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Granulocyte-Macrophage Colony-Stimulating Factor Induces Expression
of Heparin-Binding Epidermal Growth Factor–Like Growth Factor/Diphtheria

Toxin Receptor and Sensitivity to Diphtheria Toxin in Human Neutrophils

By Fabrizio Vinante, Martina Marchi, Antonella Rigo, Patrizia Scapini, Giovanni Pizzolo, and Marco A. Cassatella

Heparin-binding epidermal growth factor–like growth factor

(HB-EGF) is a widely expressed EGF superfamily member

that induces mitogenic and/or chemotactic activities toward

different cell types through binding to EGF receptors 1 or 4.

Membrane-bound HB-EGF exerts growth activity and adhe-

sion capabilities and possesses the unique property of being

the receptor for diphtheria toxin (DT). Using molecular and

functional techniques, we show that human polymorpho-

nuclear granulocytes (PMN), which did not express HB-EGF

in resting conditions, expressed it at mRNA and protein

level, following incubation with granulocyte-macrophage

colony-stimulating factor (GM-CSF). Other classic agonists

for PMN (including lipopolysaccharide, phagocytable par-

ticles, tumor necrosis factor-a, or G-CSF) failed to induce

HB-EGF. The effects of GM-CSF on HB-EGF mRNA levels

were concentration-dependent, reached a plateau after 1 to

2 hours of stimulation, and did not require protein synthesis.

After GM-CSF treatment, membrane-bound HB-EGF was

detected by flow cytometry. At the same time, PMN acquired

sensitivity to the apoptosis-promoting effect of DT, which,

moreover, specifically suppressed the GM-CSF–induced prim-

ing of formyl-methionyl-leucyl-phenylalanine–stimulated su-

peroxide anion release. Finally, soluble HB-EGF was detected

in the PMN culture medium by a specific enzyme-linked

immunosorbent assay. Thus, we provide evidence that HB-

EGF is specifically inducible by GM-CSF in PMN and repre-

sents a novel peptide to be included in the repertoire of

PMN-derived cytokines.

r 1999 by The American Society of Hematology.

NEUTROPHIL POLYMORPHONUCLEAR granulocytes
(PMN) act as the first line of defense against invading

micro-organisms, representing the predominant infiltrating cell
type in the cellular phase of the acute inflammatory response.1

Although mature PMN are terminally differentiated cells and
have generally been considered as lacking RNA/protein synthe-
sis capacity, convincing studies have clearly shown that PMN
are capable of producing a variety of cytokines under appropri-
ate circumstances.2 Human PMN may release pro- and anti-
inflammatory cytokines, including the interleukin-1a (IL-1a)
and IL-1b, tumor necrosis factor-a (TNF-a), IL-1 receptor
antagonist (IL-1ra), and chemokines such as IL-8, macrophage
inflammatory protein-1a (MIP-1a) and MIP-1b, growth-
related gene product-a (GROa), and others.3 Remarkably,
PMN have also been shown to express cytokines involved in
processes such as angiogenesis, including vascular endothelial
growth factor (VEGF),4-6 GROb,7 and interferon-g inducible
protein-10 (IP-10),8 as well as in cell proliferation and fibrosis,
such as transforming growth factor-a (TGFa),9 and TGFb1,10,11

less conventionally related to PMN functions. On the whole,
these and other data present PMN as candidate regulatory cells
in conditions such as wound healing, neoplastic growth, and
even degenerative lesions.3

Heparin-binding EGF-like growth factor (HB-EGF) is a
heavily glycosylated EGF superfamily member of approxi-
mately 22 kD, originally identified in human macrophages and
U937 monocytic cell line conditioned medium,12,13 and ex-
pressed in a wide range of cell types, including monocytes,13,14

CD41 lymphocytes,15 eosinophils,16 myeloid leukemia blasts,17

vascular smooth muscle cells (SMC),18 and endothelial19 and
normal20 or neoplastic epithelial cells.12,21 Although HB-EGF
can be released from the cell membrane through proteolytic
mechanisms,22 multiple mRNA species for HB-EGF are pro-
duced,23 including transcripts corresponding to a short HB-EGF
form lacking intramembrane and intracytoplasmic domains.24

Membrane-bound and soluble HB-EGF bind to EGF receptors 1
(HER-1) and 4 (HER-4),13,14,25 eliciting different biological
responses,12,25 including adhesion activities,12 both mitogenic

and chemotactic effects on fibroblasts15 and SMC,12,26,27chemo-
taxis on endothelial cells27 and astrocytes,28 and growth activity
for some epithelial cells.12,20,21Interestingly, membrane-bound
HB-EGF has the unique property of acting as the receptor for
the diphtheria toxin (DT),29 a protein synthesis inhibitor capable
of triggering apoptotic death on target cells.30 CD9 coexpres-
sion enhances the mitogenic activity of membrane-bound
HB-EGF31 as well as the sensitivity to DT.32

In this study, we analyzed whether human PMN express
HB-EGF. We show that, after incubation with GM-CSF, PMN
express amounts of HB-EGF mRNA, synthesize the related
protein, and produce both the membrane-bound and soluble
HB-EGF forms. We also provide evidence for a functional
significance of PMN-derived HB-EGF.

MATERIALS AND METHODS

Cell purification and culture. Highly purified granulocytes
(.99.5%) and peripheral blood mononuclear cells (PBMC) were
isolated under endotoxin-free conditions from buffy coats of healthy
donors, as previously described.33 The granulocyte populations usually
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contained less than 4% eosinophils, as shown by May-Gru¨nwald-
Giemsa staining. In selected experiments, granulocytes were depleted
of eosinophils according to the method described by Koenderman et
al.34 Immediately after purification, cells were suspended in RPMI-1640
medium supplemented with 10% low-endotoxin (,6 pg/mL) fetal calf
serum (FCS) (Seromed; Biochrom KG, Berlin, Germany) and treated
with one of the following: 25 ng/mL granulocyte-macrophage colony-
stimulating factor (GM-CSF) (Genetics Institute, Boston, MA), 100
ng/mL lipopolysaccharide (LPS) (fromEscherichia coli, serotype
026:B6; Sigma, St Louis, MO), 5 ng/mL TNF-a (Peprotech, Rocky
Hill, NJ), heat-killed yeast particles opsonized with IgG (Y-IgG) at a
particle/cell ratio of 2:1, 10 nmol/L formyl-methionyl-leucyl-phenylala-
nine (fMLP; Sigma), 1,000 U/mL G-CSF (Granulokine; Hoffmann-La
Roche, Basel, Switzerland), 100 U/mL interferon-g (IFN-g) (Hoffmann-
La Roche), 1,000 U/mL IFN-a (Peprotech), 15 ng/mL IL-3 (Peprotech),
10 ng/mL IL-5 (Peprotech), 100 U/mL IL-10 (kindly provided by Dr K.
Moore, DNAX and Schering-Plough, Palo Alto, CA), 100 ng/mL IL-12
(Peprotech), 100 ng/mL IL-15 (Genzyme, Cambridge, MA), 300
nmol/L staurosporin (Sigma), 100 µmol/L dexamethasone (DEX)
(Sigma), or 20 µg/mL cycloheximide (CHX) (Sigma). In many experi-
ments we also stimulated PMN with optimal concentrations (0.5
ng/mL) of GM-CSF purchased from Peprotech. All reagents used were
the highest available grade and were dissolved in pyrogen-free water for
clinical use. Cells were plated either in 24-well tissue culture plates
(Nunc, Roskilde, Denmark) at 33 106/mL, or at 5 to 83 106/mL in
polystyrene flasks (Greiner, Nurtingen, Germany), or at 33 106/mL in
96-well tissue culture plates (Greiner) and subsequently incubated at
37°C, 5% CO2 atmosphere. After culture for the appropriate times (see
below), cells were either extracted for total RNA or used for functional
assays. Cell-free supernatants (SN) were harvested and stored at
220°C. In selected experiments, the U937 cell line (monocytic
leukemia–derived)35 was also used.

RNA isolation and Northern blot analysis.Total RNA from PMN
and PBMC was extracted and analyzed by Northern blot (10 µg of RNA
per lane) as previously described.17,36 Filters were hybridized using an
HB-EGF cDNA probe obtained as described below, IL-1ra, IL-6, and
b-actin cDNA fragments labeled with32P using a Ready-to-go DNA
labeling kit (Pharmacia, Uppsala, Sweden).

HB-EGF and HER-4 RT-PCR. HB-EGF probe generation.A
quantity of 4 µg of RNA from the cells of interest was reverse
transcribed as previously described.17,37cDNA was amplified using the
following primers (Genenco, M-medical, Florence, Italy). (1) HB-EGF
sense 58-TGGTGCTGAAGCTCTTTCTGG-38 and antisense 58-
GTGGGAATTAGTCATGCCCAA-38; these primers were designed to
give a fragment of 605 bp (complete form of HB-EGF)23 or a fragment
of 605 1 94 bp (short form of HB-EGF).24 (2) HER-4 sense
58-AGATGGAGGTTTTGCTGCTGAACA-38 and antisense 58-TTA-
CACCACAGTATTCCGGTGTCT-38 (726-bp fragment).38 (3) Vimen-
tin sense 58-GCTCAGATTCAGGAACAGCAT-38 and antisense 58-
TAAGGGCATCCACTTCACAGG-38 (266-bp fragment). The cDNA
was denatured for 5 minutes at 94°C before 35 runs in a thermal cycler
(GeneAmp PCR System 2400; Perkin Elmer, Norwalk, CT) using 1.25
U of Taq polymerase (Perkin Elmer, Branchburg, NJ) in 50 µL (94°C 40
seconds, 57°C 40 seconds, 72°C 50 seconds) followed by 5 minutes at
72°C. The PCR products were separated by electrophoresis on 1.5%
agarose gel. HB-EGF cDNA amplified from the U937 cell line using the
primers specified above was analyzed for theSmaI (Life Technologies,
Rockville, MD) restriction site (which gave the expected HB-EGF
fragments of 388 and 217 bp), and was sequenced (Sequenase 2.0
sequencing kit; USB, Cleveland, OH) as a plasmid insert (TA cloning
kit; Invitrogen, San Diego, CA), from which the HB-EGF probe was
generated for Northern blot analysis.

Flow cytometric analysis. A quantity of 13 106/mL PMN cultured
for 21 hours in the presence or absence of GM-CSF or LPS was washed
and incubated in 100 µL of phosphate-buffered saline (PBS) for 30

minutes at 4°C with 5% human serum and stained with 10 µL of 100
µg/mL purified rabbit anti–HB-EGF polyclonal H6 antibody (kindly
provided by Dr S. Higashiyama, Osaka, Japan)32 for 1 hour at 4°C
followed by a biotinylated second antibody [goat F(ab8)2 anti-rabbit IgG
(Caltag, Burlingame, CA) preadsorbed with human IgG] for 30 minutes
at 4°C and, after washing, by phycoerythrin (PE)-conjugated streptavi-
din (Becton Dickinson, Sunnyvale, CA) for 15 minutes at 4°C. Freshly
isolated PMN (33 106/mL) were incubated with 10 µL PE-conjugated
anti-CD9 (SBA, Birmingham,AL) or fluorescein isothiocyanate (FITC)-
conjugated anti–HER-1 (Medac, Hamburg, Germany) monoclonal
antibodies (MoAbs) for 30 minutes at 4°C. Irrelevant purified rabbit Ig
or isotype FITC- or PE-conjugated (Immunotech, Westbrook, MA)
MoAbs were used as controls. Flow cytometry analysis was performed
on a FACScan (Becton Dickinson, Mountain View, CA).

DT-induced apoptosis.Aliquots of 1 3 106/mL PMN were incu-
bated for the times indicated with or without GM-CSF in the presence or
absence of 10211 to 1028 highly purified DT (kindly provided by Dr E.
Papini, CNR Center for Biomembranes, Padua, Italy) and then exam-
ined for cell apoptosis by two distinct methods. (1) Analysis of
apoptotic (hypodiploid) nuclei by flow cytometry, as described by
others.39 PMN were harvested, washed twice with PBS, and suspended
in 1.5 mL hypotonic fluorochrome solution (propidium iodide 50 µg/mL
in 0.1% sodium citrate and 0.1% Triton X-100). The mixture was placed
in the dark overnight at 4°C. The fluorescence of each nucleus was
measured using an XL-Coulter flow cytometer (Coulter, Hialeah, FL).
(2) Analysis of apoptotic cell morphology. A quantity of 0.53 106

PBS-washed PMN were centrifuged for cytospin preparations and
stained using May-Gru¨nwald-Giemsa. Cells were scored as apoptotic
versus nonapoptotic, based on diminution of cell volume and chromatin
condensation yielding fragmented homogeneously stained nuclei.40

Measurement of superoxide anion (O2
2) generation. This was

performed as previously described.41 Briefly, 100 µL of PMN suspen-
sion (33 106/mL) containing or not GM-CSF or LPS in the presence or
absence of 1028 mol/L DT were added to tissue-culture polystyrene
96-well plates. After a 2- or 21-hour incubation, 100 µL of Hanks’
Balanced Salt Solution (HBSS), containing 1 mmol/L CaCl2, 10
mmol/L glucose, 4 mmol/L NaN3, and 160 µmol/L cytochrome C, with
or without stimulus (100 nmol/L fMLP) in the presence or not of
superoxide dismutase (SOD), were added on top to each well. Plates
were then incubated at 37°C in an automated EL34 microplate reader
(Biotec Instruments, Highland Park, UT) to record absorbance at 550
and 468 nm. Nanomoles of O2

2 were calculated using an extinction
coefficient of 24.5 mmol/L.42 In selected experiments for neutrophil-
derived superoxide anion, 0.5 to 1 ng/mL HB-EGF (R&D System,
Minneapolis, MN) was used either as a direct triggering agonist or as a
priming agent.

Enzyme-linked immunosorbent assay (ELISA) for HB-EGF.Soluble
HB-EGF protein was measured in the cell-free SN using a specific
ELISA developed in our laboratory, according to a method recently
published.43 Briefly, flat-bottomed 96-well plates (MaxiSorp; Nunc)
were coated with 50 µL/well of 2 µg/mL polyclonal anti-HB-EGF
antibody (R&D System) in 50 mmol/L sodium bicarbonate buffer, pH
8.5 for 8 hours at room temperature, and incubated overnight at 4°C
with 100 µL/well of blocking buffer (20 mmol/L TBS, pH 7.4, 3%
bovine serum albumin [BSA]). After extensive washings with TBS, pH
7.4, 0.05% Tween 20 (washing buffer), 50 µL/well of either HB-EGF
standards (R&D System) or cell-free culture SN were added, followed
by a 2-hour incubation at 37°C. SN collected after a 21-hour culture of
U937 cells or PBMC and PMN stimulated or not with GM-CSF or LPS
were used undiluted. SN of PMN previously cultured in medium
supplemented with 1% low-endotoxin FCS were used after approxi-
mately 80-fold concentration (by the Centricon Plus 20 device from
Amicon Inc, Beverly, MA). Plates were rinsed with washing buffer
before addition of 50 µL/well of biotinylated anti–HB-EGF antibody
(R&D System) (0.5 µg/mL in TBS, 0.05% Tween 20, 0.1% BSA) and
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incubated for 1.5 hours at room temperature. After extensive washings
of the plates, streptavidin-conjugated alkaline phosphatase, diluted
1:10,000 (Life Technologies) with TBS containing 0.5% BSA and
0.05% Tween 20, was added and incubated for 1 hour at room
temperature. After washing, a chromogenic reaction was performed
using the ELISA Amplification System (Life Technologies), according
to the manufacturer’s protocol. Assays were carried out in duplicate.
The reaction was stopped with 0.3 mol/L H2SO4 and the absorbance at
490 nm was measured. This ELISA had a detection limit of 6.25 pg/mL,
and did not cross-react with 100 ng/mL IP-10, 100 ng/mL IL-8, 1 ng/mL
MIP-1a, 10 ng/mL GROa, 10 ng/mL IFN-g, 5 ng/mL IL-10, 10 ng/mL
IL-1b, 10 ng/mL TNF-a, or 10 ng/mL GM-CSF other than EGF, TGFa,
and HGF.43

Statistical analysis. Student’st-test, the Mann-Whitney U test, and
analysis of variance according to Kruskall-Wallis ANOVA by ranks
were used. Differences were considered statistically significant when
theP value was,.05.

RESULTS

GM-CSF–induced HB-EGF mRNA in PMN.To investigate
whether amounts of HB-EGF mRNA were expressed in PMN,
these cells were initially cultured for 2 hours in the presence or
absence of 100 ng/mL LPS and 25 ng/mL GM-CSF, and then
total RNA was processed for Northern blot analysis. Autolo-
gous PBMC were also stimulated under identical experimental
conditions, for the purposes of comparison. Figure 1 shows that
resting and LPS-treated PMN did not express detectable
HB-EGF mRNA. The effectiveness of LPS-stimulation was
confirmed by its ability to upregulate the IL-1ra mRNA levels.44

Other PMN agonists, listed in Table 1, also failed to induce
HB-EGF steady-state mRNA levels in PMN, even if PMN were
cultured for up to 21 hours in the presence or absence of IFN-g
(data not shown), a cytokine which usually primes PMN for an
enhanced gene expression.3 By contrast, GM-CSF–treated
PMN exhibited a considerable accumulation of HB-EGF tran-
scripts as well as IL-1ra mRNA.45

HB-EGF accumulation pattern in PMN and PBMC.Ki-
netic experiments showed that maximal levels of HB-EGF
mRNA occurred after 1 to 2 hours of GM-CSF stimulation
(Fig 2A), whereas dose-response studies indicated that the
highest HB-EGF mRNA accumulation in PMN could be
obtained after stimulation with 25 ng/mL of GM-CSF (Fig 2B).
A different pattern of HB-EGF mRNA accumulation was
observed in PBMC, which not only presented low but constitu-
tive HB-EGF transcripts in all donors examined (n5 4), but
dramatically responded to GM-CSF stimulation (Fig 1), produc-
ing, as observed for other cytokines,2 more HB-EGF transcripts
than PMN did.

Genuine expression of HB-EGF by PMN.PBMC expressed
several HB-EGF mRNA species, in agreement with earlier
studies.23,46 As illustrated in Figs 2 and 3, at least 2 HB-EGF
mRNA species were induced by GM-CSF in PMN, the most
abundant being the 2.7-kb size transcript, a pattern matching
that observed in PBMC. Furthermore, IL-6 mRNA was ex-
pressed only in LPS-stimulated PBMC and not in PMN,
according to published data,47,48 thus excluding contamination
with mononuclear cells (Fig 1). Also consistent with the
genuine ability of PMN to express HB-EGF mRNA in response
to GM-CSF were 3 additional experiments in which complete
depletion of eosinophils, which have also been reported to
express HB-EGF in a rat experimental model,16 did not
influence the accumulation of HB-EGF mRNA in GM-CSF–
treated PMN (data not shown). Taken together, our data rule out
the possibility that the results obtained in PMN with respect to
HB-EGF mRNA levels can be attributed to contamination with
mononuclear cells or eosinophils.

Protein-synthesis-independent induction of HB-EGF mRNA
in PMN. We also examined whether de novo protein synthesis
was necessary for the GM-CSF–driven induction of HB-EGF

Fig 1. Comparative ability of PMN and PBMC to express HB-EGF

mRNA when stimulated with GM-CSF. GM-CSF induced HB-EGF

transcripts in PMN and, more dramatically, in PBMC, while LPS,

which upregulated IL-1ra in PMN and IL-6 in PBMC, was ineffective on

HB-EGF mRNA production. PBMC presented also a costitutive, low

production of HB-EGF mRNA. Purified populations of PMN and PBMC

from the same donor were cultured with or without 25 ng/mL

GM-CSF and 100 ng/mL LPS for 2 hours and then total RNA was

extracted and Northern blot analysis for HB-EGF, IL-1ra, IL-6, and actin

mRNA was performed. Ten micrograms of total RNA was loaded on

each gel lane. The experiment depicted is representative of 4.

Table 1. Effect of Various Agonists on HB-EGF mRNA

Induction in PMN

Medium 2

LPS 2

TNF-a 2

IL-3 2

IL-5 2

IL-10 2

IL-12 2

IL-15 2

G-CSF 2

GM-CSF 1

IFN-a 2

IFN-g 2

fMLP 2

IgG-opsonized yeasts 2

Staurosporin 2

Dexamethasone 2

Cycloheximide 2
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mRNA in PMN. As shown in Fig 3, this was not the case. The
inhibitor of protein synthesis CHX not only did not inhibit, but
actually superinduced the GM-CSF–dependent upregulation of
HB-EGF mRNA, in a similar way to previous observations in
monocytes stimulated with LPS for 1 hour.46

Membrane-bound HB-EGF demonstration by flow cytometry
on GM-CSF–treated PMN.To determine whether GM-CSF–
treated PMN expressed the membrane-bound HB-EGF mol-
ecule, they were investigated by flow cytometry using a specific
purified anti–HB-EGF polyclonal antibody. As shown in Fig 4A,
resting PMN were negative for HB-EGF. GM-CSF proved to be
an efficient inducer of membrane-bound HB-EGF surface
expression in cultured PMN (Fig 4B), while LPS was not (as
expected from the Northern blot data) (Fig 4C). Surface
HB-EGF expression, however, was detectable when PMN were
cultured with GM-CSF for longer than 6 hours. GM-CSF also

efficiently upregulated HB-EGF surface expression in mono-
cytes (data not shown).

DT-induced apoptosis in GM-CSF–treated PMN.To evalu-
ate whether the membrane-bound HB-EGF molecule expressed
on GM-CSF–treated PMN was functionally active, we tested
PMN sensitivity to DT. DT represents a ligand of membrane-
bound HB-EGF and induces apoptosis in a dose-dependent
manner on HB-EGF–expressing cells.29,30 Although PMN un-
dergo constitutive apoptosis when aged ex vivo, evidence
suggests that this process may be substantially delayed if cells
are cultured in the presence of GM-CSF, LPS, IFN-g, and other
cytokines, or, conversely, that it may be accelerated if cells are
incubated, for instance, with anti-CD95 antibodies.49 Therefore,
we sought to determine whether the presence of DT in the
cultures of GM-CSF–treated PMN inhibited the protective
effect of GM-CSF on PMN apoptosis50 as a consequence of the
GM-CSF–induced surface expression of HB-EGF acting as a
DT receptor. To test this hypothesis, we measured the rates of
PMN apoptosis by analyzing apoptotic (hypodiploid) nuclei and
cell morphology. Figure 5 illustrates a representative experi-
ment performed using flow cytometry to quantify the apoptotic
nuclei of PMN, while Table 2 summarizes the data from all our
experiments. Apoptosis of PMN after a 44-hour culture period
was 34% 6 9% (n 5 5), and this percentage was not
significantly affected by the presence of DT (35.7%6 15%,
n 5 5) in the culture medium. IFN-g and, more effectively,
GM-CSF were found to exert a significant protective effect on
PMN apoptosis. By contrast, 1028 mol/L DT completely
suppressed (P , .05) the protective effect of GM-CSF (Fig 5
and Table 2), but not that of IFN-g (Table 2). Preliminary
dose-response experiments in the range of 10211 to 1028 mol/L
DT concentrations showed that 1028 mol/L DT displayed
maximal suppression of the protective GM-CSF–mediated
effect on PMN apoptosis (data not shown). Therefore, 1028

mol/L DT was used in all subsequent experiments. GM-CSF–
treated PMN also displayed sensitivity to the apoptosis-
promoting effects of DT at morphological examination (Fig 6).

DT-mediated suppression of GM-CSF priming on PMN
respiratory burst capacity. To determine whether the apoptosis-
promoting effects of DT were selective or accompanied by other
biological effects, additional experiments were performed to
assess the respiratory burst capacity of PMN cultured with

Fig 3. Effects of CHX on HB-EGF mRNA levels in GM-CSF–treated

PMN. CHX did not inhibit, but overinduced, the GM-CSF–dependent

upregulation of HB-EGF mRNA, showing that protein synthesis was

not required. PMN were pretreated with 20 mg/mL CHX before

stimulation with 25 ng/mL GM-CSF for 2 hours. Total RNA was then

extracted and analyzed for HB-EGF and actin mRNA levels. The

experiment depicted is representative of 2.

Fig 2. HB-EGF mRNA levels in GM-CSF–treated PMN. (A) Time-course. PMN were incubated with 25 ng/mL GM-CSF. At the time-points

indicated, total mRNA was extracted and analyzed for HB-EGF, IL-1ra, and actin mRNA expression. The experiment depicted is representative of

2. (B) Dose-dependence. PMN were stimulated with increasing doses of GM-CSF for 2 hours and then total RNA was extracted and analyzed for

HB-EGF, IL-1ra, and actin mRNA expression. The experiment depicted is representative of 2.
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GM-CSF. Like IFN-g or LPS,33 GM-CSF is known to greatly
potentiate the ability of PMN to release reactive oxygen
intermediates (ROI).51 To this end, PMN were incubated with
GM-CSF or LPS for 2 and 21 hours in the presence or absence
of 1028 mol/L DT, and then stimulated with 100 nmol/L fMLP, a
bacteria-derived chemotactic peptide routinely used to stimu-
late ROI release in PMN.41 Both GM-CSF and LPS-treatment
resulted in a dramatic upregulation of fMLP-stimulated, SOD-
inhibitable superoxide anion (O22) release from PMN, at both

2- (not shown) and 21-hour incubation (Fig 7). While DT failed
to influence the constitutive ability of PMN to produce O2

2 in
response to fMLP at both 2- (not shown) and 21-hour incuba-
tion, it significantly suppressed (by approximately 60%) the
priming effect of GM-CSF at 21 hours, but was largely
ineffective toward LPS (Fig 7). Interestingly, DT did not affect
the priming effect of GM-CSF at 2-hour incubation (data not
shown), which is consistent with a lack of surface expression of
membrane HB-EGF at that time-point (see above).

Release of membrane-bound HB-EGF into SN.Finally, we
investigated whether GM-CSF–treated PMN, in addition to
expressing the membrane-bound form, could also release
HB-EGF protein into the SN. To this end, we developed a
specific ELISA, according to the indications by Yamada et al.43

The threshold sensitivity of this ELISA was 6.25 pg/mL and its
validity was demonstrated by the fact that it was able to detect
substantial amounts of soluble HB-EGF in U937 cell-
conditioned medium12,14 (Fig 8A). No extracellular production
of soluble HB-EGF was detected in cell-free SN harvested from
either resting or GM-CSF– and LPS-treated PMN, whereas
significant levels of soluble antigenic HB-EGF were measured
in SN harvested from autologous PBMC in resting conditions,
which increased (P , .05) after treatment with GM-CSF (Fig
8A). If SN from GM-CSF–treated PMN were previously
concentrated up to 80-fold, then detectable yields of soluble
HB-EGF could be specifically measured (Fig 8B).

Fig 4. Effect of GM-CSF and LPS on the surface expression of HB-EGF molecule in PMN. PMN were cultured in the absence (A) or presence of

25 ng/mL GM-CSF (B) or 100 ng/mL LPS (C) for 21 hours. Only GM-CSF–treated PMN acquired membrane expression of the HB-EGF molecule (B).

Membrane-bound HB-EGF expression was examined by indirect immunofluorescence analysis using the polyclonal H6 antibody (kindly provided

by Dr S. Higashiyama), followed by a human-IgG preadsorbed biotinylated second antibody and by PE-conjugated streptavidin. Cells were also

stained with irrelevant antibodies as controls. The expression patterns presented in this figure were reproduced in 5 independent experiments.

Fig 5. Effect of DT on the development of apoptotic nuclei in PMN

maintained in culture with GM-CSF. The presence of DT (kindly

provided by Dr E. Papini) in the cultures inhibited specifically the

protective effect of GM-CSF on PMN apoptosis. PMN suspensions,

cultured for 44 hours alone or with 25 ng/mL GM-CSF in the presence

or absence of 1028 mol/L DT, were processed for DNA content

analysis by propidium iodide staining and flow cytometry analysis.

Data were plotted as red fluorescence intensity versus number of

nuclei with a given DNA content as determined in each experimental

condition. Numbers reported indicate the percentage of hypodiploid

(apoptotic) nuclei. Similar results were observed in PMN isolated

from 3 independent donors.

Table 2. Effect of DT (1028 mol/L) on the Apoptosis Rate

of GM-CSF–Treated PMN

2DT 1DT

medium 34 6 9 NS 35.7 6 15
(n 5 5) (n 5 5)

GM-CSF 21.5 6 10 P , .05 33.5 6 15
(n 5 5) (n 5 5)

IFN-g 22.2 6 11.2 NS 15.7 6 13
(n 5 3) (n 5 3)

Data are expressed as percentage of fragmented nuclei reflecting
the proportion of apoptotic cells after a 44-hour period of culture in the
presence or absence of the listed factors. Means 6 SD for the number
of experiments indicated in parentheses.
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Lack of HER-1, HER-4, and CD9 expression in PMN:
Ineffıcacy of HB-EGF. Because HB-EGF binds to HER-1 or
HER-4,13,14,25and CD9 behaves as a coreceptor of membrane-
bound HB-EGF,31,32 we investigated whether these molecules
were expressed by PMN. We failed to detect the expression of
either HER-1 or CD9 molecules, or of HER-4 mRNA in PMN,
as investigated by flow cytometry analysis and reverse transcrip-
tase-polymerase chain reaction (RT-PCR), respectively. In line
with the lack of the related receptors, stimulatory experiments
using HB-EGF did not induce any modifications in PMN.
Interestingly, HER-4 mRNA was detectable in U937 cells in
basal conditions (data not shown).

DISCUSSION

HB-EGF is a member of the EGF superfamily, which also
includes epidermal growth factor, TGFa, amphiregulin, betacel-
lulin, epiregulin, neuregulin-1 and -2, and vaccinia growth
factor.12,52These are growth and differentiation factors, some of
which, especially HB-EGF, have been shown to actively
participate in important tissue-modeling phenomena, involving
autocrine or paracrine regenerative and neoplastic growth and
highly complex activities such as angiogenesis and blastocyst
implantation.12,52Although PMN have been found to infiltrate a
number of proliferative or degenerative lesions, their ability to
release cytokines of the EGF family has rarely been considered.
For instance, attention has only recently focused on PMN-
produced TGFa.9 In general, the role of PMN infiltrating tissue
lesions is far from clear and there is currently a great deal of

interest in studying PMN-derived cytokines and especially the
role they play in cell proliferation and angiogenesis.3

This study provides the first demonstration that human PMN,
under particular stimulatory conditions, are capable of produc-
ing, bearing on their membrane, and releasing the important
EGF superfamily cytokine, HB-EGF. Our findings, therefore,
document a mechanism whereby PMN might directly influence
tissue regeneration and even cancer progression.

Although negative in basal conditions, PMN expressed
HB-EGF mRNA upon treatment with GM-CSF, as shown by
both Northern blot analysis (Fig 1) and RT-PCR (data not
shown). Classic agonists (listed in Table 1) for PMN all failed to

Fig 6. Morphologic features of PMN cultured with GM-CSF in the

presence or absence of DT. Only after GM-CSF treatment, PMN

acquired sensitivity to DT, which induced typical apoptotic features.

Cytospin preparations of PMN were stained using the May-Grünwald-

Giemsa method after incubation in vitro for 21 hours in the presence

or absence of 0.5 ng/mL GM-CSF with or without 1028 mol/L DT. The

experiment depicted is representative of 2.

Fig 7. Effect of DT on the respiratory burst of PMN maintained in

culture with GM-CSF. DT specifically suppressed the priming effect of

GM-CSF, but was largely ineffective toward LPS (P F .05). PMN (3 3

105/well) were cultured for 21 hours in the presence or absence of 0.5

ng/mL GM-CSF with or without 1028 mol/L DT before stimulation

with 100 nmol/L fMLP. Data represent the mean values (6SD) of

SOD-inhibitable O2
2 release from triplicate assays for each condition.

Similar results were obtained in 3 separate experiments.

Fig 8. Release of the soluble form of HB-EGF by PMN and PBMC.

GM-CSF treatment induces release of the HB-EGF molecule into the

culture medium (P F .05). (A) PMN and PBMC were cultured alone or

in the presence of either 0.5 ng/mL GM-CSF or 100 ng/mL LPS.

Cell-free SN were collected after 21 hours, and the levels of soluble

HB-EGF protein were measured by a specific ELISA. The levels of

soluble HB-EGF spontaneously released by the U937 cell line were

also determined for comparison. (B) In selected experiments, PMN-

derived SN were concentrated approximately 80-fold before ELISA

detection. Values represent means (6SD) of duplicate determinations

calculated from 3 independent experiments.
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induce HB-EGF, despite the presence in the culture medium of
IFN-g, which usually acts as a PMN priming factor for gene
expression.3 The effects of GM-CSF on HB-EGF mRNA levels
were concentration-dependent, reached a plateau after 1 to 2
hours of stimulation, and were independent of protein synthesis.
Because it has been shown that HB-EGF may be induced via the
Raspathway12,53,54and that GM-CSF actually activates theRas
andRaf-1 and the MAP-kinase signaling pathways by binding
to the beta subunit of its receptor,55,56 the Raspathway may
therefore be a likely candidate for the GM-CSF–mediated
induction of HB-EGF in PMN. By contrast, NFkB are unlikely
to play a role in PMN HB-EGF upregulation. Although putative
binding sites for NFkB have been identified in the HB-EGF
promoter12,23and NFkB can be mobilized through the GM-CSF
receptor in many cell types,55,56 recent studies of ours have
failed to demonstrate activation of NFkB in GM-CSF–
stimulated PMN.57

The surface expression and structural integrity of membrane-
bound HB-EGF were detected by flow cytometry and by the
demonstration that PMN acquired sensitivity to the apoptosis-
promoting effect of DT29,30 after GM-CSF treatment. DT-
induced PMN cytolysis was associated with the development of
hypodiploid nuclei and apoptotic cellular morphology. We did
not, however, find complete killing of PMN after exposure to
DT. DT receptor density or expression only in a subset of cells,
lack of coreceptors such as CD9,32 efficiency of DT internaliza-
tion, and, in general, the equilibrium status of apoptotic
pathways in terms of overexpression of anti-apoptotic factors,
possibly induced by GM-CSF itself, may influence PMN
sensitivity to DT at any given time. The suppression of the
priming effect of GM-CSF on fMLP-stimulated, SOD-
inhibitable superoxide anion release was another effect of DT
internalization. This effect coincided with the surface expres-
sion of membrane-bound HB-EGF, because it was not observed
at 2 hours of incubation with GM-CSF. Whether the suppressive
action on the respiratory burst is attributable to DT-mediated
inhibition of protein synthesis,22 and specifically to the synthe-
sis of the various NADPH oxidase components,33 is an intrigu-
ing possibility, whose further investigation may help to clarify
the molecular basis of cytokine enhancement of the phagocyte
respiratory burst capability.

Finally, we have also shown that GM-CSF–treated PMN may
release the HB-EGF molecule into the culture medium. Because
neither HER-1 nor HER-4 expression was detected and HB-
EGF did not induce any modifications in PMN, we are inclined
to rule out the possibility that soluble HB-EGF might act in an
autocrine manner.

In conclusion, HB-EGF is a novel protein that can now be
included in the repertoire of PMN-derived cytokines. It is not
expressed in resting conditions, but is specifically inducible by
GM-CSF, a factor involved in modulating a number of PMN
functions.1,3 The role, if any, played by HB-EGF expressed in
GM-CSF–stimulated PMN is less intuitive. Nevertheless, the
fact that PMN produce HB-EGF is of interest, considering that a
relationship has been detected between HB-EGF and pivotal
biological activities12,53 which, up until very recently, were
rarely or never associated with PMN. HB-EGF has been
reported as playing a role in reproductive biology,58,59 wound
healing,60 atheromatous phenomena,31,61 angiogenesis,27 and

epithelial neoplastic growth.21 Remarkably, a number of epithe-
lial neoplasias, for which HB-EGF is an autocrine growth factor
and, possibly, an angiogenetic factor through VEGF induced in
vascular SMC,27 are capable of producing and releasing GM-
CSF62-64 and are often infiltrated by PMN, especially when
necrosis occurs.65 Thus, although the relationship between
infiltrating PMN and neoplastic cells is fairly elusive, PMN may
provide an unexpected source of a proliferative, angiogenetic
factor such as HB-EGF, thus participating in the progression of
cancer.21 Similar findings have been reported with regard to
neoplasia-infiltrating T lymphocytes that have been shown to
produce HB-EGF, when, as has been reported, exposed to a
nonsupporting environment.21 In PMN, however, we have
documented a specific mechanism of activation for HB-EGF
that may match the specific biological properties of some
cancers.62-65 Anyway, the fact that PMN can synthesize, store,
and release a substantial array of cytokines, including HB-EGF,
lends further support to the suggestion that the role of PMN in
physiopathology needs to be redefined.
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