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Mechanisms of HIV-associated lymphocyte apoptosis
Andrew D. Badley, André A. Pilon, Alan Landay, and David H. Lynch

Infection with the human immunodefi-
ciency virus (HIV) is associated with a
progressive decrease in CD4 T-cell num-
ber and a consequent impairment in host
immune defenses. Analysis of T cells
from patients infected with HIV, or of T
cells infected in vitro with HIV, demon-
strates a significant fraction of both in-
fected and uninfected cells dying by apo-
ptosis. The many mechanisms that
contribute to HIV-associated lymphocyte
apoptosis include chronic immunologic

activation; gp120/160 ligation of the CD4
receptor; enhanced production of cytotoxic
ligands or viral proteins by monocytes, mac-
rophages, B cells, and CD8 T cells from
HIV-infected patients that kill uninfected CD4
T cells; and direct infection of target cells by
HIV, resulting in apoptosis. Although HIV
infection results in T-cell apoptosis, under
some circumstances HIV infection of rest-
ing T cells or macrophages does not result
in apoptosis; this may be a critical step in
the development of viral reservoirs. Recent

therapies for HIV effectively reduce lym-
phoid and peripheral T-cell apoptosis, re-
duce viral replication, and enhance cellular
immune competence; however, they do not
alter viral reservoirs. Further understanding
the regulation of apoptosis in HIV disease is
required to develop novel immune-based
therapies aimed at modifying HIV-induced
apoptosis to the benefit of patients infected
with HIV. (Blood. 2000;96:2951-2964)

© 2000 by The American Society of Hematology

Introduction

Patients infected with the human immunodeficiency virus (HIV)
experience a progressive decline in CD4 T-cell number, resulting in
immunodeficiency and increased susceptibility to opportunistic
infections and malignancies. Although CD4 T-cell production is
impaired in patients infected with HIV,1 there is now overwhelming
evidence that the primary basis of T-cell depletion in patients
infected with HIV is increased apoptosis of CD4 and CD8 T cells.
Since it was first proposed as a potential mechanism of CD4 T-cell
depletion in patients infected with HIV,2 apoptosis and its dysregu-
lation after HIV infection has become a major focus of research.
Although apoptosis may result from the effects of continuous
immune activation that occurs in HIV-infected patients, consider-
able data indicate that there are additional distinct mechanisms by
which HIV (and HIV-specific proteins) enhances apoptosis. Impor-
tantly, only a minor fraction of apoptotic lymphocytes are physi-
cally infected by HIV, indicating that the enhanced apoptosis of
lymphocytes seen in infected persons results from mechanism(s)
other than direct infection. Thus, understanding of the mechanisms
of HIV-associated lymphocyte apoptosis may lead to new and more
effective therapies for HIV disease and acquired immunodefi-
ciency syndrome.

Overview of HIV-associated
lymphocyte apoptosis

Chronic uncontrolled infections provide continuous antigenic stimu-
lation that causes persistent immune activation and consequent
apoptosis. This is the mechanism by which infectious diseases,

such as cytomegalovirus, cause enhanced apoptosis and lymphope-
nia. Chronic HIV infection provides a chronic immunologic
stimulus; however, it may be unique in its ability to induce
lymphocyte apoptosis through direct or indirect mechanism(s) that
are distinct from immune activation alone. Although numerous
pathogenic viruses have developed mechanisms to prevent apopto-
sis of host cells, no such antiapoptotic machinery is present in HIV.
Indeed, HIV-encoded proteins may induce apoptosis of infected
cells and uninfected cells (ie, paracrine death) through various
mechanisms, some of which are defined; others are as yet
unidentified (Table 1).

Overview of the regulation of apoptosis

Apoptosis is a highly regulated and coordinated cellular death
process that is essential for cellular homeostasis. Alterations in the
regulation of apoptosis may lead to malignancies,3 immunodeficien-
cies,4 and autoimmune phenomena.5

Apoptosis regulatory proteins

Many elements influence whether a cell will undergo apoptosis6

(Figure 1). Four cellular receptors induce apoptosis after ligation;
they are the Fas receptor,7 p55 tumor necrosis factor (TNF)
receptor,8 and TRAIL/APO 2-L (TNF-related apoptosis-inducing
ligand) receptors 1 and 2.9 Fas Ligand (FasL), TNF, and TRAIL/
APO 2-L, respectively, bind these receptors to initiate apoptosis. In
the case of FasL and TNF, membrane-associated proteins may be
cleaved by the action of matrix metalloproteases to release soluble
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ligands that maintain their biologic activity.10-12 It is unknown
whether TRAIL/APO 2-L exists as a soluble molecule. Ligation of
these death receptors recruits the adaptor proteins FADD (Fas-
associated death domain)13-15 TRADD (TNF receptor-associated
death domain), or both,16,17which sequentially activate a family of
cysteine proteases that cleave at aspartate residues (cysteine-
dependent, aspartate-specific protease), or caspases. Caspases are
synthesized as inactive zymogens and become activated after
proteolytic removal of a terminal prodomain.18-20Fourteen mamma-
lian caspase family members have been identified, each with
varying involvements in the regulation of apoptosis. For example,
caspase 8 (FLICE)21-23 and caspase 3 (CPP32)24-26 are involved in
apoptosis mediated by Fas, p55 TNF receptor, and TRAIL/APO
2-L receptor ligation. Activated caspases catalyze the cleavage of
other caspases, which, in turn, activate various cellular proteases
and endonucleases that cleave host cell structural and regulatory
proteins and host nuclear DNA,27 ultimately causing the cell to
undergo the morphologic and biochemical changes that are charac-
teristic of apoptosis.28

In addition to receptor-mediated apoptosis, other stimuli (eg,

chemotherapy, ultraviolet radiation, and ionizing radiation) induce
changes in mitochondria that include opening of the permeability
transition pore and loss of mitochondrial inner transmembrane
potential, which allows the release of apoptosis regulatory proteins
(including cytochrome c, Apaf-1, and caspase 9)29-32 that initiate
further caspase activation, ultimately leading to apoptosis. Al-
though classical Fas-induced apoptosis (see above) involves direct
caspase activation without mitochondrial involvement (type 1), in
certain cell types Fas-induced apoptosis may also require mitochon-
drial activation (type 2).7

Antiapoptosis regulatory molecules

In addition to the proteins involved in mediating apoptosis described
above, other proteins act to inhibit apoptosis. One such family of
regulatory proteins is cellular FLICE-like inhibitory protein (c-FLIP),
which inhibits apoptosis by binding to FADD and thus prevents the
activation of caspase 8.33,34 The inhibitor of apoptosis proteins (IAP)
family, including HIAP, XIAP, and others, acts by inhibiting the
activation of caspase 3 and possibly other caspases.35-37

Table 1. Proposed mechanisms of HIV-associated lymphocyte apoptosis

Effector Proposed mechanism Target cell

HIV Tat Enhanced Fas sensitivity Infected 1

Enhanced Fas ligand production uninfected cells

HIV Nef Activation Infected 1

Enhanced FasL production uninfected cells

? Binding to unidentified receptor

HIV vpr Cell cycle arrest Infected 1

Direct effect on mitochondrial permeability uninfected cells

HIV protease Cleavage of host structural proteins Infected cells

Activation-induced cell death HIV-associated activation Uninfected cells

Increased TRAIL/APO-2L, FasL, or both

gp 120/160 Inappropriate activation after CD4 ligation Uninfected cells

Enhanced Fas susceptibility/FasL production

? Nonapoptotic death by CXCR4

Autologous cell–mediated killing Enhanced production of cytotoxic ligands by HIV-infected cells Uninfected cells

Figure 1. Schematic overview of the regulation of
apoptosis.
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Bcl2 and related family members,38,39 including BclXS,
BclXL, Bad, and Bax, influence apoptosis by regulating the
intracellular signals that induce apoptosis. Some family mem-
bers (Bcl2) are antiapoptotic, whereas others (Bax) are proapop-
totic. Cells that contain a predominance of proapoptotic Bcl2
family molecules promote apoptosis, and cells with a predomi-
nance of antiapoptotic Bcl2 family proteins are relatively
apoptosis resistant. Bcl2 consistently blocks apoptosis induced
by anticancer and nitric oxide,41 and these effects may result
from the inhibition of calcineurin activation,40,42,43NFAT activa-
tion,40 or transcription of Fas ligand.40 Conversely, reports on
the effects of Bcl2 on Fas-induced apoptosis are conflicting:
Bcl2 may variably inhibit44 or not inhibit45 Fas-induced death.
Because members of the Bcl2 family are principally localized
within mitochondria, their influence may be greatest in forms of
apoptosis that are associated with mitochondrial activation.
Thus, Bcl2 overexpression may not inhibit death receptor–
initiated apoptosis in cells with a type 1 (mitochondria-
independent) Fas pathway, but it may block Fas-initiated death
in type 2 (mitochondria-dependent) cells.46

Physiologic T-cell apoptosis

Healthy subjects orchestrate a physiologic immune response to a
foreign antigen by T-cell activation and proliferation. If this
T-cell proliferative response were not regulated, each encounter
with a foreign antigen would lead to unending T-cell expansion.
Down-regulation of T-cell proliferation occurs by an apoptotic
program that is initiated after activation47 (Figure 2, top). After
T-cell activation, c-FLIP expression is reduced, and the cells
become susceptible to Fas ligation and to caspase 8–mediated
apoptosis.33 Exposure to a second activation stimulus (eg, CD3
stimulation in the absence of CD28 costimulation) promotes de
novo production of FasL, leading to both autocrine and para-
crine Fas/FasL-mediated T-cell apoptosis.48-52 It is important to
note that not all physiologic T-cell apoptosis is regulated solely
by Fas/FasL interactions; Fas-deficient cells maintain T-cell
receptor (CD3)–induced apoptosis that is inhibited by TNF
antagonists.53,54

Measurement of apoptosis

As noted, apoptosis is characterized by distinct morphologic and
biochemical changes, including chromatin condensation, shrinkage
of the cytoplasm, membrane blebbing, and formation of apoptotic
bodies. Apoptosis is a complex and sequential process, and, as
such, some assays detect changes that occur early, whereas other
assays detect later events. The most common assays used in the
detection of apoptosis are listed in Table 255-99; many have been
used to evaluate apoptosis in patients infected with HIV. In a direct
comparison of the relative benefits of these assays for use in the
evaluation of apoptosis of HIV-infected patients, TUNEL staining
was the most specific and therefore may be the most accurate assay
to use in this patient population.100

HIV-mediated alterations in molecules that
regulate the apoptotic process

Cells obtained from HIV-infected patients and cells infected with
HIV in vitro show changes in the regulation of Fas and Fas ligand
(reviewed in101). Acute HIV infection of the promonocytic cell line
U937 is associated with viral replication-dependent apoptosis102

that is characterized by the increased membrane expression of
Fas102 and FasL,102 by the down-regulation of antiapoptotic pro-
teins Bcl2 and BclXL,103,104 and by a concomitant increase in
proapoptotic BclXS and Bax.103,104The hypothesis that Fas/FasL
interactions may be responsible for HIV-induced apoptosis is
supported by the observation that soluble Fas receptor decoys
block HIV-associated death in U937 cells.102 This is in marked
contrast to the effects of acute HIV infection of T-cell lines, which
is Fas independent despite increased Fas expression.105-108Interest-
ingly, though T cells from HIV-infected patients have altered
expression of Bcl2, the expression of Bax, BclXL, and BclXS does
not differ from that of uninfected controls.109

T cells from HIV-infected patients exhibit both increased Fas
receptor expression and enhanced susceptibility to Fas-mediated
death.110-117FasL is elevated in peripheral blood mononuclear cells

Figure 2. T-cell apoptosis. Mechanisms of physiologic
T-cell apoptosis (top) and mechanisms of increased
T-cell apoptosis associated with HIV infection (bottom).
VAD refers to the pan-caspase inhibitor 2-VAD-Fmk.
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(which contain monocytes)114,118,119 from HIV-infected patients,
and the plasma level of soluble FasL is increased in HIV-positive
patients and correlates with HIV RNA burden.120The demonstrated
increases in Fas expression, Fas susceptibility, and Fas ligand
expression suggest that these molecules may be important in some
forms (see below) of HIV-induced cell death, though direct T-cell
killing is independent of Fas.105-108

Intracellular levels of c-FLIP in resting cells from HIV-negative
patients decrease after activation, resulting in enhanced sensitivity
to Fas-mediated apoptosis.33 This observation, coupled with obser-
vations that apoptosis in patients infected with HIV occurs in
activated CD45 RO1, HLA-DR1, CD282 cells,121-124suggests that
decreased c-FLIP expression may be responsible for the enhanced
susceptibility of cells from these patients to apoptosis. However,
c-FLIP expression in bulk peripheral blood lymphocytes (PBL) or
in purified CD4 or CD8 T cells from HIV-infected patients does not
differ from that of HIV-negative patients.125It remains possible that
defined cellular subsets may have reduced levels of c-FLIP that are
missed in bulk analysis.

The regulation of TNF, TNF receptors, or both is fundamentally
altered in HIV-infected patients.126-129 Both cognate receptors for
TNF, p75 TNFR and p55 TNFR,130are expressed in a variety of cell
types. However, only ligation of the p55 TNF receptor leads to
apoptosis.16,17,53,131,132Elevated serum TNF levels are seen in
symptomatic HIV-infected patients126-129but not in asymptomatic
patients.133,134 Furthermore, (1) HIV infection of lymphocytes or
monocytes results in TNF production,135,136and (2) TNF activates
the transcription factor NFkB, which, in turn, activates HIV
transcription,137,138initiating an autocrine loop that results in high
levels of TNF production and increased levels of HIV transcription.
In addition, elevated serum levels of soluble p75 TNFR are
predictive of HIV disease progression, independent of other

immunologic or virologic prognostic markers.139Although little is
known of the ability of TNF to induce apoptosis in HIV-infected
cells, HIV-infected macrophage-mediated killing of uninfected
CD4 T-cell blasts (see below) can be partially reduced by the
administration of soluble TNFR decoys,40 and TNF may contribute
to apoptosis induced by gp120-mediated cross-linking of CD4138

(see below). The potential role of TNF as a mediator of HIV disease
has prompted trials of anti-TNF therapy to retard HIV disease
progression. Thalidomide reduces TNF secretion,141and pentoxifyl-
line reduces TNF mRNA half-life.138 However, clinical trials with
each of these agents have consistently failed to show improvement
in either immunologic or virologic outcomes.142-144 Other studies
using soluble TNF antagonists have had similarly disappointing
results.145

There is also relatively little information concerning the poten-
tial role of TRAIL/APO 2-L in apoptosis in HIV-infected patients.
Current data suggest that TRAIL/APO 2-L can bind to 1 of 5 receptors,
TRAIL/APO 2-L-R1, TRAIL/APO 2-L-R2, TRAIL/APO 2-L-R3,
TRAIL/APO 2-L-R4,146 and osteoprotegerin.147 Binding of TRAIL/
APO 2-L to TRAIL/APO 2-L-R1 or R2 transduces apoptotic
signals, whereas binding to TRAIL/APO 2-L-R3 or TRAIL/APO
2-L-R4 does not. The effects of TRAIL/APO 2-L binding to
osteoprotegerin are unknown. Although it has been suggested that
the relative expression of TRAIL/APO 2-L-R3 and TRAIL/APO
2-L-R4 to TRAIL/APO 2-L-R1 and TRAIL/APO 2-L-R2 influ-
ences susceptibility to TRAIL/APO 2-L–mediated killing,148-150

recent studies do not support this hypothesis. Rather, intracellular
levels of c-FLIP may correlate with the sensitivity or resistance to
TRAIL/APO 2-L–induced apoptosis in target cells.151,152

Although no studies to date have evaluated the relative expres-
sion of TRAIL/APO 2-L receptor(s) or TRAIL/APO 2-L expres-
sion in patients infected with HIV, it has been observed that (in

Table 2. Assays of apoptosis and their relationship to events of apoptosis

Event Assays Detection

Changes in nuclear morphology: DNA stains (DAPI) Microscopy

Chromatin condensation, segmentation,

and formation of apoptotic bodies

Changes in membrane permeability Vital dyes (PI) Microscopy

Permeable DNA stains: (DAPI, Hoechst 33258) Flow cytometry with simultaneous size determination

Changes in membrane composition: Annexin V binding Flow cytometry

Externalization of phosphatidylserine Confocal and epifluorescence microscopy

Cleavage of nuclear proteins Poly ADP ribose polymerase Western blot

Mitochondrial function and integrity

Changes in permeability transition (DCm) Vital dyes (DiOC6, JC-1) Flow cytometry

Accessibility to mitochondrial antigens Apo 2,7 antibody Flow cytometry

Release of cytochrome-c Anti–cytochrome-c antibody Flow cytometry, Western blot

Production of free radicals DPPP/dihydroethidium Flow cytometry

Caspase activation

Detection of caspase cleavage product Known caspase substrates; PARP, caspase 3,

caspase 8, DNA-PK, PK-C

Western blot

Detection of active caspase Anti–activated caspase 3 antibody Western blot

Detection of caspase activity Cleavage of fluorescent or colorimetric

substrate(s)

Fluorometer, plate reader

DNA degradation

Large fragments DNA stains (EtBr, SYBR green) Pulse-field gel electrophoresis

DNA stains (EtBr) Comet

Radioactivity (C14) Detection of radio-labeled DNA by filter binding

Small fragments DNA stains (EtBr) Agarose gel electrophoresis (DNA ladder)

Radioactivity (C14) Detection of radio-labeled DNA by filter binding

Sub-G1 peak detection DNA stains (PI, Hoechst) Flow cytometry

Detection of DNA strand breaks Terminal dUTP nick end labeling (TUNEL) In situ hybridization

Flow cytometry

Ligation-mediated polymerase chain reaction Agarose or polyacrylamide gel electrophoresis
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contrast to cells from HIV-uninfected patients) cells from HIV-
infected patients are susceptible to TRAIL/APO 2-L–mediated
killing.153 This finding, together with the fact that activation-
induced cell death in patients with HIV infection may be partially
inhibited using antagonistic TRAIL/APO 2-L–specific antibod-
ies,154 suggests that TRAIL/APO 2-L and TRAIL/APO 2-L recep-
tor dysfunction may contribute to HIV pathogenesis.

Apoptosis of uninfected and infected T cells
induced by HIV proteins

HIV infection is associated with enhanced apoptosis in CD4 T cells
infected by HIV and in uninfected T cells. In this section we review
proposed mechanisms of CD4 T-cell apoptosis, focusing on
whether the proposed mechanisms affect infected cells, uninfected
cells, or both.

Gp120-induced apoptosis

Gp120 is an HIV viral envelope glycoprotein that can bind to and
cross-link the CD4 receptor and the chemokine coreceptors.
Cross-linking of CD4 T cells by gp120 causes the induction of
enhanced susceptibility to Fas-mediated killing.155 In previously
activated cells, gp120 cross-linking results in apoptosis156(possibly
mediated by IFN-g, TNF, or both157), down-regulation of Bcl-2
expression,158 and activation of caspase 3.159 The apoptotic re-
sponse to gp 120 is almost completely inhibited by soluble CD4
and by anti-gp120 antibodies.160 Further evidence for the specific-
ity of this interaction is provided by the observation that a point
mutation in the V3 loop of gp120 inhibits the induction of
apoptosis in CD4 T cells.161 Finally, this interaction must also
involve CD4 signaling because deletion or mutation of the
intracytoplasmic portion of CD4 also abrogates the apoptotic
response.162,163

Most of the experiments involving gp120-induced apoptosis
evaluate apoptosis that occurs after several days. However, recent
reports164-166 show that gp120 cross-linking of CD4 and CXCR4
chemokine receptor results in nonapoptotic death within several
hours of stimulation by a mechanism that appears to be indepen-
dent of p56LCK,164 g-protein–coupled signaling,166 Fas, or TNF
receptors.165 The administration of CXCR4 antagonists blocks this
apoptosis response to the HIV envelope.167

It is appealing to invoke gp120 as a responsible mechanism for
CD4 T-cell death in patients infected with HIV because it doesnot
depend on the infection of all cells that become apoptotic and it
does not require the presence of viable virions. Circulating immune
complexes and replication-incompetent viruses that contain gp120
can induce death in a similar manner.168-170

Apoptosis induced by other HIV proteins

Transfection experiments demonstrate that the ectopic expression
of HIV Tat induces apoptosis. Further, gp120/160-deleted HIV
maintains its ability to induce infected cell apoptosis, potentially
because of the Tat-directed up-regulation of caspase 8171or because
of Fas ligand.172 Importantly, Tat has also been implicated as an
inducer of apoptosis in uninfected T cells, potentially by Fas-
dependent mechanisms, superoxide dismutase inhibition, or activa-
tion of cyclin-dependent kinases.173-175The ability of Tat to induce
uninfected cell death has also been demonstrated in vitro for
neurons, lymphocytes, and CD4 T-cell lines. Its clinical relevance

is suggested by observations that Tat is readily secreted by infected
cells176 and cellular or humoral immunity to Tat may have
protective effects against HIV disease progression.177

Because Nef is essential for viral pathogenicity, HIV-encoded
Nef has been suggested as a potential mediator of apoptosis.178This
proposal is supported by the following findings: (1) human
infection with naturally occurring Nef deletion mutants leads to
less rapid CD4 T-cell depletion (compared to strains with Nef),179,180

though the differences may be related to the decreased efficiency of
viral replication181-184; (2) Nef synergistically enhances the activat-
ing effects of T-cell receptor ligation,185-187 though this enhance-
ment may be stimulus dependent187-191; (3) Nef-expressing T cells
coexpress FasL,192 as do infected T cells from SIV-infected
macaques but not T cells from macaques infected with similar
strains of SIV that contain mutations within the Nef gene193 (the
mechanism(s) by which Nef results in activation and FasL produc-
tion remain unclear, yet mutational analysis indicates that the
carboxy terminus of the CD4 receptor associates with both Nef and
p56LCK194); lastly, (4) Nef may exert an apoptotic effect on
uninfected CD4 T cells by binding to unidentified receptor(s),195

resulting in Fas-independent death.196 In this regard, Nef may
induce apoptosis of infected and uninfected cells.

HIV-encoded vpr also has the ability to induce apoptosis
through transfection and exogenous treatment. Proposed mecha-
nisms include the induction of G2/M cell cycle arrest197,198and a
direct effect on mitochondrial permeability.199 Vpr also influences
viral LTR transcription,200,201 cellular activation, and differentia-
tion,202,203suggesting a role in the development of HIV reservoirs.
The seeming paradox of inducing apoptosis while promoting viral
reservoirs is elucidated by data that vpr may, in certain situations,
inhibit apoptosis.204-206The observation that virion-associated vpr
acts as an immediate early viral protein to induce apoptosis207 is
inconsistent with the apparent requirement that viral replication
must occur before the onset of infected T-cell apoptosis. In
addition, the finding that direct HIV-induced T-cell apoptosis
occurs in all phases of the cell cycle107 brings into question the role
of vpr in direct infection apoptosis. Vpr is more likely to be
involved in regulation of latency, control of replication, and
resistance to antiretroviral agents.208

Knowledge that HIV-encoded protease is a cytotoxic protein
that leads to apoptosis in human and bacterial cells after transfec-
tion209-212has been exploited as a method of screening compounds
for potential HIV protease inhibitory activity.213 However, the
relevance of HIV protease to HIV-infected T-cell death in vitro and
in vivo is unknown. HIV protease expression (by Western blotting)
correlates with the presence of apoptosis in vitro and in vivo.214

Further studies demonstrate that HIV protease directly cleaves
caspase 8214 and modifies cellular susceptibility to apoptosis by
virtue of proteolytic degradation of the antiapoptotic protein
Bcl2.215 Together these findings indicate that HIV protease may
also play a role in the death of HIV-infected T cells. There are no
data to suggest that HIV protease may influence the death of
uninfected cells.

Indirect mechanisms of HIV-associated apoptosis

In addition to apoptosis induced directly by HIV proteins, HIV
infection mayinduce T-cell apoptosis through indirect mechanisms,
including activation-induced cell death and autologous infected cell–
mediated killing. The indirect mechanisms of T-cell death mediate the
deaths principally of uninfected T cells (Figure 2).
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Activation-induced cell death

T cells obtained from HIV-infected patients undergo spontaneous
apoptosis at a greater rate than cells from HIV-seronegative
subjects.111,216-219Furthermore, the ex vivo activation of CD4 T
cells from HIV-infected patients (using a variety of stimuli)
consistently enhances apoptosis compared with cells from unin-
fected subjects.111,122,124,217-219This phenomenon, termed activation-
induced cell death (AICD), occurs only in cells that have been
previously activated,49,52and it may represent the in vitro model of
the effects of repeated antigenic stimulation.49,52,220,221 Naive
peripheral blood T cells from HIV-negative patients, when stimu-
lated through the T-cell receptor, undergo proliferation, cytokine
secretion,222-226and the development of susceptibility to apoptosis
induced by Fas ligation.48,52,220,221Subsequent stimulation results in
AICD by the de novo production of FasL, which mediates
autocrine and paracrine apoptosis.48,52,220,221Both in vivo and in
vitro, HIV infection is associated with an activated T-cell pheno-
type,227-231increased expression of Fas, enhanced susceptibility to
Fas-mediated killing,111,115,116,174,232,233and increased T-cell–
expressed FasL after T-cell receptor stimulation,114,234suggesting a
role for Fas/FasL in HIV-associated AICD. Findings that retinoic
acid inhibits FasL expression and resultant apoptosis in vitro221and
that retinoic acid therapy in HIV-infected patients reduces CD4
T-cell depletion235support a causal role for Fas/FasL interactions in
T-cell death induced by HIV.

Elevated levels of apoptosis are seen after mitogenic stimula-
tion or TCR cross-linking of PBL from HIV-seropositive pa-
tients.124,154,216-218,227,236,237The molecular signals responsible for
apoptosis in these patients are unclear, but the administration of
Fas, TRAIL/APO 2-L, or TNF antagonists reduces AICD in cells
from patients infected with HIV,154,237 suggesting that all 3
signals—Fas, TNF, and TRAIL/APO 2-L—may be involved.

Autologous infected cell–mediated killing

Macrophages,102,140 monocytes,213,238,239 peripheral blood mono-
nuclear cells,240 CD4 T cells,241 and CD8 T cells242 derived from
HIV-infected patients may induce the death of uninfected CD4 T
lymphocytes. Autologous infected cell–mediated killing may in-
volve gp120 interactions (see below), the Fas/FasL system, or both.
Macrophages express basal levels of FasL that are significantly
up-regulated after infection with HIV,102 and monocytes from
HIV-infected patients have significantly increased FasL expression
compared with monocytes from HIV-negative controls.243 HIV-
infected macrophages (and, to a lesser extent, uninfected macro-
phages) have been shown to kill Fas-sensitive T-cell targets102 in a
major histocompatibility complex–unrestricted and Fas/TNF-
dependent manner.140 Macrophage-mediated killing appears to be
selective for uninfected T cells,244 as opposed to the mechanisms
involved in infected T-cell death described above. Macrophage-
mediated CD4 T-cell apoptosis has implications in vivo because
levels of tissue apoptosis directly correlate with levels of macro-
phage-associated FasL.245 Thus, FasL may be the mediator of
uninfected CD4 T-cell death by monocytes, macrophages,213,239and
CD8 T cells.242,246

CD8 T-cell apoptosis

Although levels of CD8 T-cell apoptosis are consistently elevated
in patients infected with HIV (whether this occurs spontaneously,
in response to activation stimuli [AICD] or after coincubation with

autologous infected cells102,122-124,154,216,227,240,244,247-249), the CD8
T-cell count is not significantly reduced in these patients. This
apparent paradox may be resolved by observations in SIV-infected
primates receiving total body irradiation, in which it was observed
that CD8 T-cell recovery significantly precedes the recovery of
CD4 T cells.250A similar delay in CD4 repopulation is also seen in
humans receiving high-dose chemotherapy.251,252These data have
several potential interpretations, yet they demonstrate that CD8
T-cell rebound occurs earlier than CD4 T-cell rebound after PBL
depletion. In HIV-infected patients, it may therefore be expected
that if rates of CD4 and CD8 T-cell loss were equal, the steady
state CD8 number may be greater than the CD4 number because
of the quicker recovery times. Further, HIV-associated apopto-
sis may lead to greater absolute numbers of CD4 T-cell apoptosis
than CD8 T-cell apoptosis, because direct infection and gp120-
mediated apoptosis selectively target cells that express CD4,
whereas gp120 does not bind to (and thus cross-link) CD8.
Nonetheless, it has recently been proposed that macrophage-
associated gp120 may mediate CD8 T-cell apoptosis through
interaction with CXCR4.253Alternative potential mechanisms may
also be involved (see below).

The fact that CD8 T cells from patients with HIV infection are
more activated than are similar cells from HIV-uninfected per-
sons227,254-257suggests that the enhanced state of susceptibility to
apoptosis is present in CD8 and in CD4 T cells and that CD8 T cells
would be expected to die by apoptosis after exposure to another
activation stimulus or with a preformed apoptosis-inducing ligand
(eg, macrophage-associated FasL140). Furthermore, CD8 T cells
express the CD4 receptor after activation, thereby rendering them
susceptible to direct infection by the virus.258,259 In addition, the
enhanced expression of CD4 antigen on CD8 T cells would be
expected to render these double-positive cells more susceptible to
the effects of gp120 cross-linking and subsequent apoptosis.
Despite the several possible pathways that may be responsible for
CD8 T-cell apoptosis in HIV-infected patients, chronic antigenic
stimulation most likely contributes to CD8 T-cell apoptosis. The
relative role of direct infection leading to CD8 T cell death re-
mains untested.

Associations of apoptosis with HIV disease
progression and response to therapy

Clinical studies in patients infected with HIV measure spontaneous
apoptosis, Fas ligation-induced apoptosis, and apoptosis occurring
in response to mitogenic activation or TCR cross-linking. In
relation to the various mechanisms of apoptosis outlined above,
spontaneous apoptosis may reflect infected cell apoptosis or
gp120-induced apoptosis; Fas-induced apoptosis may reflect autolo-
gous cell-mediated killing of uninfected bystander cells or AICD;
apoptosis in response to mitogen or CD3 ligation reflects AICD. In
studies in which tissue apoptosis has been measured,260-262 few
apoptotic cells are found to be physically infected by virus,260

suggesting that tissue apoptosis reflects the killing of uninfected
cells by gp120-induced or autologous cell-mediated killing of
uninfected cells.

The magnitude of apoptosis observed in HIV-infected patients
correlates well with the stage of HIV disease in longitudinal and
cross-sectional analyses.263-265Spontaneous apoptosis is greater in
HIV-infected patients with progressive disease than in uninfected
patients.266,267 In addition, spontaneous apoptosis in patients with
long-term nonprogressive HIV infection are similar to those of
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HIV-negative patients.268 Thus, the rate of apoptosis correlates
inversely with CD4 T-cell depletion. Because recent advances in
HIV therapy have resulted in sustained increases in CD4 T cell
number, if enhanced apoptosis causes CD4 T-cell depletion then
apoptosis must decrease during therapy.

Numerous studies have shown that apoptosis in lymph nodes,
rectal mucosa, and PBL subsets from patients infected with HIV
decreases dramatically in response to protease inhibitor-based HIV
treatment.125,269-274This effect is seen for spontaneous apoptosis,
apoptosis in response to T-cell receptor ligation, apoptosis in
response to mitogenic stimulation, and apoptosis in response to Fas
receptor ligation.125,271,272,274The decrease in apoptosis is rapid and
is seen as early as 4 days after protease inhibitor therapy is
initiated125; it occurs in all patients within 14 days.271-274Because
the decrease precedes significant changes in viral replication, it has
been suggested that protease inhibitors may be antiapoptotic,275,276

possibly by virtue of inhibiting the activity of effector proteases
involved in apoptosis.

Effects of cytokines on
HIV-associated apoptosis

One hallmark of infection with HIV is progressive T-helper-cell
dysfunction. As HIV disease progresses, the balance of Th1
cytokines (IL-2 and IFN-g) that enhance cellular immunity eventu-
ally shift to a Th2 cytokine profile (IL-4, IL-5, IL-6, and IL-10) that
promotes humoral responses. The suggestion that helper cell
dysfunction is central to the pathogenesis of HIV infection277 is
supported by observations278-280 that the Th1-promoting cytokine
IL-12, or the use of antagonistic antibodies specific for the Th2
cytokines IL-4 and IL-10, restores T-cell proliferative responses to
recall antigens in HIV-infected patients. Because of the pervasive
effects of cytokines in modulating apoptosis and apoptosis suscep-
tibility, cytokine-based therapy may result in changes in apoptosis.
Indeed, it has been reported that resistance to apoptosis in HIV and
SIV infection is associated with a predominance of a Th1 pheno-
type,281 arguing that chronic immune activation and a Th2 shift
may promote apoptosis. Consistent with this hypothesis, spontane-
ous apoptosis in cells from HIV-infected patients is blocked by the
administration of IL-12, IFN-g, anti–IL-4, anti–IL-10, and antilym-
photoxin, but not by anti–IL-12 therapy.282 Furthermore, IL-12
protects against the enhanced sensitivity to Fas-mediated apoptosis
and enhanced sensitivity to AICD seen in HIV-infected patients.219

Apoptosis in patients with HIV infection is modulated by
exogenous cytokines or cytokine antagonists that promote a Th1
helper cell phenotype and by cytokines that promote T-cell
proliferation. IL-2 therapy in patients infected with HIV results in
increased CD4 T-cell numbers unrelated to decreases in viral
replication. Thus, IL-2 may modulate CD4 T-cell survival directly,
possibly through an antiapoptotic mechanism, a hypothesis sup-
ported by in vitro studies in which clinically relevant concentra-
tions of IL-2 significantly reduce spontaneous apoptosis in CD41
T cells from HIV-infected patients but not from HIV-uninfected
patients.283

IL-15 is a T-cell growth factor whose effects include T-cell
proliferation, enhanced cytotoxicity of T cells and natural killer
cells, B-cell proliferation, and immunoglobulin secretion.284 The
effects of IL-15 on T cells are related to its ability to bind to a
trimeric receptor consisting of the IL-15Ra subunit and the shared
IL-2Rb and IL-2Rg subunits. Thus, many physiologic effects of
IL-15 parallel those of IL-2. In addition, the incubation ofperipheral

blood mononuclear cells from HIV-infected patients with IL-15
results in enhanced production of the Th1 cytokine IFN-g,285 CD8
T-cell activation, increased numbers of CD8 T cells,286 enhanced
lymphoproliferative responses,287 and decreased spontaneous T-
cell apoptosis,288 possibly mediated by increases in Bcl-2 expres-
sion.288 It is significant that although IL-2 increases HIV replica-
tion, IL-15 does not share this effect.287,288Finally, IL-16 may have
therapeutic implications for HIV-associated apoptosis.

IL-16 is a chemoattractant289 that inhibits lymphocyte activa-
tion290 and may also inhibit HIV replication.291 Possibly because of
its antiproliferative effects, IL-16 treatment in vitro decreases
levels of anti-CD3– or anti-Fas–induced apoptosis in lymphocytes
from HIV-infected patients.292 However, the inhibitory effects of
IL-16 on apoptosis are not seen in the context of spontaneous
apoptosis.292

T-cell regeneration in response to therapy

The institution of highly active antiretroviral therapy (HAART) has
witnessed a major impact on immune reconstitution: sustained
increases in numbers of circulating CD4 T cells associated with a
rapid drop in plasma viral RNA levels. The mechanisms proposed
to explain the increase in numbers of CD4 T cells include cellular
redistribution from lymphoid tissue,293 cellular proliferation of the
peripheral T-cell pool,294 new T-cell synthesis from a thymic
source,295,296and reduced levels of apoptosis (see above). We have
previously demonstrated that HAART therapy rapidly reduces
apoptosis in lymphoid tissue273 and significantly decreases apopto-
sis in PBL.125,273The decrease in apoptosis occurs before signifi-
cant changes on plasma viral RNA levels and when patients are
receiving only the protease inhibitor component of the HAART
regimen.125 This finding has led to the proposal that protease
inhibitors have an effect on immune reconstitution that is indepen-
dent of their ability to suppress HIV replication.275,276,297In vitro
therapy with protease inhibitors has been shown to reduce the
expression of selected caspases in treated cells and to reduce the
rate of caspase 3 activation.275,297 Additional evidence for an
indirect protease inhibitor effect comes from studies that demon-
strate sustained CD4 rises in patients who experience virologic
failure298-301 and who are receiving protease inhibitor-containing
HAART regimens.

The early rise (2 weeks) in CD4 cells attributable to a reduction
in apoptosis appears to be followed by a phase of CD4 cell increase
due to cellular redistribution and proliferation of predominately
memory CD4 T cells302-306 (Figure 3). A possible third phase

Figure 3. Kinetics of change in CD4 T-cell number after the initiation of protease
inhibitor (PI)–based HAART.
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consists mainly of new T-cell synthesis characterized by cells with
a naive phenotype.307 This third phase of T-cell regeneration is
characterized by the presence of circular DNA elements formed
after the rearrangement of possible T-cell receptor alleles, thereby
indicating that these are newly produced T cells that have matured
in the thymus.295,296

Alteration of apoptosis as a therapeutic
approach in HIV infection

If CD4 T-cell depletion in HIV infection results from enhanced
apoptosis, then the prevention of apoptosis might be expected to
modify the course of HIV disease. In vitro studies using apoptosis
inhibitors (with no intrinsic antiviral properties) on PBL from
HIV-infected patients cause increased viral production and in-
creased cell survival.308These findings suggest that non-apoptotic–
infected cells serve as viral reservoirs and that it is unlikely that
phenotypic and functional abnormalities of infected cells will be
reversed by merely inhibiting apoptosis. Thus, blocking apoptosis
alone fails to meet 2 objectives of effective HIV therapy: it does not
decrease viral replication or decrease viral reservoirs, and it does
not increase cellular immune competence.

The main obstacle to viral eradication in HIV-infected patients
(reviewed in Chun and Fauci309) is the presence of chronically
infected latent reservoir cells, such as macrophages, and latently
infected CD4 T lymphocytes.310-313 In these cellular populations,
HIV infection is not associated with apoptosis but with a chronic

productively infected phenotype. Indeed, latently infected CD4 T
cells have a markedly prolonged half-life (estimated at 6 months),
which limits the probability that viral reservoirs can be eliminated
by interference in viral replication alone.314In fact, recent estimates
based on the half-life of latently infected cells suggest that 60 years
of viral suppression would be required to eliminate viral reser-
voirs.311 A possible way to achieve viral eradication is to target
infected macrophages and latently infected CD4 T cells to undergo
apoptosis after infection. Along these lines, it has recently been
proposed that treatment with a pro–caspase 3 analogue, which
contains an HIV protease–specific sequence in its prodomain, may
cause apoptosis of all infected cells.315 Additional research is
required to evaluate the clinical usefulness of this and other
approaches designed to enhance the apoptosis of cells that nor-
mally function as reservoirs for HIV. The concept of enhancing
HIV-associated apoptosis is, however, a potentially significant step
forward in attempts to modify apoptosis for the benefit of patients
infected with HIV. It further underscores the need for continued
efforts to understand the regulation of apoptosis induced by HIV
infection.
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247. Lauener RP, Hüttner S, Buisson M, et al. T-cell
death by apoptosis in vertically human immuno-
deficiency virus-infected children coincides with
expansion of CD81/interleukin-2 receptor-/HLA-
DR1 T cells: sign of a possible role for herpes
viruses as cofactors? Blood. 1995;86:1400-1407.

248. Lewis DE, Ng Tang DS, Adu-Oppong A, Schober

2962 BADLEY et al BLOOD, 1 NOVEMBER 2000 z VOLUME 96, NUMBER 9

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/96/9/2951/1669339/h8210002951.pdf by guest on 02 June 2024



W, Rodgers JR. Anergy and apoptosis in CD81 T
cells from HIV-infected persons. J Immunol.
1994;153:412-420.

249. Meyaard L, Otto SA, Keet IPM, Roos MTL,
Miedema F. Programmed death of T cells in hu-
man immunodeficiency virus infection: no correla-
tion with progression to disease. J Clin Invest.
1994;93:982-988.

250. Fultz PN, Schwiebert RS, Su L, Salter MM. Ef-
fects of total lymphoid irradiation on SIV-infected
macaques. AIDS Res Hum Retroviruses. 1995;
11:1517-1527.

251. Hakim FT, Cepeda R, Kaimei S, et al. Constraints
on CD4 recovery postchemotherapy in adults:
thymic insufficiency and apoptotic decline of ex-
panded peripheral CD4 cells. Blood. 1997;90:
3789-3798.

252. Gratama JW, Lipovich-Oosterveer MA, Willemze
R, et al. Reduction and repopulation of T-lympho-
cytes after cytoreductive therapy with or without
autologous bone marrow rescue. Exp Hematol.
1986;14:173-177.

253. Herbein G, Mahlknecht U, Batliwalla F, et al. Apo-
ptosis of CD81 T cells is mediated by macro-
phages through interaction of HIV gp120 with
chemokine receptor CXCR4. Nature. 1998;395:
189-194.

254. Giorgi JV, Detels R. T-cell subset alterations in
HIV-infected homosexual men: NIAID multicenter
AIDs cohort study. Clin Immunol Immunopathol.
1989;52:10-18.

255. Giorgi JV, Liu Z, Hultin LE, Cumberland WG,
Hennessen K, Detels R. Elevated levels of
CD381CD81 cells in HIV infection add to the
prognostic value of low CD41 T cell levels: re-
sults of 6 years follow-up. J Acquir Immune Defic
Syndr. 1993;6:904-912.

256. Giorgi JV, Ho HN, Hirji K, et al. CD81 lymphocyte
activation at human immunodeficiency virus type
1 seroconversion: development of HLA-
DR1CD38-CD81 cells is associated with subse-
quent stable CD41 cell levels. J Infect Dis. 1994;
170:775-781.

257. Levacher M, Hulstaert F, Tallet S, Ullery S, Po-
cidalo JJ, Bach BA. The significance of activation
markers on CD8 lymphocytes in human immuno-
deficiency syndrome: staging and prognostic
value. Clin Exp Immunol. 1992;90:376-382.

258. Flamand L, Crowley RW, Lusso P, Colombini-
Hatch S, Margolis DM, Gallo RC. Activation of
CD81 T lymphocytes through the T cell receptor
turns on CD4 gene expression: implications for
HIV pathogenesis. Proc Natl Acad Sci U S A.
1998;95:3111-3116.

259. Yang LP, Riley JL, Carroll RG, et al. Productive
infection of neonatal CD81 T lymphocytes by
HIV-1. J Exp Med. 1998;187:1139-1144.

260. Finkel TH, Tudor-Williams G, Banda NK, et al.
Apoptosis occurs predominantly in bystander
cells and not in productively infected cells of HIV-
and SIV- infected lymph nodes. Nat Med. 1995;1:
129-134.

261. Røsok B, Brinchmann JE, Stent G, et al. Corre-
lates of apoptosis of CD41 and CD81 T cells in
tonsillar tissue in HIV Type 1 infection. AIDS Res
Hum Retroviruses. 1998;14:1635-1643.

262. Muro-Cacho CA, Pantaleo G, Fauci A. Analysis of
apoptosis in lymph nodes of HIV-1 infected per-
sons: intensity of apoptosis correlates with the
general state of activatin of the lymphoid tissue
and not with stage of disease or viral burden.
J Immunol. 1995;154:5555-5566.

263. Patki AH, Georges DL, Lederman MM. CD41-T-
cell counts, spontaneous apoptosis, and Fas ex-
pression in peripheral blood mononuclear cells
obtained from human immunodeficiency virus
type 1-infected subjects. Clin Diagn Lab Immunol.
1997;4:736-741.

264. Prati E, Gorla R, Malacarne F, et al. Study of
spontaneous apoptosis in HIV 1 patients: correla-

tion with clinical progression and T cell loss. AIDS
Res Hum Retroviruses. 1997;13:1501-1508.

265. Samuelsson A, Broström C, Van Dijk N, Sönner-
borg A, Chiodi F. Apoptosis of CD41 and CD191
cells during human immunodeficiency virus type
1 infection: correlation with clinical progression,
viral load, and loss of humoral immunity. Virology.
1997;238:180-188.

266. Liegler TJ, Yonemoto W, Elbeik T, Wittinghoff E,
Buchbinder SP, Greene WC. Diminished sponta-
neous apoptosis in lymphocytes from human im-
munodeficiency virus-infected long-term nonpro-
gressors. J Infect Dis. 1998;178:669-679.

267. Wasmuth JC, Klein KH, Hackbarth F, Rockstroh
JK, Sauerbruch T, Spengler U. Prediction of immi-
nent complications in HIV-1-infected patients by
markers of lymphocyte apoptosis. J Acquir Im-
mune Defic Syndr. 2000;23:44-51.

268. Franceschi C, Franceschini MG, Boschini A, et al.
Phenotypic characteristics and tendency to apo-
ptosis of peripheral blood mononuclear cells from
HIV1 long term non progressors. Cell Death Dif-
fer. 1997;4:815-823.

269. Chavan SJ, Tamma SL, Kaplan M, Gerstein M,
Pahwa SG. Reduction in T cell apoptosis in pa-
tients with HIV disease following antiretroviral
therapy. Clin Immunol. 1999;93:24-33.

270. Kotler DP, Shimada T, Snow G, et al. Effect of
combination antiretroviral therapy upon rectal
mucosal HIV RNA burden and mononuclear cell
apoptosis. AIDS. 1998;12:597-604.

271. Johnson N, Parkin JM. Anti-retroviral therapy re-
verses HIV-associated abnormalities in lympho-
cyte apoptosis. Clin Exp Immunol. 1998;113:229-
234.

272. Aries SP, Weyrich K, Schaaf B, Hansen F, Dennin
RH, Dalhoff K. Early T-cell apoptosis and Fas ex-
pression during antiretroviral therapy in individu-
als infected with human immunodeficiency vi-
rus-1. Scand J Immunol. 1998;48:86-91.

273. Badley AD, Dockrell DH, Algeciras A, et al. In vivo
analysis of Fas/FasL interactions in HIV-infected
patients. J Clin Invest. 1998;102:79-87.
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