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The concept of tolerogenic dendritic cells (DCs) came from
experiments in mice showing that thymic DCs mediated clonal
deletion of emerging autoreactive T cells within thymus.1 The
finding that lymphoid precursors give rise to both T cells and
CD81CD11b2 DCs within the thymus suggests the existence of a
lymphoid pathway, in addition to a well-established myeloid DC
pathway giving rise to CD82CD11b1 DCs.2 In mouse spleen, both
CD82CD11b1 myeloid DCs and CD81CD11b2 lymphoid DCs
were identified. The finding that lymphoid DCs express higher
levels of self-peptide–MHC class II complex3 and FAS-binding
protein4 suggests that lymphoid DCs may be tolerogenic for T cells,
in contrast to immunogenic myeloid DCs. This hypothesis was not,
however, supported by studies showing that CD81CD11b2 lym-
phoid DCs produce a high level of IL-12 and induce potent TH1
response to foreign antigens.5-8 The existence of tolerogenic or
TH2-inducing DCs in peripheral tissues was, however, further
suggested by studies of DCs from Peyer’s patches, liver, and lung.
These DCs were shown to preferentially induce TH2 responses, in
contrast to splenic DCs and bone-marrow–derived DCs that
preferentially induce TH1 responses.9-11 The TH2-inducing func-
tion of Peyer’s patch DCs and liver DCs may contribute to the
mechanism underlying tolerance to food antigens or to allo-liver
transplants, respectively.

To find tolerogenic or TH2-inducing DCs in humans and to
develop a way to grow and manipulate these DCs for use in
immunotherapy for autoimmune diseases and GVHD have been an
immunologist’s fantasy. Recently, human lymphoid DCs (DC2)
have been generated from human blood CD41IL-3Ra11CD11c2

precursors (pre-DC2) in culture with IL-3 and CD40-ligand.13-17In
contrast to CD40-ligand–activated monocyte-derived DC1 that
produce a large amount of IL-12 and induce TH1 differentiation,
CD40-ligand–activated DC2 produce a lower amount of IL-12 and
induce TH2 differentiation.13 Although TH1-inducing myeloid
DC1 and CD11c1 blood DCs have been used in immunotherapy for
certain human cancers,18-21 potential application of TH2-inducing
DC2 in immunotherapy for autoimmune diseases and GVHD has
been limited. This is because the frequency of pre-DC2 in human
blood is low (0.2% to 0.8%), and the identity and function of
mature DC2 in vivo is unclear.

In this issue ofBlood,Dr Arpinati and colleagues report a major
advancement in human DC biology, which may pave the way
toward DC2-based immunotherapy for autoimmune disease and
GVHD.22 They show that G-CSF treatment, which is widely used
to mobilize hematopoietic stem cells into blood for stem cell
transplantation, induced a more than 5-fold increase in blood
pre-DC2 numbers. Interestingly, the number of blood myeloid
CD11c1DC were found unchanged in the same donor. The authors
further showed that while DC1 derived from CD11c1 blood

immature DCs cultured with GM-CSF, IL-3, and TNF-a preferen-
tially induced TH1 differentiation, pre-DC2–derived DC2 cultured
with the same cytokines preferentially induced TH2 differentiation.
Together with a recent study by Rissoan et al,13 Arpinati’s study
suggests that T helper cell differentiation depends not only on the
maturation stage of DCs, but also on the type of DCs.

The question is what the functional consequence is of transfer-
ring more DC2 or pre-DC2 into patients. This study showed that
recipients of blood stem cell preparations from G-CSF–treated
donors received 5- to 6-fold more pre-DC2 than did recipients of
bone marrow stem cell products. Interestingly, human G-CSF–
mobilized blood stem cells do not cause a higher incidence of
GVHD than marrow grafts,23,24 despite containing 10-fold more T
cells.25 In mice, pretreatment of donor mice with G-CSF enhances
TH2-cytokine production and reduces severity of experimental
GVHD.26,27These studies suggest that pre-DC2 in G-CSF–treated
blood may capture alloantigen and undergo maturation after
transfer into the host. These DC2 may present alloantigen to donor
T cells and induce them to undergo TH2 differentiation and to limit
GVHD (Figure).

The combination of G-CSF treatment and blood leukapheresis
may offer, for the first time, the possibility of generating sufficient
DC2s for immunotherapy of certain autoimmune diseases and
GVHD. Understanding the developmental pathway and regulation

TH2-inducing dendritic cell precursors (pre-DC2) are derived from hematopoi-
etic stem cells (HSC) in bone marrow. Signals regulating HSC differentiation into
pre-DC2 are currently unknown. G-CSF appears to mobilize bone marrow pre-DC2
into peripheral blood. Recipients of blood stem cell transplantation from G-CSF–
treated donors received 5- to 6-fold more pre-DC2 than did recipients of bone marrow
stem cell products. Pre-DC2 may capture alloantigen and undergo maturation after
transfer into the host. These DC2 may present alloantigen to donor T cells and induce
them to undergo TH2 differentiation and to limit GVHD.
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of pre-DC2 from hematopoietic stem cells will be the next critical
step in generating a large number of DC2 for immunotherapy.
Because the identity of mature DC2 in vivo and the fate of the
transferred pre-DC2 in recipient patients are unclear, a direct
correlation between pre-DC2 transfer with an increased TH2
differentiation and a decreased GVHD remains to be established.
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