Brief report

Loss of a novel tumor suppressor gene locus at chromosome 8 p is associated with leukemic mantle cell lymphoma

Jose A. Martinez-Climent, Esperanza Vizcarra, Dolors Sanchez, David Blesa, Isabel Marugan, Isabel Benet, Françesc Sole Francisca Rubio-Moscardo, Maria J. Terol, Joan Climent, Elena Sarsotti, Mar Tormo, Enrique Andreu, Marta Salido, Maria A. Ruiz, Felipe Prosper, Reiner Siebert, Martin J. S. Dyer, and Javier García-Conde

Patients with mantle cell lymphoma (MCL) may present with either nodal or leukemic disease. The molecular determinants underlying this different biologic behavior are not known. This study compared the pattern of genetic abnormalities in patients with nodal and leukemic phases of MCL using comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) for specific gene loci.

Although both leukemic and nodal MCL showed similar genomic patterns of losses (involving 6q, 11q22-q23, 13q14 and $17 p 13$) and gains (affecting $3 q$ and $8 q)$, genomic loss of chromosome $8 p$ occurred more frequently in patients with leukemic disease (79% versus 11%, $P<.001$). Subsequent CGH analysis confirmed the genomic loss of 8p21-p23 in 6 of 8 MCL cell lines. Interestingly, MYC
gene amplification was restricted to cases with 8p deletion. These data indicate the presence of a novel tumor suppressor gene locus on 8p, whose deletion may be associated with leukemic dissemination and poor prognosis in patients with MCL. (Blood. 2001;98:3479-3482)
© 2001 by The American Society of Hematology

Introduction

Mantle cell lymphoma (MCL) is characterized by the translocation $\mathrm{t}(11 ; 14)(\mathrm{q} 13 ; \mathrm{q} 32)$ resulting in overexpression of cyclin D1. ${ }^{1-3}$ Patients with MCL present frequent extranodal disease at diagnosis, with peripheral blood (PB) involvement observed in one third of the cases. However, the natural history of MCL eventually includes involvement of the PB in almost all cases. ${ }^{1-4}$ Leukemic MCL has been associated with a worse prognosis than nodal MCL, ${ }^{4}$ although a small percentage of patients with leukemic disease may have an indolent course. ${ }^{1,5}$ Although many genetic aberrations in addition to the $\mathrm{t}(11 ; 14)(\mathrm{q} 13 ; \mathrm{q} 32)$ have been correlated with specific features of the disease, whether these abnormalities are different in the leukemic and in the nodal forms of MCL remains unknown. ${ }^{5-11}$ To address this issue we have compared the pattern of secondary genetic abnormalities in patients with leukemic and nodal MCL, as well as in 8 MCL -derived cell lines.

Study design

Twenty-eight patients with MCL with $\mathrm{t}(11 ; 14)(\mathrm{q} 13 ; \mathrm{q} 32)$ or BCL1-IGH gene rearrangement or both, fulfilling the World Health Organization criteria, ${ }^{3}$ were diagnosed between 1995 and 2000 among 400 consecutive patients newly diagnosed with B-cell lymphoproliferative disorders. Histologic, immunophenotypic, cytologic, and cytogenetic studies were performed in all cases. Screening for BCL1-IGH gene rearrangement by dual-color fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) assays were performed in all patients with a suspected MCL. ${ }^{12,13}$ Among 28 patients diagnosed with MCL, 19 presented with PB involve-
ment at diagnosis (defined as $>10 \%$ CD5/CD19 ${ }^{+}$cells in the PB), and 9 patients were classified as having nodal MCL. One nodal and 6 leukemic cases were classified as blastoid variants of MCL (Table 1). Six MCLderived cell lines (Granta 519, NCEB-1, HBL2, SP-49, REC1, and Z-138), the JVM-2 cell line derived from a prolymphocytic leukemia, and the SKMM2 cell line derived from a multiple myeloma, both carrying $\mathrm{t}(11 ; 14)(\mathrm{q} 13 ; \mathrm{q} 32)$, were also included in the study. ${ }^{14}$ References for the derivation of these cell lines may be obtained on request.

Comparative genomic hybridization (CGH) and FISH for the presence of trisomy 12 and deletions of $13 q 14$ (D13S25 locus) and of P53 gene in 17 p 13 were performed in all patients at diagnosis; the cell lines were analyzed by CGH and cross-species color banding (RxFISH). The probes and methods used have been previously reported. ${ }^{13,15-17}$ In leukemic cases, studies were performed on samples from PB or bone marrow (BM) ($\mathrm{n}=14$), lymph node $(\mathrm{n}=3)$, and spleen $(\mathrm{n}=2)$, whereas all nodal cases were studied on lymph node samples. In selected cases and cell lines with genomic imbalances affecting specific gene loci, the number of copies of MYC gene (using previously reported probes ${ }^{17}$), and $A T M$ and BCL2 genes was determined by FISH using probes obtained from Dr M. Rocci (University of Bari, Italy, www.bioserver.biologia.uniba.it).

Results and discussion

Table 1 shows the cytogenetic, FISH, and CGH studies in the patients with leukemic MCL (no. 1-19) and nodal MCL (no. 20-28). Those with leukemic disease showed genomic imbalances in 18 of 19 cases (95%), with losses being more frequent than gains (88 versus 50). The median number of chromosomal imbalances

From the Department of Hematology and Medical Oncology, Hospital Clínico, University of Valencia, Spain; Laboratory of Hematologic Cytology, Department of Pathology, Hospital del Mar, Barcelona, Spain; Section of Hematology, Gandia Hospital, Gandia, Spain; Institute of Human Genetics, University Hospital Kiel, Germany; and Department of Haematology, University of Leicester, United Kingdom.
Submitted February 28, 2001; accepted July 17, 2001.
Supported by grants from the Fondo de Investigación Sanitaria (FIS) FIS-98/0491 and FIS-01/0015, by the Deutsche Krebshilfe grants 10-1556-Sch|4

and 10-1641-De1, and by the IZKF Kiel

Reprints: Jose A. Martínez-Climent, Department of Hematology and Medical Oncology, Hospital Clínico, University of Valencia. Avda Blasco Ibañez, 17, 46010 Valencia, Spain; e-mail: martinez_jos@gva.es.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 U.S.C. section 1734.
© 2001 by The American Society of Hematology
Table 1. Cytogenetic, FISH, and molecular studies of patients with leukemic and nodal MCL

Case	Source	Morphology	Karyotype*	$\begin{aligned} & =I S H / P C R \\ & B C L 1- \\ & I G H+ \end{aligned}$	FISH \ddagger	CGH§	
1	PB	Typical	46,X,t(X;4)(p22;p12),ins(1)(?q22),t(11;14)(q13;q32)(2)/46,XX(19)	+/+	-13q14	Revish enh(3q13q27),dim(Xp22,Xq28,4p15,13q14q21)	
2	PB	Large-cell\|		$46, \mathrm{XX}, \mathrm{t}(11 ; 14)(\mathrm{q} 13 ; \mathrm{q} 32)(2) / 45$,idem, der(16)t(12;16)(q13;q23),-18(1)/48, idem, $-X,-6$,del(6)(p12),del(8)(p11),add(9)(p21),del(13)(q12q14), $\operatorname{add}(15)(\mathrm{q} 26)$, add(20)(q13.3),+1-4mar(1)/46,XX(15)	+/+	$-13 q 14,+8 q 24$	Rev ish enh(8q24),dim(Xp21p22,Xq28,8p21p23,10p14p15,12p13,13q14q21,14q31q32,19q13)
3	BM	Typical	46,XY,t(11;14)(q13;q32)(17)/46,XY(3)	+/-	N	No imbalances	
4	BM	Typical	$\begin{aligned} & \text { 47,XX,+3,del(6)(q14q24),t(11;14)(q13;q32)(10)/47,idem, } \\ & \text { del(18)(q22q23)(20) } \end{aligned}$	+/-	N	Rev ish enh(3,10p15),dim(6q13q27,8p21p23,17p13),amp(Xp22)	
5	PB	Typical	46,XX,del(8)(p12),add(14)(q32)(4)/46,XX(10)	+/+	N	Rev ish dim(8p12p23)	
6	PB	Large-cell	$\begin{aligned} & \text { 44,X,Y,t(3;10)(p14;q22),+8,dic(8;9)(q10;q10),t(11;14)(q13;q32),del}(12)- \\ & \text { (p11)),del(17)(p11),-21,+mar(7)/44,idem,der(9)t(9;11)(q11;p11),-der+ } \\ & \text { (14)t(11;14)(q13;q32),der(14)t(11;14)(q13;q32)t(9;11)(q11;p11),-18, } \\ & \text { +2mar(5) } \end{aligned}$	+/-	+8q24,-17p13	Rev ish enh(8q13q24.3,15q12q26),dim(Yp11q11,3p13p25,8p11p23,9p12p24,12p11,12p13, 17p11p13)	
7	PB	Large-cell	46,XY(20)	+/+	+8q24,-17p13	Rev ish enh(8q11q24.3),dim(4p15,8p12p23,16p13,17p11p13,20p13)	
8	PB	Typical	46,XY,-6,t(11;14)(q13;q32), + $\mathrm{mar}(5) / 46, \mathrm{XY}(15)$	+/-	N	Rev ish enh(1q12q31,9p23),dim(X)	
9	PB	Blastoid	47-48,XY, +der(X)del(q25q27),t(11;14)(q13;q32)+mar(cp5)	+/-	$\begin{aligned} & \text {-11q22,BCL1- } \\ & \text { IGHx2 } \end{aligned}$	Rev ish enh(Xp11q25,16p13),dim(8p21p23,6q24q27,11q22q24,14q24q32,22q11q13),amp(3p25)	
10	BM	Blastoid	88,XX,-Y,-Y,-1,del(1)(p22p31.2),add(3)(q27)x2,del(6)(q14q24)×2,t(11;14) (q13;q32) $\times 2, a d d(13)(q 32) \times 2, \operatorname{add}(15)(q 25) \times 2,-16,-16,+\operatorname{mar}(10) / 46, \mathrm{XY}(2)$	+/+	$\begin{array}{r} +8 q 24,-13 q 14, \\ \text { BCL1-IGHx2 } \end{array}$	Rev ish enh(Xq22q26,3q24q27,8q21q24.3,11p11q13,14q32,15q21q23),dim(Xp21p22,Yq11, $1 p 13 p 36,1 q 31 q 44,6 q 21 q 27,8 p 21 p 23,13 q 31 q 34,15 q 24 q 26,16 q 21 q 23)$	
11	Spleen	Blastoid	$\begin{aligned} & 75-80, \mathrm{XY},+\mathrm{X},+\mathrm{Y},+2,+3, \text { add(3)(?p13),+4,+4,+5,+6,+7,+8,+8,+9,+10} \\ & \quad+11, \mathrm{t}(11 ; 14)(\mathrm{q13} \text {;q32), }+12,+14,+15,+16,+17,+18,+18,+19,+20, \\ & \quad+21,+22,+1-5 \operatorname{mar}(\mathrm{cp10}) \end{aligned}$	+/-	$\begin{gathered} +8 q 24,-13 q 14, \\ -17 p 13 \end{gathered}$	Rev ish enh(Xp22q26,4p13q13,8q11q24.3,18q22q23),dim(Yq11q12,6q23q27,8p12p23, 10q24q26,13q14q34,17p11p13),amp(Xq25,18p11,19p13.3)	
12	BM	Typical	46,XX,t(11;14)(q13;q32)(2)/46,XX(8)	+/+	-11q22,-13q14	11q14q23,13q14q34,18p11) Rev ish enh(3q13q27,9q21q34,15q13q24),dim(Xp21p22,1p13p31,7q32q36,8p22p23,10p12p15, 11q14q23,13q14q34,18p11)	
13	PB	Blastoid	46, XY(20)	+/+	$\begin{gathered} -11 \mathrm{q22,-17p13}, \\ \text { BCL1-IGHx2 } \end{gathered}$	Rev ish enh(3q21q29,9q11q21,13q21q31),dim(Y,8p22p23,9q21q23,13q32q34,17p11p13, 18q22q23,20q13)	
14	Lnode	Typical	ND	+/+	-11q22	Rev ish enh(5p13q31),dim(1p21p31,8p23,11p14p15,11q23q25,22q12q13)	
15	Spleen	Typical	46,XY t (1;5)(q23;p15),t(11;14)(q13;q32)(3)/46,XY(15)	+/-	N	Rev ish enh(q25q26),dim(1p13p31,6q23q27,8p23)	
16	Lnode	Blastoid	47,XY,+7,dic(8;9)(p10;p10),+9,t(11;14)(q13;q32)(4)	+/+	N	Rev ish enh(7p22p21,9p11q13),dim(8p23)	
17	PB	Typical	46,XY,del(6)(q14q25),t(11;14)(q13;q32)(7)/46,XY(3)	+/+	-13q14	Rev ish enh(Xp22q22,3q26,9p23p24),dim(6p25p12,6q21q27,8p12p23,11q22q24,12p12p13)	
18	Lnode	Typical	ND	+/+	-11q22	Rev ish enh(12p12q21),dim(8q23q24,9p21p24,11q21q24)	
19	PB	Blastoid	$\begin{aligned} & \text { 46,XX,der(1)add(1)(p21)del(1)(q31),t(11;14)(q13;q32), } \\ & \text { dup(18)(q12q23)(inc 20) } \end{aligned}$	+/-	$\begin{gathered} +8 q 24,-11 q 22, \\ +18 q 21 \end{gathered}$	Rev ish enh(1p34p36,2p12p25,8q23q24.3,9q34,11q13,14q32,16p13q13,17,22q11q13),dim (Xp22q26,1p13p31,1q23q44,2q24q35,4q11q33,8q11p23,9p13p24),amp(18q12q21.3,19)	
20	Lnode	Typical	46,XY, (3)(q10),t(11;14)(q13;q32), del(13)(q14q22)(9)	+/-	-17p13	Rev ish enh(3q11q29,9q33q34,15q21q26),dim(3p11p26,17p11p13)	
21	Lnode	Typical	```45-47,X,-Y,+X,del(2)(p?15,del(3)(?q26),t(11;14)(q13;q32),-18, +mar(cp10)```	+/+	-13q14	Rev ish enh(Xp21q22,5p11q32),dim(6q24q27,8p21p23,18p11)	
22	Lnode	Typical	48,XY, +3,t(11;14)(q13;q32), +mar(2)	+/-	N	Rev ish enh(3),dim(1p13p22,9p22p24,18p11)	
23	Lnode	Typical	46,XY,t(11;14)(q13;q32)(4)/46,XY(6)	+/+	N	No imbalances	
24	Lnode	Typical	ND	ND/+	ND	Revish enh(1p32p36,15q21q25,16p13q12,17,19p13q13.2,22q11q13.2),dim(9p11p24,9q21q34, 13q12q34)	
25	Lnode	Blastoid	89-90,XXYY,der(1)add(1)(q21)del(1)(?p21)x2,+der(3)del(3)(p21), $\mathrm{t}(11 ; 14)(\mathrm{q} 13 ; \mathrm{q} 32) \mathrm{x} 2, \mathrm{add}(? 18)(\mathrm{q} 21) \times 2,-19,-22 \times 2,+1-3 \operatorname{mar}(\mathrm{cp} 20)$	+/-	$\begin{aligned} & \text {-17p13,BCL1- } \\ & \text { IGHx2 } \end{aligned}$	Rev ish enh(Xq12q23,3p13q26,4p13q32,5q11q23,6q11q21),dim(Xq26q27,1p32p36,6q24q26, 10q25q26,17p11p13,19,22q11q13)	
26	Lnode	Typical	47,XY, +3,del(6)(q11),t(11;14)(q13;q32)(7)	+/+	N	Rev ish enh(Xp22q21,3,15q21q25),dim(6q11q27)	
27	Lnode	Typical	ND	ND/+	ND	Rev ish enh(9q32q34),dim(Xp11p22,1p12p36,11q13q25,13,17q21)	
28	Lnode	Typical	ND	ND/+	ND	Rev ish enh(2q32q37,3q11q29,7),dim(6q21q27,9q32q34,11q22q24)	

[^0]Lnode indicates lymph node; ND, not done; and N, normal resuls
*Cytogenetic analysis was performed on 72 -hour tetradecanoylphorbol-13-acetate (TPA)-stimulated cultures in the samples from PB and BM , and on nonstimulated 24 -hour cultures in spleen and lymph node samples.
\dagger PCR analysis was performed in the same samples used for CGH analysis.
\ddagger FISH was performed on fixed cell nuclei from cytogenetic analysis. BCL1-IGHx2: two fusions of BCL1 and IGH gene probes per cell.
||Large-cell variant of MCL presenting transformed blastlike cells with prominent nucleoli (Zoldan and coworkers ${ }^{21}$).
per case was 6 (range, 0-18). High-level amplifications were observed in 7 regions (Xp22, Xq25, 3p25, 18p11, 18q21, 19p, and $19 \mathrm{q})$. The most frequent abnormalities included gains of $3 \mathrm{q}(37 \%)$, 8 q affecting MYC gene (32%), $9 \mathrm{q}(26 \%)$, Xq (21%), and 15 q (16%), and losses of 8 p (79%), 13q encompassing D13S25 locus, 6 q and $\mathrm{Xp}(32 \%)$, and $1 \mathrm{p} 22,11 \mathrm{q}$ involving ATM gene and 17 p involving P53 gene (26%). Eight of the 9 patients with nodal MCL displayed chromosomal imbalances, showing a spectrum of abnormalities similar to that of leukemic MCL and consistent with previous reports. ${ }^{8-10}$ (Table 1 and Figure 1A). Nevertheless, the genomic loss of 8 p was associated with the leukemic forms because it was detected in 15 of 19 patients with leukemic MCL (79%) but in only 1 of 9 patients with nodal MCL ($11 \% ; P<.001$). Comparison of cases with the deleted region allowed narrowing of the commonly deleted segment to 8p21-p23 (Figure 1B). Recent studies have reported this genetic abnormality in patients with human malignancies including T-cell prolymphocytic leukemia, and bladder, breast, head and neck, prostate, lung, and colorectal carcinoma. ${ }^{18}$ However, it has only been described in 13 of 99 reported cases of MCL studied by CGH, ${ }^{8-10}$ and very rarely in other B-cell lymphomas. ${ }^{11,15,18,19}$ It has been suggested that a tumor
suppressor gene (TSG) may be located in the subtelomeric region of chromosome 8p, and associated with increased ability to metastasize in hepatocellular carcinoma. ${ }^{20}$ Our results suggest that the deletion of 8 p may be a characteristic molecular marker of leukemic MCL and that this region may contain a novel TSG with a possible role in blood dissemination of MCL. Moreover, the loss of 8 p was found in all 9 cases with aggressive variants of leukemic MCL (both blastoid and large-cell subtypes) but in 60% of cases of typical morphology, suggesting a correlation with aggressive tumors. Because of the location of the relevant segment at the subtelomeric region of 8 p , the deletion was identified by cytogenetics only in 4 of the 16 patients with the genomic loss. This may probably explain why this abnormality has been identified only rarely in previous series of MCL. ${ }^{8-11,18,19}$ Additionally, most of our cases were studied on BM/PB samples, and this may have also contributed to these results. Interestingly, we found a high incidence of MYC amplification (6 of 19 cases, 32%), and all these abnormalities were detected in patients with deletion of 8 p . All of them presented with aggressive MCL; 3 cases were blastoid variants and 3 were classified as large-cell variants of MCL

Figure 1. Chromosomal imbalances and genomic loss of 8 p in MCL. (A) Summary of chromosomal imbalances detected by CGH in patients with leukemic MCL. Cases 1 to 19 are as presented in Table 1. Red lines on the left of the ideogram indicate loss of chromosomal material, whereas the green lines to the right indicate gain of chromosomal material. Green squares represent high-level DNA amplification. (B) Schematic representation of chromosome 8 genomic abnormalities in patients with MCL and in cell lines with $\mathrm{t}(11 ; 14)(\mathrm{q} 13 ; \mathrm{q} 32)$.
showing circulating transformed blastlike cells. ${ }^{21}$ Confirming previous studies, a tetraploid karyotype with a double BCLI-IGH gene fusion, or a simultaneous genomic gain affecting to $B C L 1$ and $I G H$ loci at 11 q 13 and 14 q 32 , respectively, was seen in 5 of the 7 blastoid variants, but not in any typical case. ${ }^{19}$

We subsequently expanded our study to 8 cell lines carrying $\mathrm{t}(11 ; 14)(\mathrm{q} 13 ; \mathrm{q} 32)$. Deletion of $8 \mathrm{p} 21-\mathrm{p} 23$ was identified in 6 of them, including a genomic gain of 8 q 24 with MYC amplification in 3 (Figure 1B). In all of them the loss of 8 p was caused by an unbalanced translocation involving 8 p and varied partner chromosomes, or by a derivative isochromosome 8 q . These results indicate that the genomic loss of 8 p is a frequent event in MCL cell lines and that concomitant MYC amplification is seen in most cases. Overexpression and mutation of MYC has been identified in a subset of lymphomas including Burkitt lymphoma, where it plays a crucial pathogenic role. ${ }^{3,22}$ However, the clinical and biologic significance of MYC amplification in MCL is not well known. ${ }^{9,22}$ Based on our results, we suggest that MYC amplification in MCL may be especially frequent in cases with a deletion of 8 p . We may therefore
hypothesize that an inactivated TSG at 8 p cooperates with MYC in the pathogenesis of aggressive MCL.

In summary, our results show that genomic loss of 8 p is a characteristic marker of leukemic MCL, suggesting the presence of a novel TSG locus related to blood dissemination of MCL. The deletion of 8 p is frequently accompanied by MYC amplification and associated with an aggressive behavior of leukemic MCL.

Acknowledgments

We thank Dr A. Ferrandez (H. Clinico); Drs I. Navarro, R. Ferrer, J. Martinez (H. Gandia); M. Garcia, A. Carral (H. Sagunto); J. Marco, R. Garcia (H. Castellon); M. Montagut, M. D. Mirabet (H. Vinaroz); F. Ortuño (H. Murcia); and all the hematologists and pathologists from the "Club Citológico de la Comunidad Valenciana y Murcia" for providing samples and data from the patients; Dr Mariano Rocci (Bari, Italy) for ATM and BCL2 probes; and E. Cervello, M. Ordoñez, R. Marques, F. Domingo, and M. Botia, for excellent technical assistance.

References

1. Campo E, Raffeld M, Jaffe ES. Mantle-cell lymphoma. Semin Hematol. 1999;36:115-127.
2. Bosch F, Jares P, Campo E, et al. PRAD-1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood. 1994;84:27262732.
3. Harris NL, Jaffe ES, Diebold J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Ann Oncol. 1999;10;1419-1432.
4. Argatoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD. Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood. 1997;89: 2067-2078.
5. Garcia-Conde J, Cabanillas F. Mantle cell lymphoma: a lymphoproliferative disorder associated with aberrant function of the cell cycle. Leukemia. 1996;10(suppl 2):78-83.
6. Hernandez L, Fest T, Cazorla M, et al. p53 gene mutations and protein overexpression are associated with aggressive variants of mantle cell lymphomas. Blood. 1996;87:3351-3359.
7. Dreyling MH, Bullinger L, Ott G, et al. Alterations of cyclin D1-p16-pRB pathway in mantle cell lymphoma. Cancer Res. 1997;57:4608-4614.
8. Monni O, Oinonen R, Elonen E, et al. Gain of $3 q$ and deletion of 11 q 22 are frequent aberrations in mantle cell lymphoma. Genes Chromosomes Cancer. 1998;21:298-307.
9. Bea S, Ribas M, Hernandez JM, et al. Increased number of chromosomal imbalances and highlevel DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood. 1999;93:4365-4374.
10. Bentz M, Plesch A, Bullinger L, et al. $t(11 ; 14)$ positive mantle cell lymphomas exhibit complex karyotypes and share similarities with B-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer. 2000;27:285-294.
11. Cuneo A, Bigoni R, Rigolin GM, et al. Cytogenetic profile of lymphoma of follicle mantle lineage: correlation with clinicobiologic features. Blood. 1999; 93:1372-1380.
12. Rimokh R, Berger F, Delsol G, et al. Detection of chromosomal translocation $t(11 ; 14)$ by polymerase chain reaction in mantle cell lymphomas. Blood. 1994;83;1871-1875.
13. Siebert R, Matthiesen P, Harder S, et al. Application of interphase cytogenetics for the detection of $t(11 ; 14)(q 13 ; q 32)$ in mantle cell lymphomas. Ann Oncol. 1998;9:519-527.
14. Drexler HG. The Leukemia-Lymphoma Cell Line FactsBook. San Diego, CA: Academic Press; 2001.
15. Hernandez JM, Garcia JL, Gutierrez NC, et al. Novel genomic imbalances in B-cell splenic marginal zone lymphomas revealed by comparative genomic hybridization and cytogenetics. Am J Pathol. 2001;158:1843-1850.
16. Sole F, Salido M, Espinet B, et al. Splenic marginal zone B-cell lymphoma: two cytogenetic subtypes, one with gain of $3 q$ and the other with loss of 7q. Hematologica. 2000;86:71-77.
17. Siebert R, Matthiesen P, Harder S, et al. Application of interphase fluorescent in situ hybridization for the detection of the Burkitt translocation $t(8$; 14)(q24;q32) in B-cell lymphomas. Blood. 1998; 91:984-990.
18. Knuutila S, Aalto Y, Autio K, et al. DNA copy number losses in human neoplasms. Am J Pathol. 1999;155:683-694.
19. Ott G, Kalla J, Ott MM, et al. Blastoid variants of mantle cell lymphoma: frequent bcl-1 rearrangements at the major translocation cluster region and tetraploid chromosome clones. Blood. 1997; 89;1421-1429.
20. Sunwoo JB, Sun PC, Gupta VK, et al. Localization of a putative tumor suppressor gene in the sub-telomeric region of chromosome 8p. Oncogene. 1999;18;2651-2655.
21. Zoldan MC, Inghirami G, Masuda Y, et al. Largecell variants of mantle cell lymphoma: cytologic characteristics and p53 anomalies may predict poor outcome. Br J Haematol. 1996;93:475-486.
22. Hernandez L, Hernandez S, Bea S, et al. c-myc mRNA expression and genomic alterations in mantle cell lymphomas and other nodal nonHodgkin's lymphomas. Leukemia. 1999;13;20872093.

[^0]: Leukemic (no. 1-19) and nodal MCL cases (no. 20-28).
 Lnode indicates lymph node; ND, not done; and N, normal results.

