibody for different
time periods. Cells were washed twice in serum-free medium, centrifuged,
and lysed in RIPA buffer (50 mM Tris, pH 8, 150 mM NaCl, 1% Triton
X-100, 1% NP-40, 0.1% sodium dodecyl sulfate [SDS], 5 mM EDTA, 1
mM dithiothreitol [DTT], 2 mg/mL leupeptin, 2mg/mL aprotinin, and 0.1
mM phenylmethylsulfonyl fluoride [PMSF]) for 20 minutes on ice,
followed by centrifugation at 10 000g for 15 minutes. Protein concentration
in the supernatants was determined as previously described.36 For each
lysate, 40mg total protein was boiled for 5 minutes at 95°C in the presence
of 3% b-mercaptoethanol. Proteins were separated on 12.5% (wt/vol)
SDS–polyacrylamide gel electrophoresis (PAGE) and were transferred
electrophoretically onto nylon membranes (Hybond-C extra; Amersham
Life Science, Cergy-Pontoise, France). Nonspecific binding sites were
blocked in 10 mM Tris-buffered saline containing 0.1% Tween-20 and 10%
nonfat milk. Membranes were then incubated overnight at 4°C with specific
primary monoclonal antibody diluted at an appropriate concentration in 10
mM Tris-buffered saline containing 0.1% Tween-20 and 1% nonfat milk.
Membranes were then washed 5 times at room temperature, and bound
immunoglobulin was detected with anti-isotype monoclonal antibody
coupled to horseradish peroxidase (Beckman-Coulter). The signal was
visualized by enhanced chemiluminescence (Amersham, Buckinghamshire,
United Kingdom) and autoradiography.

DISC formation analysis

Exponentially growing cells (1003 106) were incubated with 1mg/mL
Fas-L–FLAG (Alexis, San Diego, CA) and 1mg anti-FLAG monoclonal
antibody (Sigma, Saint-Quentin-Fallavier, France) for 15 minutes or 1 hour.
Cells were then centrifuged and lysed in lysis buffer (0.2% NP-40, 20 mM
Tris-HCl, pH 7.4, 150 mM NaCl, 2 mM sodium vanadate, 10% glycerol, 2
mg/mL leupeptin, 2mg/mL aprotinin, 0.1 mM PMSF) before protein
A–Sepharose was added. Immunoprecipitates were washed 3 times in lysis
buffer without protease inhibitors before SDS-PAGE and Western
blot analysis.

Caspase-8 activity assay

Caspase-8 colorimetric activity assay (R&D Systems, Abingdon, United
Kingdom) was performed according to the manufacturer’s recommenda-
tions. Briefly, exponentially growing cells treated by CH11 monoclonal
antibody (2mg/mL) for 4 hours were collected by centrifugation. Lysis
buffer was added on the cell pellet, incubated on ice for 10 minutes, and
centrifuged at 10 000g for 1 minute. For each lysate, 100mg total protein
was incubated with caspase-8 colorimetric substrate for 2 hours at 37°C.
Cleavage of the substrate by caspase-8 was quantified spectrophotometri-
cally at a wavelength of 405 nm.

PKCz antisense experiments

Blocking experiments were performed with antisense or sense phosphoro-
thioate oligonucleotides (10mM) directed against PKCz. Briefly, exponen-
tially growing cells were cultured with sense or antisense oligonucleotides
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48 hours before CH11 monoclonal antibody (2mg/mL) was added. After
treatment, viability assay (Trypan blue exclusion) and Western blot analysis
or caspase-8 activity assay were performed as described above.

Cytochemical staining

Changes in cellular nuclear chromatin were evaluated by DAPI staining.
Briefly, after CH11 treatment (2mg/mL for 5 hours), cells were cytocentri-
fuged and fixed in 4% paraformaldehyde. Slides were then stained with 1
mg/mL DAPI and analyzed by fluorescence microscopy.

Immunoprecipitation

Cell lysates (53 106) were prepared in RIPA lysis buffer for 30 minutes on
ice, sonicated, and centrifuged (15 minutes, 10 000g at 4°C). Supernatants
were normalized for protein concentration, and each sample (1 mg protein)
was immunoprecipitated with anti-PKCz monoclonal antibody (4mg) or
anti-FADD monoclonal antibody (2mg) and collected by absorption to
protein G–Sepharose. Immunoprecipitates were washed 3 times in RIPA
buffer without protease inhibitors before analysis by SDS-PAGE and
Western blotting.

In vitro PKC z kinase assay

Cell lysates (103 106) were prepared in lysis buffer (20 mM HEPES, 2
mM EDTA, 125 mM NaCl, 0.1% NP40, 2mg/mL aprotinin, 2mg/mL
leupeptin, 0.5 mg/mL benzamidine, 1 mM PMSF, 1 mM DTT) for 30
minutes on ice followed by centrifugation (3 minutes, 14 000g). Superna-
tants were normalized for protein concentration, and each sample (1 mg
protein) was immunoprecipitated with anti-PKCz monoclonal antibody and
collected by absorption to protein G–Sepharose. Immunocomplexes bound
to protein G–Sepharose were washed in lysis buffer without PMSF and
subsequently were resuspended in reaction buffer (20 mM HEPES, 1 mM
DTT, 10 mM MgCl2, 4 mg/mL phosphatidylserine, 20mM cold ATP). For
each sample, 10mCi [g-32P] ATP (6000 Ci/mmol [222 TBq/mmol]; ICN,
Orsay, France) and 1mg FADD agarose or 3mg histone H1 were added.
Samples were then incubated for 5 minutes at 32°C. The reaction was
terminated by the addition of protein loading buffer. Proteins were
separated on 10% SDS-PAGE, and the gel was subjected to autoradiogra-
phy. In parallel, an aliquot of each sample was analyzed by Western blot
using anti-PKCz monoclonal antibody to quantify immunoprecipi-
tated proteins.

Par-4 transfection in KG1a cells

Exponentially growing cells were transfected by a plasmid containing
full-length Par-4 cDNA sequence (kindly gift from M. T. Diaz-Meco,
Madrid, Spain) using Effectene transfection reagent (Qiagen, Courtaboeuf,
France) according to the manufacturer’s instructions. Clones were further
selected for Par-4, CD341, CD382 expression by Western blot analysis or
flow cytometry.

Statistics

Quantitative experiments were analyzed using Studentt test. All P values
resulted from the use of 2-sided tests.

Results

Fas expression and function in KG1a cells

KG1a, U937, and Jurkat cells were treated with increasing
concentrations of CH11 monoclonal antibody for 30 minutes in
cold medium, then were stained by an indirect immunofluorescence
technique using phycoerythrin-labeled goat–anti-mouse immuno-
globulin (Ig)M. Fluorescence was evaluated by flow cytometry for
each cell line. Saturating concentrations ranged between 0.5 and 2
mg/mL, depending on the cellular model. At the saturating dose of

2 mg/mL, KG1a cells displayed mean fluorescence intensity similar
to, if not higher than, that of Fas-sensitive Jurkat or U937 cells
(data not shown).

KG1a cells were then treated with various doses of CH11 (2-10
mg/mL) in supplemented Iscoves modified Dulbecco medium
culture for 24, 48, and 72 hours. Cell viability was measured by
Trypan blue dye exclusion assay. CH11 monoclonal antibody, at a 2
mg/mL dose, induced only a modest, though significant, growth
inhibitory effect on KG1a cells compared to IgM-isotypic control-
treated cells (Figure 1A). Higher doses (up to 10mg/mL) were also
inefficient for inducing KG1a cell death (data not shown). How-
ever, CH11-treated Jurkat and U937 cells rapidly died, the former
more sensitive than the latter (Figure 1B). Morphologic examina-
tion after DAPI staining showed typical features of apoptosis in
CH11-treated Jurkat and U937 cells, whereas CH11-treated KG1a
cells displayed no morphologic changes (data not shown). Similar
results were obtained with recombinant human Fas-L used at
various doses (0.2-2mg/mL) (data not shown). These results
confirmed that despite high level of Fas expression, KG1a cells
were resistant to Fas-induced apoptosis.

Fas clustering in KG1a cells

We addressed whether Fas ligation could induce Fas receptor
aggregation in KG1a cells. To resolve this question, we used an
immunofluorescence technique coupled to confocal microscopy
analysis as reported elsewhere.8 In these experiments, KG1a cells
were or were not stimulated with Fas-L (0.5mg/mL) for 4 hours,
fixed with 4% paraformaldehyde, incubated with ZB4 murine
anti-Fas monoclonal antibody or nonimmune mouse IgG1 (data not
shown), and stained by FITC-labeled goat–anti-mouse IgG. For
this study, ZB4 monoclonal antibody was preferred to CH11
because, unlike CH11, this antibody recognized a Fas epitope
distinct from the Fas-L binding site. Jurkat (data not shown) and
U937 cells were used as controls. Confocal laser microscopy
showed that though untreated KG1a cells exhibited diffuse staining
of Fas (Figure 2A), stimulation of cells with Fas-L resulted in Fas
aggregation, enabling a dense, patchy staining that was primarily
membrane localized (Figure 2C). Similar findings were found in
the Fas-sensitive cell lines, as shown in Figure 2B and D, for U937
cells. Because Fas oligomerization appeared to be functional in
Fas-activated KG1a cells, we hypothesized that the interruption of
Fas signaling was situated immediately downstream of the Fas
receptor and that in these cells, for example, some regulators
interfered with DISC formation and caspase-8 activation.

Figure 1. CH11 effect on cell viability. Cells (4 3 105/mL) were treated by CH11 (2
mg/mL for KG1a and U937; 0.5 mg/mL for Jurkat) or IgM isotypic control for different
time periods. Cell viability was evaluated by Trypan blue exclusion assay. (A) KG1a
cells treated by CH11 (f) or IgM (M). (B) Jurkat cells treated by CH11 (d) or IgM (E),
U937 cells treated by CH11 (Œ) or IgM (‚). Results are the mean 6 standard
deviation of 3 independent experiments.
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Caspase-8 activation in KG1a cells

In preliminary experiments, whole-cell lysates were examined by
immunoblot analysis and demonstrated that the adapter protein
FADD (27-28 kd), procaspase-8 (53-55 kd), and procaspase-3 (32
kd) were present in KG1a cells at a level similar to that of Jurkat
cells (Figure 3A). These results showed that the proteins that
potentially constitute DISC—ie, Fas, FADD, and caspase-8—are
present in KG1a cells.

We next determined whether Fas ligation could lead to the
formation of a functional DISC. As shown on Figure 3B, DISC
formation was well detected in Fas-L–treated Jurkat cells at 15
minutes. In contrast, incomplete DISC formation was detected
in Fas-L–treated KG1a cells because only FADD was observed
in the complex. This result suggested that in Fas-L–treated
KG1a cells, the defect of DISC formation was caused by the
absence of procaspase-8 recruitment. Finally, we examined the
generation of procaspase-8 cleavage products in KG1a cells
treated with CH11 monoclonal antibody. Therefore, KG1a cells
were treated with CH11 (2mg/mL) for 24 and 48 hours, after
which whole-cell lysates were subjected to immunoblotting with
a mixture of antibodies directed against procaspase-8 and its p20
and p10 cleavage products. As shown in Figure 3, whereas
exposure to CH11 monoclonal antibody resulted in procaspase-8
proteolysis in Fas-sensitive Jurkat cells (Figure 3C), there was
no generation of cleavage products in CH11-treated KG1a cells
(Figure 3D). The lack of caspase-8 activation may explain why
in KG1a cells, Fas ligation was unable to generate caspase-3
cleavage intermediates (Figure 3F). Together these results
suggested that in KG1a cells, the lack of Fas-induced apoptosis
was related to the presence of negative regulators that interfere
with DISC formation and subsequent inhibition of caspase-8
activation. Among different parameters, we speculated that in
these cells, PKC activity might play an important role in
regulating the formation of functional DISC and Fas-mediated
cell death. This was investigated by evaluating the capacity of
chelerythrin or calphostin C, 2 known PKC inhibitors, to restore
Fas-induced cytotoxicity.

Effect of PKC inhibitors on Fas-mediated cytotoxicity
in KG1a cells

KG1a cells were pretreated with either chelerythrin (20mM) or
calphostin C (50 nM) for 1 hour, then were incubated in the
presence of CH11 monoclonal antibody for 4 hours. Cell viability
was measured by Trypan blue exclusion assay. Under these
conditions, neither chelerythrin, calphostin C, nor CH11 monoclo-
nal antibody used alone influenced KG1a cell viability (data not
shown). As shown in Figure 4A, CH11 monoclonal antibody
induced a rapid loss of viability with 50% of residual viable cells at
4 hours in the chelerythrin-pretreated population. In addition, in
chelerythrin-pretreated cells, CH11 treatment restored caspase 8
activity (Figure 4B). However, cotreatment with calphostin C and
CH11 for 4 hours did not affect KG1a cell viability (Figure 4A) or
caspase-8 activity (Figure 4B). Chelerythrin and calphostin C are
known to target distinct sites of PKC. Indeed, the former interferes

Figure 3. Functional DISC formation in KG1a and Jurkat cells lines. (A)
Expression of FADD and of procaspase-8 and -3 in KG1a and Jurkat cell lines. FADD,
procaspase-8, and procaspase-3 expression in KG1a and Jurkat cells was detected
by Western blot as described in “Materials and methods.” (B) DISC formation. KG1a
or Jurkat cells were treated, respectively, for 1 hour or 15 minutes by Fas-L–FLAG
and anti-FLAG monoclonal antibody before immunoprecipitation. FADD and pro-
caspase-8 were detected by Western blot, as described in “Materials and methods.”
(C-F) Fas-induced caspase-8 and -3 activation in KG1a and Jurkat cell lines. Jurkat
cells (C, E) were treated for 1 hour with 0.5 mg/mL CH11 or IgM isotypic control. KG1a
cells (D, F) were treated by 2 mg/mL CH11 or IgM isotypic control for 24 or 48 hours.
Cellular extracts were analyzed by Western blot for caspase-8 (C, D) or caspase-3
(E, F) activation, as described in “Materials and methods.”

Figure 2. Fas clusters in KG1a and U937 cell lines. KG1a cells (A, C) and U937 (B,
D) were treated (C, D) or not (A, B) with 0.5 mg/mL Fas-L for 4 hours. After washing,
cells were incubated for 2 hours with ZB4 monoclonal antibody and then with
FITC-conjugated goat–anti-mouse monoclonal antibody. Confocal analysis was
performed as described in “Materials and methods.” Fas aggregation was shown as
dense patchy staining (see arrows).
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with the catalytic site, which is present in all PKC isoforms,
whereas the latter acts at the regulatory site of classical and novel
PKC isoforms.37,38 Therefore, the fact that chelerytherin, but not
calphostin C, could overcome Fas resistance in KG1a cells
suggested that atypicalz or i PKC isoforms, but not classical (a, b,
g), or novel (d, e, t, n, m) isozymes, interfere with Fas signaling.
Based on previous studies that have extensively documented the
role of PKCz as a potent negative regulator of apoptosis, including
TNFa-induced apoptosis, in different cellular models,39,40we have
speculated that this PKC isoform might play an important role in
Fas resistance of KG1a cells.

Effect of PKC z inhibition on DISC formation and Fas-induced
cytotoxicity in KG1a cells

To ascertain the role of PKCz in Fas resistance, KG1a cells were
exposed to the action of antisense oligonucleotides directed against
PKCz and then were treated or not treated by CH11 monoclonal
antibody. At first, 48-hour oligonucleotide pretreatment had no
effect on cell viability as observed by Trypan blue exclusion assay
(data not shown). However, antisense, but not sense, oligonucleo-
tide dramatically decreased PKCz expression (Figure 5A) and, in
parallel, facilitated CH11-induced cytotoxicity. Indeed, though
CH11 was unable to induce significant cytotoxicity in KG1a cells
treated with sense oligonucleotide, this antibody induced a cyto-
toxic effect in PKCz antisense oligonucleotide-treated cells (Figure
5B). Moreover, in these conditions, CH11 induced caspase-8
activity (Figure 5C) and apoptosis (Figure 5E). These findings
suggested that decreased PKCz expression resulted in the restora-
tion of functional DISC and activation of downstream Fas
death pathway.

PKCz regulation by Par-4 protein

To further explore the role of PKCz in Fas-resistance of KG1a
cells, we investigated the influence of Par-4 (prostate apoptosis
response-4), a known specific regulator of PKCz.41,42Western blot
analysis revealed that KG1a cells expressed no detectable Par-4
protein, whereas Jurkat cells displayed high Par-4 level (Figure

6A). Hence, KG1a cells were stably transfected by a plasmid
containing the full-length Par-4 cDNA sequence. Ten clones were
obtained, for which only 2 (clones KG1a/G8 and KG1a/G9) had an
immature phenotype (CD341, CD382) such as the parental KG1a
cell line. Par-4 overexpression in the KG1a/G8 subclone (Figure
6A) resulted in a noticeable reduction of PKCz activity compared
to KG1a cells (Figure 6B), whereas it did not influence PKCz
expression (Figure 6C). Moreover, in KG1a/G8 cells, CH11
induced the activation and the cleavage of caspase-8 and, thus,
cytotoxicity and apoptosis (Figure 7). These results suggested that
in KG1a cells, low Par-4 expression level and subsequent PKCz
overactivity played an important role in the lack of DISC formation.

Interaction between PKC z and DISC components

The fact that PKCz inhibition restored Fas-induced caspase-8
activation in KG1a cells suggested that PKCz might interact with
DISC components. To test this hypothesis, whole-cell extracts were
subjected to immunoprecipitation with anti-FADD antibody, and
immunoprecipitates were blotted with anti-PKCz monoclonal
antibody. PKCz was found to interact with FADD (Figure 8A); in
parallel, PKCz immunoextracts prepared from wild-type KG1a
cells were able to phosphorylate FADD–agarose complexes (Fig-
ure 8B). Furthermore, this phosphorylation is dramatically reduced
in Par-4 overexpressed KG1a–G8 cellular extracts (Figure 8B).

Figure 5. Effect of antisense oligonucleotides directed against PKC z. KG1a
cells were pre-incubated with 10 mM antisense (AS) PKCz or sense (control)
oligonucleotides for 48 hours and then were treated or not treated with CH11 (2
mg/mL). (A) PKCz expression analyzed by Western blot. (B) Fas-induced cell
cytotoxicity was evaluated by Trypan blue exclusion assay. Results are the mean 6
SD of 3 independent experiments. *P , .05. (C) Caspase-8 activity was evaluated at
4 hours after CH11 treatment, as described in “Materials and methods.” Results are
expressed as percentage increase in CH11 against IgM-treated cells and are the
mean 6 SD of 3 independent experiments. *P , .05. (D, E) Morphology of
CH11-treated cells was analyzed by fluorescence microscopy after DAPI staining. (D)
Sense oligonucleotide-treated KG1a cells. (E) Antisense oligonucleotide-treated
KG1a cells.

Figure 4. Effect of PKC inhibitors on Fas-mediated cytotoxicity and caspase-8
activation in KG1a cells. KG1a cells (4 3 105/mL) were pre-incubated for 1 hour
with chelerythrin (20 mM) or calphostin (50 nM). Then cells were treated with 2 mg/mL
CH11 or IgM for 4 hours. (A) Fas-induced cell cytotoxicity was evaluated by Trypan
blue exclusion assay. Results are the mean 6 SD of 3 independent experiments.
*P , .05. (B) Caspase-8 activity was evaluated as described in “Materials and
methods.” Results are expressed as percentage increase in CH11 against IgM-
treated cells and are the mean 6 SD of 3 independent experiments. *P , .05
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Discussion

Our study shows that in KG1a cells, Fas activation results in Fas
aggregation, incomplete DISC formation leading to a defect in
caspase-8 activation. However, pretreatment with chelerythrin, an
inhibitor of all types of PKC isozymes, and, more specifically
PKCz depletion by antisense oligonucleotides or PKCz inactiva-
tion by Par-4 overexpression, restored Fas-induced caspase-8
activity and cytotoxicity. These results suggest that in KG1a cells,
PKCz plays a critical role in altered DISC formation. To the best of
our knowledge, the influence of the atypical PKCz isozyme on Fas
signaling has never been reported. However, the role of other PKC
isozymes on Fas-induced apoptosis has already been investigated
in lymphoid cells. In these studies, it has been shown that Go 6976,
a proposed classical PKC isozyme inhibitor, facilitated Fas cytotox-
icity in Jurkat cells whereas treatment with phorbol esters signifi-
cantly reduced Fas-induced caspase-3, PARP cleavage, and apopto-
sis in T cells.31-33,43-46Moreover, in the latter studies, it has been
described that in the Jurkat T-cell model, phorbol ester-induced
PKC stimulation resulted in decreased Fas aggregation33 whereas
in other T-cells, it has been shown that phorbol esters or diacylglyc-
erol reduced Fas expression.44 Because of the specificity of these
reagents, which selectively target classical or novel PKC isozymes,
it can be assumed that in lymphoid cells, nonatypical PKC isoforms
can also efficiently regulate Fas-induced apoptosis. Therefore, it
appears that depending on the cellular models, PKC may interfere
with Fas signaling through distinct PKC isozymes and mecha-
nisms. However, we observed that, in Jurkat cells, PKCz overex-
pression partially inhibited Fas-induced apoptosis (A.d.T., unpub-
lished results, 2001), suggesting that PKCz may also regulate Fas
signaling in nonmyeloid leukemic cells.

The mechanism by which PKCz inhibited DISC formation in
KG1a cells was investigated. Fas, FADD, and caspase-8 expression
levels were similar in KG1a/G8 cells, compared to KG1a cells
(data not shown). This result suggests that PKCz does not act by
decreasing the expression of DISC protein components. The role of

FLIP, a potent negative regulator of DISC formation,10 is also
unlikely. Indeed, FLIP expression in KG1a cells was similar to that
of Fas-sensitive U937 and Jurkat cells, and Par-4 overexpression
had no influence on FLIP levels in KG1a cells (data not shown).
These results suggest that FLIP plays a minor role in KG1a cell
resistance and that PKCz does not act on FLIP expression. Based
on previous studies that described serine phosphorylation sites on
FADD protein,47,48 we hypothesized that PKCz regulates DISC
formation by influencing FADD phosphorylation status. Indeed,
our study shows that PKCz interacts with FADD in vivo and that
PKCz may directly phosphorylate FADD in vitro. Moreover, we
found a correlation between FADD phosphorylation status and
caspase-8 activation. These results strongly suggest that PKCz-
mediated FADD phosphorylation contributes to caspase-8 inhibi-
tion and subsequent Fas resistance in KG1a cells.

Oncogenic Ras and growth factors including platelet-derived

Figure 7. Fas sensitivity of KG1a/G8 cells. (A) Caspase-8 activity was evaluated
as described in “Materials and methods.” Results are expressed as percentage
increase in CH11 against IgM-treated cells and are the mean 6 SD of 3 independent
experiments. *P , .05. (B) Caspase-8 cleavage in KG1a/G8 cells treated by CH11 or
IgM (2 mg/mL for 4 hours). (C) After treatment by 2 mg/mL CH11 (■) or IgM (h),
KG1a/G8 cell viability was evaluated by Trypan blue exclusion assay. Results are the
mean 6 SD of 3 independent experiments. *P , .05. (D, E) Morphology of
CH11-treated cells was analyzed by fluorescence microscopy after DAPI staining. (D)
KG1a cells. (E) KG1a/G8 cells.

Figure 6. Par-4 and PKC z expression and PKC z activity in KG1a/G8 cells. (A)
Par-4 expression was analyzed by Western blot in KG1a, KG1a/G8, and Jurkat cells.
(B) KG1a or KG1a/G8 cellular extracts were immunoprecipitated with anti-PKCz
monoclonal antibody. PKCz activity was determined, as described in “Materials and
methods,” using histone H1 as substrate. In parallel, an aliquot of each sample was
analyzed by Western blot using anti-PKCz monoclonal antibody to quantify immuno-
precipitated proteins. (C) PKCz expression was analyzed by Western blot in KG1a
and KG1a/G8 cells.
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growth factor or nerve growth factor (TrkA/NGF) may enhance
PKCz activity.49-51These signaling pathways are potentially stimu-
lated in AML cells. Therefore, it is possible that these stimuli may
reduce Fas-sensitivity of AML cells through a PKCz-dependent
mechanism. It has been documented that PKCz is a target for
phosphoinositide-3 kinase (PI3K) lipid products.52,53 Interestingly,
it has been reported recently that tyrosine kinase receptor-driven
PI3K stimulation resulted in the abrogation of FADD–caspase-8

interaction and Fas-induced apoptosis.54 Whether PKCz plays a
role in PI3K-induced Fas resistance should be investigated.

In this study we also showed that in KG1a cells, the lack of
Par-4 expression plays an important role in Fas resistance. Par-4
interacts with the regulatory domain of PKCz through its leucine
zipper domain, and this interaction inhibits the kinase activity.41 It
is generally believed that the negative regulation of PKCz is the
principle mechanism by which Par-4 exerts its pro-apoptotic
function though it could also act by modulating Bcl-2 expression
and transcription function of WT-1.55-57Whereas Par-4 has emerged
as a pivotal player in neuronal apoptosis,42 so far it has received
little attention in leukemia. The fact that the monocytic U937 cells,
but not KG1a cells, displayed substantial Par-4 expression level
suggests that the Par-4 gene is regulated in AML cells. The
mechanism by which Par-4 is regulated remains largely unknown.
However, it has been reported that oncogenic Ras causes down-
regulation of Par-4 in fibroblasts.58 Therefore, it should be investi-
gated whether Ras, by regulating Par-4 expression, plays an
important role in regulating apoptosis induced by Fas, and perhaps
by other stress, in AML cells.

To conclude, our study shows that in myeloid leukemic cells,
PKCz and Par-4 are coupled regulators of Fas cell death signaling
by interfering with DISC formation. Moreover, because PKCz is
expressed in normal CD341 cells,59,60 it should be important to
investigate whether this kinase also plays a role in Fas resistance of
hematopoietic progenitors.
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