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Ras Proteins: Recent Advances and New Functions

By Angelita Rebollo and Carlos Martı́nez-A

THE RAS FAMILY comprises H-Ras, K-Ras 4A, K-Ras 4B,
N-Ras, and other homologous proteins such as R-Ras,

TC21, Rap, and Ral. Ras protein function is controlled by a
guanosine triphosphate-guanosine diphosphate (GTP-GDP)
cycle that is regulated by at least 2 distinct classes of regulatory
proteins.1 First, a GTPase-activating protein recognizes the
active GTP-bound protein and stimulates the intrinsic GTPase
activity of Ras to form the inactive GDP-bound protein.
Second, guanine nucleotide exchange factors promote the
formation of the active GTP-bound state.2

Ras proteins are proto-oncogene products that are critical
components of signaling pathways leading from cell-surface
receptors to the control of cellular proliferation, differentiation,
or cell death. Ligand-stimulated activation of the cell-surface
receptor, receptor-associated tyrosine kinases, or agonist medi-
ated through G protein–coupled receptors results in the activa-
tion of Ras proteins.3,4 Activated Ras, in turn, stimulates a
cascade of serine/threonine kinases to initiate transcriptional
activation of genes. Several proteins with Src homology
domains (SH2 and SH3), which mediate protein-protein interac-
tion, have been implicated as connectors of the pathway.5

In this review, we will provide an overview of our current
knowledge of the role of Ras proteins in signal transduction
leading to proliferation or apoptotic cell death. We will discuss
recent observations concerning the functional role of Ras
modifications and the regulatory proteins that control Ras
activity as well as the intracellular signaling pathways that are
mediated by Ras proteins, with special mention of hematopoi-
etic cells.

RAS C-TERMINAL POSTTRANSLATIONAL MODIFICATIONS
AND THEIR FUNCTIONAL SIGNIFICANCE

Ras proteins are posttranslationally modified by prenylation,
a process that involves the addition of a 15-carbon farnesyl
isoprenoid moiety to a conserved cysteine residue in a C-
terminal CAAX motif by a farnesyl protein transferase (FPT).
After prenylation, the C-terminal tripeptide is removed by
proteolysis and the newly exposed C-terminal is methylated
(Fig 1). Ras prenylation is thought to facilitate membrane
targeting and to be essential for Ras function.6,7 In addition, this
modification can have important consequences for protein-
protein interactions.8,9 In the same context, several reports have
presented biochemical evidence for a prenylation-dependent
interaction of Ras proteins with protein acceptors in the
cytoplasmic membrane and with guanine nucleotide exchange
factors and effectors.10 Ras isoprenylation appears not to be
essential for transformation, because it can be replaced by a
different type of plasma membrane targeting signal, such as the
addition of a transmembrane domain.11

The various Ras proteins also present some differences in
their posttranslational processing. Prenylated H-Ras and N-Ras
proteins can be further lipidated by palmitoylation, a reversible
modification that could improve the association of these pro-
teins to the plasma membrane. In contrast, K-Ras proteins are
not palmitoylated, but possess a polybasic domain that can be

reversibly phosphorylated.12 Ras proteins also differ in their
affinity for FPT in vitro and in their sensitivity to FPT inhibitors,
because K- and N-Ras can be alternatively geranylgeranylated
in cells treated with FPT inhibitors.13-17 In addition, K-Ras can
be both geranylgeranylated or farnesylated in vivo.18 Both
farnesyltransferase and geranylgeranyltransferase inhibitors are
required for inhibition of oncogenic K-Ras prenylation, but
each alone is sufficient to suppress human tumor growth in the
nude mouse.19 Interestingly, nonfarnesylated H-Ras can be
palmitoylated and trigger differentiation and transformation,
suggesting that farnesyl is not needed as a signal for palmytate
attachment and that palmytate can support H-Ras membrane
binding and 2 different biological functions.20

Recently, novel mechanisms for the regulation of Ras process-
ing have been proposed. Induction of isoprenoid biosynthetic
pathways by lipoprotein depletion can upregulate the farnesyla-
tion and membrane association of Ras.21 Conversely, choles-
terol enrichment may lead to a reduction in Ras farnesylation
and membrane association.

REGULATORS OF THE RAS-GTP/GDP CYCLE

In addition to posttranslational modifications, Ras proteins
require binding of GTP to develop functional activity. Switch-
ing between the active GTP-bound and the inactive GDP-bound
state is regulated by binding to guanine nucleotide. Although
Ras proteins possess intrinsic GTPase and GDP/GTP exchange
activities, they are too low to account for the rapid and transient
GDP/GTP cycling that occurs during mitogenic stimulation.
Instead, a complete model for Ras function includes regulatory
proteins that control the GTP/GDP cycling rate.22 These regula-
tory proteins include GTPase activating proteins (GAPs), which
stimulate hydrolysis of bound GTP to GDP,23 and guanine
nucleotide exchange factor proteins, which promote the replace-
ment of bound GDP with GTP24 (Fig 2).

Two distinct GAPs for Ras proteins have been identified:
p120GAP, a predominantly cytosolic protein, with a catalytic
C-terminal domain that contains the Ras-binding domain and
interacts with the Ras effector domain. The N-terminal domain
regulates the activity of the catalytic domain and interacts with
downstream effectors. This domain has 2 SH2 and 1 SH3
domain and a pleckstrin homology (PH) domain. In addition to
their roles as negative regulators of Ras, it is believed that GAPs
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Fig 2. Schematic view of Ras regulatory factors.

Ras proteins cycle between the active GTP-bound

and the inactive GDP-bound state. Exchange factors

catalyze the activation of Ras inducing the dissocia-

tion of GDP. NO may also promote the formation of

Ras-GTP. Ras remains active until bound GTP is

hydrolyzed to GDP, a process that is accelerated by

GTPase activating proteins.

Fig 3. Summary of candidate Ras effectors. The

complexity of the signal pathways triggered by Ras

is evidenced by the multiple downstream effectors.

PLD, phospholipase D; PIP, phosphatidylinositol phos-

phate; SRF, serum response factor.

Fig 1. C-terminal modifications of Ras proteins. A farnesyl group is added to the cysteine of the C-terminal CAAAX motif. The C-terminal

tripeptide is removed by proteolysis and the newly exposed cysteine residue is methylated. Ras proteins can be further palmitoylated or

phosphorylated.
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can operate as downstream effectors of Ras.25 The first evidence
for a role of GAPs as Ras effectors came from the observation
that oncogenic Ras mutants still require GAP interaction for
their transforming activity. In addition, Ras-transforming activ-
ity can be blocked by Rap1 by competing for binding to
p120GAP. The effector function of p120GAP is located in the
N-terminal regulatory domain, which interacts with receptor
and nonreceptor tyrosine kinases, as well as with phosphory-
lated proteins.26,27 All of these results are incorporated into a
proposed model that suggests binding of Ras-GTP to the
catalytic domain of p120GAP. This binding results in conforma-
tional changes that expose the SH2/SH3 domains for interaction
with downstream effectors.

The RasGAP NF1 shares both sequence identity and sub-
strate specificity with the p120GAP C-terminal catalytic do-
main. Less is known about the functions of NF1 and it can be
assumed that each protein mediates distinct pathways. While
growth factor stimulates tyrosine phosphorylation of p120GAP,
serine and threonine phosphorylation has been reported for
NF1. In addition to its role as a negative regulator of Ras
activity, NF1 regulates proliferation and survival of precursors
and lineage-restricted myeloid progenitors in response to mul-
tiple cytokines by modulating Ras output.28 Loss of NF1 gene is
found in some patients with juvenile chronic myelogenous
leukemia (JCML). Deficiency in NF1 also induces myeloprolif-
erative disease through Ras-mediated hypersensitivity to granu-
locyte-macrophage colony-stimulating factor (GM-CSF).29Like-
wise, NF12/2 mouse embryos show an aberrant growth of
hematopoietic cells, suggesting that NF1 is required to downreg-
ulate Ras activation in myeloid cells exposed to GM-CSF,
interleukin-3 (IL-3), or stem cell factor (SCF).30 Finally, NF1
inactivation cooperates with N-Ras in lymphogenesis by a
mechanism independent of its GTPase activity.31 The observed
cooperation emphasizes the importance of searching for addi-
tional functions of NF1. Another RasGAP, Gap1m, with
specific GTPase activity for H- and R-Ras, stimulates the
GTPase activity of Ras better than it does that of R-Ras. The
high affinity of Gap1m for the substrates and its membrane
localization suggests that Gap1m may regulate the basal activity
of both H- and R-Ras.32

The third class of regulatory proteins controlling the RasGDP/
GTP cycle includes the guanine nucleotide dissociation inhibi-
tor (Ras GDI). Ras GDI is a negative regulator of Ras activity
because of its potent ability to inhibit dissociation of bound
GDP. This factor inhibits GDS, but not GAP, activity of Ras.33

As mentioned above, Ras proteins have low intrinsic ex-
change activity, increased by the binding of positive regulators.
The first regulatory factor isolated that enhances and controls
RasGDP/GTP exchange was the yeast cdc25 gene.34 Cdc25
activates H-Ras in vivo, but not N- or K-Ras. Selective
activation of a single Ras homologue by cdc25 suggests that
each Ras protein participates in a different signal transduction
pathway. Sos1 and 2, which couple tyrosine kinase receptors
with Ras activation, are also guanine nucleotide exchange
factors. Sos activity is regulated by intracellular interactions35-37

and by phosphorylation after growth-factor stimulation of the
cells. In addition to MAK kinases, p90Rsk-2 can phosphorylate
Sos.38 Finally, Sos activity is inhibited in vitro by binding of
phosphatidylinositol 4, 5-P2 to the PH domain.39

The direct posttranslational modification of Ras by nitric
oxide (NO) promotes Ras activation. Ras can be single nitro-
sylated at Cys 118 by NO resulting in stimulation of guanine
nucleotide exchange and activation of downstream signaling,40

possibly by destabilizing interaction between residues in the
GDP-binding pocket and the nucleotide. This suggests that Ras
function may be regulated directly by changes in the redox state
of the cell.

A guanyl nucleotide-releasing protein for Ras, Ras-GRP, has
been described recently, which has a calcium and diacylglycerol
binding domain, activates Ras, and causes transformation.
RasGRP may couple changes in diacylglycerol and possibly
calcium concentrations to Ras activation.24,41Finally, contradic-
tory data exist concerning the role of Vav as a RasGDS. While
some groups describe Vav as a RasGDS that activates Ras after
T-cell receptor activation,42 other groups suggest that Vav
cooperates with Ras in transformation but is not a GDP/GTP
exchange factor for Ras.43

CANDIDATE EFFECTORS OF RAS

Signaling pathways transmitted through Ras further activate
Ras effector molecules, the best characterized of which is the
serine/threonine kinase Raf. Through interaction with Raf, Ras
activates the MEK1 and 2 kinases and, in turn, the ERK1 and 2
kinases. ERKs phosphorylate cytoplasmic targets such as Rsk,
Mnk, and phospholipase A244-46 and translocate to the nucleus,
where they stimulate the activity of various transcription factors
(Fig 3).

The Raf zinc finger is not required for plasma recruitment by
Ras, but is essential for full activation of Raf at the cytoplasmic
membrane, suggesting that Ras has 2 separate roles in Raf
activation: recruitment of Raf to the plasma membrane through
interaction with the Ras-binding domain, and activation of
membrane-localized Raf via a mechanism that requires the Raf
zinc finger.47 It has been shown that Ras interacts through the
effector domain with 2 distinct N-terminal regions of Raf,48,49

suggesting that Ras promotes more than membrane transloca-
tion of Raf.50 Among other components that contribute to Raf
activation, we can include the 14-3-3 proteins and phospholip-
ids.51 The MAPK kinase pathway is critical in mediating signals
from Ras/Raf; however, Ras mutants have shown that the PI3
kinase pathway synergizes with the Raf pathway to induce
proliferation and loss of contact inhibition.52 Similarly, it has
been shown that activation of Raf and ERK is not needed for
Ras to induce membrane ruffling, suggesting that Ras could
regulate both Raf-dependent and Raf-independent signals.53

Ras isoforms vary in their ability to activate Raf; K-Ras
recruits Raf to the plasma membrane more efficiently than does
H-Ras, and H-Ras is a more potent activator of PI3 kinase than
is K-Ras. This suggests that activation of different Ras isoforms
can have distinct biochemical consequences for the cell.54 In
this context, it has been suggested that the subcellular distribu-
tion of Ras proteins could be related to differential participation
of various Ras homologues in signaling processes. Raf-1 is not
only activated in mitogenic pathways leading to cell-cycle
entry, but also during mitosis. Transient expression experiments
have shown that, in contrast to growth-factor–dependent activa-
tion of Raf-1, mitotic activation of Raf-1 is Ras-independent. In
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mitosis, activated Raf-1 is located predominantly in the cyto-
plasm, in contrast to mitogen-activated Raf-1, which is bound to
the plasma membrane. Mitotic activation of Raf-1 is partially
dependent on tyrosine phosphorylation and does not signal via
the MAP kinase pathway.55

Using mutants of Ras and Raf that affect physical association,
it has been shown that activated Ras stimulates the kinase
activity of membrane-targeted Raf only when both molecules
interact physically.56 The mechanism by which Ras interaction
with Raf enhances Raf activity may operate by induction of
conformational changes in Raf, exposing residues that are
substrates for activation of kinases; alternatively, Ras may
participate in the assembly of a signaling complex between Raf
and other proteins. It has been also shown that Raf activation by
Ras can occur in the absence of phosphorylation. In contrast,
Raf activation by Src kinase is accompanied by tyrosine
phosphorylation, suggesting that activation of Raf by Ras or Src
occurs through different mechanisms.57 Finally, Rap1A, which
has an effector domain identical to that of Ras, cannot activate
Raf and even antagonizes several Ras functions in vivo. Rap1A
interferes with Ras-dependent activation of Raf by inhibiting
Ras binding to a cysteine-rich region of Raf.58 On the contrary,
it has been reported that Rap1 mediates sustained MAP kinase
activation induced by nerve growth factor via activation of
B-Raf.59

In addition to controlling Raf kinases, Ras also regulates
other proteins such as PI3 kinase.60 Ras interacts with at least 4
different p110 subunits of PI3 kinase. The domain of PI3 kinase
interacting with Ras is located between amino acids 133 and
314. Mutants in this region show differential impairment of
effector interaction providing information concerning the contri-
bution of Ras effectors to Ras function.61This interaction in turn
activates the serine/threonine kinase Akt/PKB.62 PI3 kinase-
dependent activation of Ras also controls the activity of Rac and
p70s6k. In addition to Raf and PI3 kinase, other Ras effectors
have been described. These include Rin1,63p120GAP,25AF6,64,65

Ral GDS,66 Nore1,67 Rlf,68 and PKCz.69 PKCz is an atypical
protein kinase C isoform that is calcium-independent and
unresponsive to phorbol esters. PKCz is structurally similar to
Raf and has been reported to have mitogenic effects in
Ras-dependent oocyte maturation. Regulatory regions of PKCz
associate with Ras-GTP, suggesting that Ras-GTP localizes
PKCz to the plasma membrane, where it may be activated by
PtdIns P3. Raf activation by PKC was not blocked by dominant
negative Ras, indicating that PKC activates Raf by a mechanism
distinct from that initiated by activation of receptor tyrosine
kinases.70

Rin1 directly interacts in vivo with H-Ras in a GTP- and
effector domain-dependent fashion and competes with Raf for
in vitro binding to Ras. The domain of Rin1 that binds Ras also
binds the 14-3-3 protein, suggesting that Rin1 can interact with
multiple signaling molecules. Rin1 also interacts with Abl and
Bcr through a domain distinct from the Ras binding domain.71,72

Nore1 has recently been identified as a potential Ras effector.
Nore1 interacts directly with Ras in vitro in a GTP-dependent
manner; this interaction also requires an intact Ras effector
domain.67 Ras/Nore1 association also occurs in vivo after EGF
receptor activation. Rlf has been described as an effector of Ras
that functions as an exchange factor for Ral.68 A constitutively

active form of Rlf can stimulate transcriptional activation and
cell growth. AF6 was identified by the yeast 2-hybrid screen-
ing.64,65The N-terminal domain of AF6 interacts with Ras-GTP
and this interaction interferes with the binding of Ras to Raf. It
has recently been shown that stimulation of EGF receptor
results in a rapid activation of Ral, that correlates with the
activation of Ras.73 Finally, Sos facilitates the exchange of Ras
nucleotide and couples Ras to Rac through its Dbl and
pleckstrin homology domains (PH) in a PI3 kinase-dependent
manner.74

Other Ras effectors have been identified that could contribute
to Ras regulation. Ras interacts with the N-Jun amino-terminal
kinase (JNK).75 Ras also interacts with MEK kinase,76 Bcl-
2,77,78 REKS (Ras-dependent extracellular signal-regulated ki-
nase kinase stimulator),79 and KSR (kinase suppressor of Ras or
ceramide-activated protein kinase).80,81KSR is a positive regu-
lator of Ras signaling that functions between Ras and Raf or in a
parallel pathway to Raf.82 KSR is a potent modulator of a
signaling pathway essential to cell growth and development.83

This kinase contains 5 consensus sites of phosphorylation by
mitogen-activated protein kinase, suggesting that KSR is an in
vivo substrate of MAP kinases.84 It has been shown that KSR,
the dimeric protein 14-3-3, and Raf form an oligomeric
signaling complex that positively regulates the Ras signaling
pathway.85 Finally, using the yeast 2-hybrid method, we have
shown that Ras interacts with the transcription factor Aiolos.
IL-2 deprivation induces Ras/Aiolos association and, conse-
quently, inhibition of Bcl-2 expression, resulting in apoptotic
cell death. One of the functional consequences of Ras/Aiolos
interaction is the translocation inhibition of Aiolos from the
cytoplasm to the nucleus. Our results suggest a novel role for
Ras as a blocker of Bcl-2 expression through the cytoplasmic
sequestering of Aiolos.86

Other important targets for Ras signals are the transcription
factors NFAT and NFkB. NFAT proteins are cytosolic but, in
response to receptor stimulation, they translocate to the nucleus,
where they form transcriptionally active complexes with pro-
teins of the Jun and Fos family of transcription factors.
Activation of NFAT requires the coordinated interaction of the
Ras signaling and the calcium/calcineurin pathways, suggesting
that activation of NFAT requires the action of multiple Ras
effector pathways.87,88 NF-kB is activated in response to many
extracellular stimuli and is involved in the regulation of
cytokine, chemokine, and growth-factor genes.89 NF-kB has
been shown to have antiapoptotic effects. In NF-kB–deficient
cells, as well as in cells expressing a dominant negative IkBa,
the apoptotic responses to external stimuli are enhanced.90 The
proposed mechanism for the antiapoptotic effect of NF-kB is
the transcriptional regulation of specific genes that are antiapop-
totic. The ability of activated Ras to transform p53 null cells is
dependent on the ability of Ras to activate NF-kB. Thus, there
are cell death pathways that can be initiated by Ras after the
inactivation of NF-kB.91 Oncogenic H-Ras activates NF-kB,
which is required for cellular transformation, suggesting that
NF-kB is a critical downstream mediator of H-Ras signaling.92

There is also evidence that, in some cell types, NF-kB can be a
proapoptotic molecule.
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ANTIAPOPTOTIC AND PROAPOPTOTIC
RAS-MEDIATED PATHWAYS

Ras proteins have been involved in both the protection and
the promotion of apoptosis. This apparent contradiction is
solved by the ability of Ras to regulate multiple signaling
pathways through the interaction with different effectors.93 Ras
activation results in the induction of cyclin D1 expression.94-96

Ras also plays an important role in the downregulation of the
cdk inhibitor p27 kip, possibly through the MAPK-mediated
phosphorylation of p27kip, which prevents binding of the cdk2
inhibitor and may induce p27kip degradation.97,98 Recent stud-
ies link Ras function to the retinoblastoma (Rb) cell-cycle
checkpoint,99,100 establishing a link between Ras and cdk/Rb/
E2F pathway.101 Oncogenic Ras also causes growth arrest and
premature senescence associated with upregulation of p53 and
p16 ink.102

Ras also mediates the signaling pathway responsible for
phosphorylation and activation of the cdc25 phosphoserine
phosphatase. To become activated, cdks need to be dephosphory-
lated by the cdc25 phosphatases A, B, and C, regulating the
progression through G2/M transition.103 All 3 phosphatases
have been found in association with Raf, an interaction that may
be facilitated by the 14-3-3 protein.104 Finally, using dominant
negative and constitutive active Ras mutants, it has been shown
that Ras regulates c-Myc expression.105 Coexpression of Ras
and Myc induces cyclin-E–dependent kinase activity and transi-
tion to S phase.106

On the other hand, Ras can also mediate antiproliferative
effects. Ras activation can induce p21cip expression and G1
arrest.107In PC12 cells, the extent and duration of Ras activation
determines whether cells proliferate or differentiate. Treatment
of cells with EGF leads to transient activation of Ras and
proliferation while stimulation with NGF results in a sustained
activation of Ras, which leads to differentiation.108,109It it has
been shown that NGF acts via Ras and PI3 K in sensory
neurons.110 Finally, activated Ras is detected in growth-factor–
stimulated T and B cells.111,112The antiapoptotic activity of Ras
has been linked to its ability to activate PI3 K. The PI3K-
mediated survival signal is mediated by the activation of
Akt/PKB, a serine/threonine kinase activated by PtdIns-3,4
P2.113-115However, there is also evidence that Akt/PKB can be
activated in a PI3K-independent fashion, thus raising the
possibility that Akt/PKB-mediated protection from apoptosis
can also occur without PI3K activation. Akt/PKB activation is
involved in prevention of apoptosis in IL-4–stimulated cells
because overexpression of wild-type or constitutively active
Akt mutants protect cells from IL-4 deprivation-induced apop-
tosis. Moreover, overexpression of a constitutively active Akt
mutant in IL-4–deprived cells correlates with inhibition of
JNK2 activity.115 Akt/PKB inhibits the activation of caspases,
which are required for the apoptotic response to serum with-
drawal.116 One mechanism for Akt/PKB protection against
apoptosis is the phosphorylation and inactivation of Bad, a
proapoptotic Bcl-2 family member.117,118 PI3K/Akt is also
implicated as a key mediator of the aberrant survival of Ras
transformed cells in the absence of attachment and mediates
matrix-induced survival of normal cells.119,120 Ras-regulated
expression of the transcription factor NFIL3 inhibits apoptosis
without affecting Bcl-x expression in pro-B lymphocytes,

indicating that multiple independent pathways mediate survival
of developing B cells.121 In agreement, recent studies have
shown that different downstream Ras pathways mediate the
antiapoptotic function of Ras in IL-3–dependent hematopoietic
cells.122 Oncogenic Ras also causes resistance to the growth
inhibitor insulinlike growth factor binding protein-3 (IGFBP-3),
a possible factor involved in the dysregulation of breast cancer
cell growth.123 Finally, IL-2– and IL-3–dependent cells are
protected from starvation-induced apoptosis by activated Ras
through upregulation of Bcl-2 and Bcl-X expression.124,125This
protection is probably due to the association Raf/Bcl-2.126,127

The interaction between Ras and JNK in relation to the
induction of apoptosis is not clear. JNK activation may promote
different cellular consequences depending on the cell type or the
activation of complementary pathways. It is not completely
understood whether JNK activation is a cause or consequence
of apoptosis.128-130IL-2 deprivation correlates with an increase
in JNK1 activity directly related to the induction of apoptosis.131

By contrast, activation of the ERK pathway suppresses the
activity of JNK and promotes cell survival.128 However, it has
also been shown that inhibition of JNK activation can impair
Ras transformation, suggesting a growth-promoting role for this
kinase.132

Ras activation has also been involved in the induction of
apoptosis. Ras mediates signals triggered by activation of the
cell death receptor Fas133 and overexpression of activated Ras
leads to increased Fas ligand expression.134 Ras activation is
also linked to the induction of apoptosis in the phaechromocy-
toma cell line PC12, which are rescued from apoptosis after
expression of a dominant negative Ras mutant.135 In T cells, Ras
is activated following both IL-2 stimulation and deprivation,
leading either to cell proliferation or apoptosis, depending on
whether other stimuli are acting simultaneously.136

In parallel with the model proposed for the proto-oncogene
c-Myc, it is possible that 2 different Ras-mediated pathways
may be triggered by an external stimulus, 1 involved in
proliferation and the other in apoptosis. Alternatively, Ras may
simultaneously induce both proliferation and apoptosis, the
latter blocked by the action of survival factors, or Ras may
induce either proliferation or apoptosis, depending on external
signals (Fig 4).

HOMOLOGUE-SPECIFIC ROLES OF RAS PROTEINS

The H-, N-, and K-Ras genes are ubiquitously expressed in
mammalian cells. A number of recent works suggest that the
different Ras homologues could preferentially mediate distinct
cellular processes. K-Ras, but not H- or N-Ras, plays an
essential role in mouse development.137-139 K-Ras is induced
during differentiation of pluripotent embryonal stem cells. Its
expression during early embryogenesis is limited temporally in
a tissue-specific distribution.140K-Ras2/2 mice have defects in
myocardial cell proliferation and neuronal programmed cell
death. Erythroid cells from these embryos are able to achieve
end-stage differentiation within the hepatic microenvironment.
K-Ras has been described to specifically interact with microtu-
bules141 and disrupts basolateral polarity in colon epithelial
cells.142 Selective activation of H-Ras by Ras-GRF has been
reported, suggesting the potential participation of each Ras
homologue in different signaling pathways.143 This hypothesis
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is supported by recent findings showing a differential ability of
the 4 Ras homologues to induce focus formation, cell migration,
or anchorage-dependent cell growth.144 It has recently been
found that Ras homologues vary in their ability to activate the
key effectors Raf-1 and PI3K,145 with K-Ras being more
effective as a recruiter and activator of Raf-1 and H-Ras being
more effective as an activator of PI3K.99 In addition, selective
activation of K-Ras expression attenuates the ability of EGF
receptor to activate MAP kinase pathway by interfering with the
receptor autophosphorylation146; K-Ras also modulates the cell
cycle via both positive and negative regulatory pathways.147

Finally, K-Ras amplification was detected in mammary tumor
progression.148 H-Ras, but not N-Ras, is involved in the
IL-3–dependent signaling pathway implicated in integrin activa-
tion.149 Moreover, H-Ras stimulates tumor angiogenesis by 2
distinct pathways.150 The activated H-Ras–induced factor-
independent growth of myeloid cells requires the activation of
at least 2 pathways, 1 inhibiting factor-withdrawal apoptosis
and other causing cell-cycle progression.151 Moreover, the
transforming activity of Ras can be suppressed through ERK
dephosphorylation.152 Cell-specific differences in the intrinsic
transforming potential of N-, H-, and K-Ras153 as well as in the
different capacity of H- and N-Ras to regulate MAP kinase
activity154 have also been reported. In this context, results from
our laboratory have evidenced distinct behavior of Ras homo-
logues in T cells undergoing apoptosis in response to IL-2

deprivation, with K-Ras present in mitochondria only in
IL-2–stimulated cells and H-Ras being observed in mitochon-
dria only upon IL-2 deprivation.78 Mutations of N-Ras may be
involved in the pathogenesis of JCML155 as well as in acute
myelogenous leukemia (AML),156 suggesting that point muta-
tions in Ras gene might affect signal transduction through
GM-CSF. In addition, N-Ras mutation induces myeloprolifera-
tive disorders and apoptosis in bone marrow repopulated
mice.157 The results are consistent with a model in which
antiproliferative effects are the primary consequence of N-Ras
mutations and secondary transforming events are necessary for
the development of AML. Moreover, erythroid progenitor cells
expressing mutated N-Ras exhibit a proliferative defect result-
ing in an increased cell doubling time and a decrease in the
proportion of cells in S/G2 phase of the cell cycle.158 Finally,
activated K-Ras–mediated signals are involved in the SEK-JNK
pathway that are distinct from that involved in MEK-ERK
activation in human colon cancer cells. The imbalance between
ERK and JNK activity caused by activated K-Ras may play a
critical role in human tumorigenesis.159
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