High Efficiency Gene Transfer to Human Hematopoietic SCID-Repopulating Cells

W) Check for updates

Under Serum-Free Conditions

By Andrea J. Schilz, Gaby Brouns, Heike Knof, Oliver G. Ottmann, Dieter Hoelzer,
Axel A. Fauser, Adrian J. Thrasher, and Manuel Grez

Stable gene transfer to human pluripotent hematopoietic
stem cells (PHSCs) is an attractive strategy for the curative
treatment of many genetic hematologic disorders. In clinical
trials, the levels of gene transfer to this cell population have
generally been low, reflecting deficiencies in both the vector
systems and transduction conditions. In this study, we have
used a pseudotyped murine retroviral vector to transduce
human CD34* cells purified from bone marrow (BM) and
umbilical cord blood (CB) under optimized conditions. After
transduction, 71% to 97% of the hematopoietic cells were
found to express a low-affinity nerve growth factor receptor

(LNGFR) marker gene. Six weeks after transplantation into
immunodeficient NOD/LtSz-scid/scid (NOD/SCID) mice, LNGFR
expression was detected in 6% to 57% of CD45 cells in eight of
nine engrafted animals. Moreover, proviral DNA was detected in
8.3% to 45% of secondary colonies derived from BM cells of
engrafted NOD/SCID mice. Our data show consistent transduc-
tion of SCID-repopulating cells (SRCs) and suggest that the
efficiency of gene transfer to human hematopoietic repopulating
cells can be improved using existing retroviral vector systems
and carefully optimized transduction conditions.

© 1998 by The American Society of Hematology.

ENE TRANSFER INTO pluripotent hematopoietic stem lar findings?*3°These studies reflect more closely the situation
cells (PHSCs) is one of the most promising alternativesfound in large animal studies and human gene therapy trials and

for the curative treatment of a variety of inherited and acquiredindicate the use of this surrogate in vivo assay system for
disorders of blood cells. In murine syngeneic bone marrowpreclinical development of novel vector systems for stem cell
(BM) transplantation models, a significant proportion of cells gene transfer and optimization of clinically applicable transduc-
participating in long-term engraftment of lethally irradiated tion protocols.
mice can be reproducibly and stably transduced ex vivo by the In this study, we have evaluated the efficiency of gene
current generation of retroviral vectdrd However, transfer of ~ transfer to primitive human hematopoietic cells using a GALV-
this technology to humans, nonhuman primates, and other largeseudotyped murine retroviral vector, and optimized ex vivo
outbred animals has been much less succe$&ldihe reasons transduction conditions. We show here that these cells retain
for this discrepancy are uncertain, but probably reflect incom-heir ability to repopulate NOD/SCID mice and can be trans-
plete understanding of culture conditions required to maintairduced relatively efficiently.
the integrity and functionality of the PHSC, an inability of the
current generation of murine retroviral vectors to transduce
quiescent cell$*15and a deficiency of receptors on the PHSC  Recombinant human cytokines and growth factorStem cell factor

surface for the commonly used amphotropic retroviral enve{(SCF). interleukin (IL)-3, IL-6, Fit3-Ligand (Fit3-L), and anti-
lope16.17 transforming growth factor (TGB)L antibodies were obtained from

In animal models and human trials, high levels of geneR & D Systems Inc (Minneapolis, MN). Recombinant human granulo-

. . cyte-macrophage colony-stimulating factor (GM-CSF) and recombi-
transfer to clonogenic progenitor cells and long-term culture-
initiating cells (LTC-ICs) in vitro have not been predictive of
long-term reconstitution. The development of efficient proto-

cols for PHSC gene transfer has therefore been limited by th%erman }
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MATERIALS AND METHODS

From the Molecular Virology Lab, Georg-Speyer-Haus, Frankfurt,
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nant human granulocyte colony-stimulating factor (G-CSF) were fromdirectly conjugated isotype-matched control antibodies (Becton Dickin-
Amgen (Thousand Oaks, CA). son). After incubation, cells were washed three times and fixed in 1%

Purification of hematopoietic CD34cells. Human BM was ob-  paraformaldehyde. Flow cytometric analysis was performed on a
tained under local anesthesia from the iliac crest of healthy adultFACScan or FACSCalibur using the CellQuest software package
volunteers after informed consent and ethical approval. Samples ofBecton Dickinson). In all experiments, isotype controls were used to
umbilical cord blood (CB) were obtained from discarded placental andset the quadrant markers such that the quadrant defining negative PE
umbilical tissues by drainage of the blood into sterile collection bags.and FITC fluorescence contained at least 97% of the isotype control
The BM and CB samples were diluted 1:3 in phosphate-buffered salineells. The engrafted human cells were detected by CD45 positivity and
(PBS) and enriched for mononuclear cells by density gradient oveithe expression of the lineage markers. LNGFR expression was deter-
Ficoll-Paque (1.077 g/mL; Seromed, Berlin, Germany). The BM- mined on the CD45-gated population.
derived low density cell fraction was subjected to one cycle of plastic Progenitor cell assays. For clonogenic assays, transduced cells
adherence (1 to 2 hours) before the isolation of CD8dlls. CD34 were plated in 35-mm dishes containing 0.35% agar, 25% FCS
cells were isolated by superparamagnetic microbeads selection usingrlyclone; Erembodegem-Aalst, Belgium), 50 ng/mL SCF, 20 ng/mL IL
the miniMACS system according to the manufacturer’s instructions3, 10 ng/mL G-CSF, and 10 ng/mL GM-CSF in McCoy’s medium (Life
(Miltenyi Biotec, Inc, Gladbach, Germany). The purity of the cell Technologies; Gaithersburg, MD). Cultures were incubated at 37°Cin a
population ranged between 75% and 97% CD8dlls as estimated by 5% CQ, humidified atmosphere and colonies were enumerated after 10
fluorescence-activated cell sorting (FACS) analysis using either d0 15 days. For LTC-IC assay, 500 or 1,000 cells were seeded on a
phycoerythrin (PE)- or a fluorescein isothiocyanate (FITC)-conjugatedPreestablished monolayer of the murine FBMD-1 cell $#ngkindly
mouse monoclonal antibody against the human CD34 antigen (antiProvided by R.E. Ploemacher, Rotterdam, The Netherlands) in Myelo-
hematopoietic-progenitor-cell-antigen-2[anti-HPCA-2], Becton Dickin- Cult (Stem Cell Technologies) containing 20 ng/mL IL-3, 100 U/mL
son; San Jose, CA). IL-6, and 50 ng/mL SCF. Cultures were incubated for 5 weeks at 37°C,

Transduction of human hematopoietic CD3dells. For the trans- 5% CQ; with weekly changes of half of the medium. At the end of the
duction of human CD34 cells, retroviral supernatant was harvested 5-week LTC-IC assay period, the nonadherent and adherent fractions
from 80% confluent PG-13 monolayers after 12 to 16 hours cultivationWere harvested and assayed for the content of hematopoietic progeni-
in serum-free X-VIVO10 medium (Boehringer Ingelheim; Heidelberg, tors by plating 100,000 hematopoietic cells in clonogenic assays, as
Germany) supplemented with 1% bovine serum albumin (BSA; Stemdescribed above and scored 14 days later. LNGFR-positive colonies
Cell Technologies, Vancouver, Canada), 2 mmol/L L-glutamine and 19swere detected by immunostaining techniques (manuscript in prepara-
penicillin/streptomycin, filtered (0.45 um) and kept frozen-680°C tion). Similarly, 2 1P cells derived from the BM of engrafted cells 6
until use. The CD34-enriched target cell population was prestimulated Weeks after injection were analyzed for the presence of human
at a cell concentration of X 10° cells/mL for 20 hours in serum-free hematopoietic progenitors. Cells were plated in Methocult (Stem Cell
X-VIVO10 supplemented with 1% BSA, 2 mmol/L L-glutamine and Technologies), supplemented with Iscove’s modified Dulbecco’s me-
1% penicillin/streptomycin in the presence of IL-3 (20 ng/mL), IL-6 dium (IMDM), 30% FCS, human growth factors (25 ng/mL SCF, 10
(100 U/mL), SCF (50 ng/mL), FIt3-L (100 ng/mL), and anti-TRE ~ U/mL IL-3, 9 U/mL GM-CSF, 2 U/mL erythropoietin [Epo]; all R&D
(100 ng/mL). After prestimulation, transduction was performed for 3 Systems), 2 mmol/L L-glutamine, and 50 pmol/L 2-mercapto-ethanol,
consecutive days by replacing half of the cell culture medium with aresulting in 0.9% final concentration of methylcellulose. The cultures
GALV-pseudotyped LNSN retroviral supernatant (titer: 1 tox5L0° ) were incubated in a fully humidified atmosphere at 5%CO
supplemented with the cytokine combination mentioned above and NOD/SCID mouse reconstitution assaythe NOD/LtSz-scid/scid
protamine sulfate to a final concentration of 4 pg/mL. Cells were spun afNOD/ SCID) mice (original stocks kindly provided by John E. Dick,
2,500 rpm/minute at 32°C for 90 minufédefore further incubation at  Hospital for Sick Children, Toronto, Canada) were housed in sterile
37°C, 5% CQ for an additional 2.5 hours. Afterwards, half of the Microisolator cages in a laminar flow caging system (Thoren, Hazleton,
medium was replaced with X-VIVO10 containing IL-3, IL-6, SCF, PA) and supplied with sterile food, acidified water, and bedding. All
TGFB1, Fit3-L, and anti-TGP at the concentrations mentioned above. Manipulations were conducted in a laminar flow hood. Transduced
In some experiments, plates were precoated with the recombinarfeD34" cells were injected intravenously via the tail vein of 6- to
fibronectin-fragment CH296 (Boehringer Ingelheim). At day 5, cells 8-week-old mice, which had been sublethally irradiated with 325 cGy
were harvested, washed, counted, and analyzed for expression of tH&*’Cs source). Mice were killed by GOnhalation 6 weeks after
low-affinity nerve growth factor receptor (LNGFR) and CD34 by flow injection and BM cells were harvested for flow cytometric analysis and
cytometry. growth of hematopoietic progenitors.

Flow cytometric analysis of transduced cellsAfter transduction, Polymerase chain reaction (PCR) for human LNGFRhe pres-
cells were washed twice in PBS containing 1% heat inactivated fetaence of LNGFR provirus in secondary colonies was determined using
calf serum (FCS) and 0.1% sodium azide. To assess for LNGFRhe primers 5TGTGTGAGCCCTGCCTGGAC, beginning at position
expression, cells were incubated with an unconjugated mouse antiht300 in exon 2 and 5BCGAGCCCTCTGGGGGTGTGG position 725 in
man LNGFR antibody (Boehringer Mannheim, Mannheim, Germany), €xon 4 of the LNGFR gene. The amplification cycle was 30 seconds at
which was detected with a goat antimouse F(ab)-fluorescein isothiocya94°C. 1 minute at 66°C, and 1 minute at 72°C, with a final elongation
nate (FITC) (Dianova; Hamburg, Germany). Alternatively, a biotinyl- Step of 10 minutes at 72°C. After 30 cycles, the specific 425-bp product
ated primary LNGFR antibody (kindly provided by Dr S. Seeber, Was detected by Southern blotting.

Boehringer Mannheim, Penzberg, Germany) was used and subse-
quently detected with PE-conjugated streptavidin (Dianova). For the RESULTS
flow cytometric analysis of engrafted NOD/SCID mice, directly Optimized transduction of CD34ells using LNGFR expres-

conjugated antibodies against human cell surface antigens were pur-. - - . . .
chased from Becton Dickinson (Oxford, UK) (CD19-FITC, CD34- sion. On the basis of previous studies suggesting that retrovi

FITC, CD38-PE, CD45-PerCP) or DAKO, Ltd (High Wycombe, UK) ral vectors generated on the PG13 packaging cell line may have

(CD2-PE, CD3-FITC, CD13-PE). Atotal oft 10° cells obtained from  @dvantages over amphotropic vectors for transduction of human
the BM of injected mice were incubated for 30 minutes on ice with hématopoietic cell$}33-3%a GALV-pseudotyped LNSN retrovi-

saturating amounts of antibodies in staining buffer (PBS, 5% FCSfal vector was used in all experiments. The LNSN construct,
0.01% sodium azide). A sample from each mouse was also stained wittwhich contains the full-length low-affinity receptor for human
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nerve growth factor (LNGFR) under the transcriptional control 100 S ps

of the Moloney murine leukemia virus (Mo-MuLV) long 90 -

terminal repeat (LTRY® was selected for these studies because 4 80 - f 8 s B8 s °
LNGFR expression allows rapid evaluation of gene transfer bygy 704 ¢ °

flow cytometric analysis and immunocytochemisfy® To LL 60 - . Z
optimize gene transfer to human CD34ell populations, a ) 50 ¢ s
detailed study of several parameters that could improve effi-1 40 -

ciency was performed (manuscript in preparation). The opti-sQ 30 -

mized transduction protocol included prestimulation of the 20 -

CD34" cells for 20 hours in serum-free medium (X-VIVO10) 10 1

supplemented with 1% BSA, 2 mmol/L L-glutamine, IL-3, 0 s B . A L
IL-6, SCF, FLT3-L, and anti-TGFL. Thereafter, cells were | | | f |
transduced under identical conditions for 4 hours on 3 consecu total cells CD34+ CFC

tive days and included a spinoculation step (2,500 rpm/min, S
32°C. 90 minutes§1 At the end of the transduction period a Fig 2. Summary of gene transfer efficiencies into BM- and CB-

' ' . . ! derived CD34* cells. Gene transfer efficiencies into hematopoietic
twofold to threefc’ld expansion in tc_’t_al cell num_bers WaS ce|is (total cells), CD34+ cells, or CFC were estimated by FACS (total
observed, with half of the cells retaining expression of thecells and cD34+) or immunostaining techniques (CFC). Data from
CD34 cell surface antigen (35% to 46% for BM cells and 57% LNSN-transduced cells (circles) and mock transduced cells (squares)
to 72% for CB cells). Transduction efﬁciency was determined@® presented. Black symbols: BM-derived CD34+ cells, open symbols:

. . . CB-derived CD34* cells. Each symbol represents a single experiment.
by flow cytometric analysis of LNGFR expression on day 5.
Representative profiles of transduced BM and CB-derived
CD34" cells are shown (Fig 1). In a series of 10 independentfragment, CH-269, were used in conjuction with spinoculation
experiments, transduction efficiencies of 70% or higher were(97.4% LNGFR positive cells; Table 1), confirming the observa-
achieved (Fig 2). Best transduction efficiency was achievedions of otherg’%-43 In addition, between 53% and 95% of the
when plates coated with the recombinant human fibronectircells coexpressed CD34 and LNGFR (Fig 2). LNGFR expres-
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Fig 1. LNGFR expression on BM- and CB-derived CD34+ cells after gene transfer with a GALV-pseudotyped LNSN retroviral vector. Flow
cytometric analysis of two representative transduction experiments into CD34+ cells derived from BM (A) and umbilical CB (B). The left panels
show the isotype controls for nonspecific IgG1 staining. The CD34 and LNGFR expression on mock-transduced cells and LNSN-transduced cells is
shown at the central and right panels, respectively.
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Table 1. Efficiency of Gene Transfer Into NOD/SCID Repopulating Human Hematopoietic Cells

Gene-Marked Cells

Efficiency of Gene Transfer Human Cell Derived From thg BM LNGFR PCR‘
No. of Engraftment of NOD/SCID Mice Second Colonies
Experiment (% LNGFR* cells) (% CD34* LNGFR*/CD34* cells) Transplanted Cells (% CD45* cells) (% of all CD45* cells) (LNGFR*/total colonies)
BM 3 80.8 79.6 1.25 X 108 1.2 6.0
2.5 x 108 0.3 0
2.5 X 108 0 0
BM 5 83.1 78.6 3.0 X 108 5.1 5.6
4.2 X 108 0 0
CB 1 70.8 74.2 1.25 X 108 9.5 16.9 2/10
1.25 X 108 12.8 16.7 1/13
1.25 X 108 9.0 25.3 1/13
CB 3 83.3 81.3 1.3 X 108 0 0
1.3 X 108 3.6 13.7 1/20
CB 4 84.2 80.8 0.5 x 108 0 0
0.5 X 108 0 0
CB 5* 97.4 98.0 3.0 X 108 33.3 56.6 9/20
3.0 X 108 0.9 15.1

Abbreviations: BM, bone marrow; CB, umbilical cord blood.
*Transduction was performed on CH-296—coated plate.

sion on mock-transduced cells was negligible (Fig 1, centralto 98.0% also expressed the LNGFR marker gene (Table 1). Six
panels). weeks after transplantation, LNGFERells were detected in the
Gene transferinto CFCs and LTC-ICslmmunocytochemi-  CD45" cell population at levels ranging from 5.6% to 56.6% in
cal detection of LNGFR expression in hematopoietic colonieseight of nine engrafted animals (Figs 4 and 5). In those animals
indicated an efficiency of gene transfer to colony-forming successfully engrafted with CB-derived cells (six of nine),
progenitors (CFCs) of 63.4% 11.7% (range, 49.0% to 84.0%) 13.7% to 56.6% of CD45% cells were positive for LNGFR
(Fig 2). Absence of background staining in mock-transducedexpression (Table 1). LNGFRcells were not detectable in
preparations confirmed the specificity of detection (not shown)animals engrafted with mock-transduced CB-derived CD34
No difference in the efficiency of CFC transduction was cells (Fig 4A and B), indicating that the positive signals
observed between CD34cells derived from BM (63.6%+ obtained were derived from successfully transduced cells.
10.1%) or from CB (63.1%* 13.4%). To assess gene transfer Confirmation of gene transfer to SRCs was obtained by PCR
into more primitive progenitors, transduced cells were main-amplification of a transgene-specific sequence in genomic DNA
tained under long-term culture conditions on FBMD-1 cé&ls. extracted from secondary colonies (colony-forming unit—
Of colonies derived from progenitor cells removed from the granulocyte-macrophage [CFU-GM] and burst-forming unit
culture after 5 weeks, 23.6% 4.3% (range, 19.3 to 28.0%) erythroid [BFU-E]). In five of five samples, proviral DNA was
expressed LNGFR by immunostaining. detected in individual colonies at rates comparable to that
Gene transfer into SRCs.To test for transduction of primi-  predicted by LNGFR expression (Table 1, Fig 6).
tive human cells with repopulating ability, hematopoietic cells
(derived from BM or CB) were injected into the tail vein of
sublethally irradiated NOD/SCID mice after transduction under Efficient gene transfer to human PHSCs has been limited by
the optimized conditions outlined above. Cells recovered fromincomplete understanding of their biologic properties and by
mouse femurs 6 weeks after engraftment were analyzed for thdeficiencies of vector systems and ex vivo transduction condi-
percentage of human cells (CD45 expression) and expression ¢ibns. These confounding factors are reflected in data from
the LNGFR marker gene by flow cytometry and for the level of clinical trials and from studies in which transduced cells are
gene transfer to CFCs by PCR. Results are summarized in Tablengrafted in immunodeficient midé:%.10-12.23.24.44The NOD/
1. After transplantation of between 0.5 and 4 2(° cells, nine  SCID model system has been shown to support the engraftment
of 14 animals showed detectable levels (0.3% to 33.3%) ofand retention of primitive human hematopoietic cells with the
human cell engraftment measured by flow cytometric detectiorpotential for extensive proliferation and multilineage differentia-
of CD45 expression (Figs 3A and 4). Multilineage engraftmenttion 2325274546 Unlike the majority of LTC-ICs, which are
determined by surface immunophenotype (CD19, CD13, CD2)jncapable of repopulation, SRCs are found exclusively in the
and CFC profile (not shown) was observed in all nine animalsCD34*CD38 cell fraction at a calculated frequency of approxi-
(Fig 3B). In five animals, no CD45 cells were detectable, mately 1 in 600 in CB and BM and are therefore phenotypically
although engraftment at levels below those measurable in thessnd functionally distinct® Furthermore, kinetic experiments
studies is possible. indicate that engraftment of SRCs is followed by a large
Efficiency of gene transfer to the input population of CD34 expansion of LTC-ICs in vivo, suggesting that these are derived
cells ranged from 70.8% to 97.4%, as measured by flowfrom a more primitive celt’” Although both CFCs and LTC-ICs
cytometric detection of LNGFR expression. Of the CD®#lls  are readily transduced, the efficiency of gene transfer to SRCs
remaining at this time after the transduction procedure, 74.2%as generally been very low, and the repopulating potential is

DISCUSSION
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A not been extensively evaluated in repopulating assay sys-
tems?13:33-3543 Furthermore, current gene transfer protocols
require the removal of PHSC from their natural microenviron-
mental niches and their manipulation ex vivo, conditions, which
may alter the integrity and functionality of these céfls.
However, stem cells can also be protected in vitro by culture on

feeder cells or stromal monolaye¥s'® At least partially, this

—
CD45-PerCP
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Fig 3. Multilineage engraftment of human hematopoietic cells
into NOD/SCID mice. Sublethally irradiated NOD/SCID mice were
injected with CB-derived CD34+* cells transduced for 3 days under
serum-free conditions (CB#1 in Fig 2). (A) FACS analysis of hematopoi-
etic cells obtained from the femur of animals injected with human 95.2 48| G
CB-derived CD34+ cells (solid line) or control animals (dotted line). k
The percentage of human cells was calculated from the number of
CD45* cells found in the femur of the animals after 6 weeks. (B)
Multilineage engraftment of human cells. The CD45+ cells shown in 3 7
(A) were further analyzed for the presence of myeloid cells (CD13),
lymphoid cells (CD19, CD2), and immature progenitor cells (CD34, ' T
CD38). The percentage of each cell population is shown in the upper
right corner of each quadrant.

markedly compromised by ex vivo cultu¥&?32°Similar find-
ings have been reported for pluripotent cells engrafting bg/nu.
xid mice, although there are qualitative and quantitative differ-
ences in repopulating cell engraftment patterns in this modeg
compared with that of SRC4:30 O
Multiple factors probably contribute to the inefficiency of F—(z;b_)F»ITC _]KG_FT{-FITC
gene transfer to repopulating cells. The majority of ’
CD34"CD38" cells are quiescettand therefore refractory to Fig4. LNGFR expression on human CD45+* cells obtained from the
transduction by the current generation of murine retroviralBM of NOD/SCID mice. NOD/SCID were sublethally irradiated and
vectors, which require breakdown of the nuclear membrane td?iected with LNSN-transduced CB-derived CD34* cells (panels C
. . . through J) or mock-transduced cells (panels A and B). Six weeks later,
achieve entry of the nUdeOprOte'n complex into the nucleusBM cells were obtained from the femur of these animals and analyzed
before integratiod? Ram-1, the receptor for the amphotropic for the presence of human cells (CD45+) and LNGFR expression by
retroviral envelope, is expressed at very low levels ONFACS. FACS data from mice engrafted with cells derived from CB#1
CD347CD38 cells, and virus binding can only be detected (paneIsCthroug+h H) orCB_#5 (panels |l and J) isshown_.The left panels
afer cytokine stmulatiodt2” n contrast, GALV:pseudotyped 510" I CP4S: Expreson e the Fany 1C satpe contl
retroviruses have been shown to mediate higher levels of gengansduced (b through J) or mock-transduced (B) cells. Fluorescence

transfer to CD34 and CD34 CD38" cells, although they have intensities are displayed in logarithmic scale.

PerCP
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A B duced cells to repopulate bg/nu/xid mice after prolonged
periods of in vitro culture#

Ideally, ex vivo manipulation of PHSCs should preserve the
intrinsic properties of these cells. On the basis that maintenance
or even expansion of the PHSC can be achieved after cultivation
of CD34"CD38 CB-derived cells in serum-free mediufi>
one major objective of this study was to establish gene transfer
o® into repopulating cells under serum-free conditions. In addition,

the use of total CD34 cells as the target population for gene

transfer, rather than highly purified subfractions, is compatible

with current clinical practice in stem cell transplantation and

thus allows for a rapid transfer of the transduction protocol to

clinical situations. The final protocol described in this study
o represents a major step towards the achievment of this goal.

Previous attempts to transduce CD3#lls under serum-free
conditions have shown gene transfer into CFCs at levels
ranging from 1% to 29%25%6 In an effort to improve gene

All mice CD45 positive mice  transfer in the absence of serum, we examined the efficiency of

s E . | " 4 LNGFR gene transfer to CD34cells under varying culture conditions
N S oo ch npus  (manusript n_ preparation). The_ combination of cytokines
CD34+ cells. BM- or CB-derived CD34+ cells were transduced with a (IL-3, IL-6, SCF, and FL) together with anti-T@A antibodies

1000 3 10007
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GALV-pseudotyped LNSN retroviral vector and injected into suble- was chosen to stimulate cell division in primitive populations
thally irradiated NOD/SCID mice. The left panel shows the percent- and to retain repopulating potential over extended culture
age of human cell engraftment (CD45* cells) 6 weeks after injection. 0 iqe87-62 Under these conditions, high gene transfer rates
The right panel shows the LNGFR expression in CD45* cells obtained ! . ) .

from the BM of engrafted animals. Each symbol represents one into CD34" hematopoietic cells were reproducibly achieved,
mouse. independently of the donor and source of material usetD@6

LNGFR" cells). Significant repopulating potential of trans-
function can be replaced by appropriate combinations ofduced cells was also retained over the 5-day ex vivo culture
cytokines and growth factors. FIt3 ligand (FL), in particular, hasperiod, and the majority of engrafted NOD/SCID mice also
been shown to act synergistically with a range of othershowed high levels of marker gene expression (6% to 57%) in
cytokines to stimulate proliferation and amplification of very total CD45" (lymphoid and myeloid) populations. Comparable
primitive (CD34*CD38") hematopoietic cells both in vitro and percentages of provirus-positive CFCs were detected in second-
in vivo.46:49-54Moreover, FL enhances transduction efficiency of ary colony-forming assays. These results are highly suggestive
primitive progenitor cells and preserves the ability of trans- of successful gene transfer to primitive multilineage repopulat-
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Fig6. Detection of proviral genome in secondary colonies derived from engrafted NOD/SCID mice. Secondary colonies were established with
cells obtained from the BM of engrafted NOD/SCID animals 6 weeks after injection. The presence of LNSN proviral DNA in hematopoietic
colonies derived from three mice injected with CB#1 (A), one mouse injected with CB#3 (B), and one mouse injected with CB#5 (C) was assessed
by a sensitive LNGFR-specific PCR. The 425-bp-specific LNGFR product was detected by Southern blotting. Amplification of a sequence from the
human mannose binding protein (MBP) gene was used to control for the presence of DNA.%
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ing cells, although formal proof of this would require the transduction with cell-free retroviral vector preparations. Proc Natl

demonstration of common integrants in lymphoid and myeloidAcad Sci USA 92:4372, 1995

lineages. 9. Dunbar CE, Cottler-Fox M, O’Shaughnessy JA, Doren S, Carter
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systems and development of clinically applicable gene therapy¥M, Hanley ME, Annett G, Brooks JS, El-Khoureiy A, Lawrence K,
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