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PART I

THE ENDOTHELIUM has long been viewed as an inert
cellophane-like membrane that lines the circulatory sys-

tem with its primary essential function being the maintenance of
vessel wall permeability. Shortly after the first description of
circulating blood by William Harvey in 1628, the existence of a
network of vessels arose from studies of Malphigi, who
described the physical separation between blood and tissue.1 In
the 1800s, von Reckingausen established that vessels were not
merely tunnels bored through tissues but were lined by cells.
The strength of Starling’s experiments and his law of capillary
exchange proposed in 1896 served to solidify the belief that the
endothelium was principally a selective but static physical
barrier, not withstanding Heidenhahn’s description in 1891 of
the endothelium as an active secretory cell system. However,
electron microscopic studies of the vessel wall by Palade in
1953 and physiological studies by Gowan in 1959 describing
the interaction between lymphocytes and endothelium of post-
capillary venules stimulated numerous subsequent studies that
led to the current view of the endothelium as a dynamic,
heterogeneous, disseminated organ that possesses vital secre-
tory, synthetic, metabolic, and immunologic functions.1

The endothelial cell (EC) surface in an adult human is
composed of approximately 1 to 63 1013 cells, weighs
approximately 1 kg, and covers a surface area of approximately
1 to 7 m2.2 ECs line vessels in every organ system and regulate
the flow of nutrient substances, diverse biologically active
molecules, and the blood cells themselves. This gate-keeping
role of endothelium is effected through the presence of mem-
brane-bound receptors for numerous molecules including pro-
teins (eg, growth factors, coagulant, and anticoagulant pro-
teins), lipid transporting particle (eg, low-density lipoprotein
[LDL]), metabolites (eg, nitrous oxide and serotonin), and
hormones (eg, endothelin-1), as well as through specific junc-
tional proteins and receptors that govern cell-cell and cell-
matrix interactions.

The endothelium also plays a pivotal role in regulating blood
flow. In part, this results from the capacity of quiescent ECs to
generate an active antithrombotic surface that facilitates transit
of plasma and cellular constituents throughout the vasculature.
Perturbations, such as those that may occur at sites of inflamma-

tion or high hydrodynamic shear stress, disrupt these activities
and induce ECs to create a prothrombotic and antifibrinolytic
microenvironment. Blood flow is also regulated, in part,
through secretion and uptake of vasoactive substances by the
endothelium that act in a paracrine manner to constrict and
dilate specific vascular beds in response to stimuli such as
endotoxin.

Detailed study of endothelial function first became feasible
with the development in the 1970s of techniques to culture ECs
in vitro.3-5 Limitations of this approach have become apparent
recently with the realization that cell culture perturbs ECs from
their quiescent in vivo state (0.1% replications per day) to an
activated phenotype (1% to 10% replications per day) with loss
of specialized functions associated with diverse vessels and
organ systems. More complex analytic systems now exist that
incorporate changes in EC properties imparted by plasma and
cellular blood elements, by rheologic factors, and by cell-cell
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interactions that occur within the vessel wall. Genetic recombi-
nation studies in mice are likely to advance understanding of
ECs in both their physiologic and pathologic roles in thrombo-
sis, atherosclerosis, tumor metastasis, and organ rejection.

The purpose of this review is to provide a broad overview of
EC participation in several biological processes judged to be
relevant to clinical hematologists and investigators of vascular
biology. Part I will principally examine the known physiologic
roles of the endothelium, whereas Part II will discuss the
interactions between ECs and blood cells and emphasize the
contribution of the EC to the pathogenesis of specific diseases.
Because of the introductory nature of this review, many topics
and important contributions have been omitted, including the
involvement of ECs in hematopoiesis, neuroendocrinology, cell
aging, cellular integrins and matrix interactions, vascular perme-
ability, lipid metabolism, the lymphatic vasculature, and the
endothelium as a target for gene therapy. We hope that the
abbreviated bibliographies will serve as an introduction to
readers who wish to further investigate EC biology.

VASCULOGENESIS AND ANGIOGENESIS

Overview of early vascular development.Recently devel-
oped techniques that permit alteration of genomic sequences
and manipulation of developing embryonic tissues have pro-
vided important insights into molecular and genetic elements
that regulate vascular development.6 These studies show that
the cardiovasculature is the first system to form in the gastrulat-
ing embryo. The de novo organization of ECs into vessels in the
absence of any pre-existing vascular system is referred to as
vasculogenesis and only occurs in the early embryo. Angiogen-
esis, the continued expansion of the vascular tree as a result of
ECs sprouting from existing vessels, occurs in avascular regions
of the embryo and is repeated many times in the mature animal,
most commonly during wound healing and tumor metastasis7

(Fig 1). It remains uncertain how the pattern of the vascular tree
is established or which factors govern the site of sprouting or
the route taken by migrating ECs during angiogenic expansion.

Origin of the vascular endothelium.Molecular events in-
volved in EC differentiation from the early mesoderm remain
uncertain. Vascular and hematopoietic tissues develop together,
beginning shortly after implantation with the formation of blood
islands within the primitive yolk sac8 (Fig 1) composed of two
cell types: (1) angioblasts that form the outer layer of ECs
encasing the blood island; and (2) hematopoietic stem cells, in
the inner cluster, from which the first embryonic blood cells
develop. Angioblasts committed to EC differentiation are found
primarily in embryonic mesoderm,9 whereas the early epiblast
also contains a subpopulation of hematopoietic stem cells.10

Recently, angioblasts have been identified in the adult as well.11

The endoderm is the initial stimulus for angioblast formation.8,9

Within the embryo proper, the first angioblasts arise from the
lateral mesodermal plate and cardiac crescent8,9; some cells
migrate into the forming brain, whereas others assemble into the
endocardium of the early heart tube. Other angioblasts form a
plexus of ECs at the base of the primitive heart tube that
assemble into the vitelline vessels, allowing blood cells from
the yolk sac to circulate within the body of the embryo.8 The
vasculature of the viscera is formed from ECs that differentiate

directly from the surrounding mesenchyme incorporated into
the angiogenic extensions of invading vessels.12 For example,
as the airway of the developing lung expands, endodermally
derived cells of the branching airway provide directional queues
for advancing branchial arteries and induce formation of
angioblasts that become part of the pulmonary vasculature.13

Vasculogenic activity of early organ rudiments was shown
through engraftment experiments using pieces of early quail
lung and chick embryos. These experiments lead to the hypoth-
esis that endoderm, but not ectoderm, induces vasculogenesis
but that both endoderm and ectoderm can support angiogen-
esis14; recent experiments suggest additional sources of endothe-
lial growth factors may exist.15

Genetic programs regulating EC differentiation and early
vascular development.The best insight into molecular events
required to initiate and maintain vascular development has
come from detailed analyses of mouse embryos in which the
genes for specific polypeptide growth factors or their transmem-
brane receptor tyrosine kinases (RTKs) have been inactivated.
Such experiments show that initiation of vascular development
requires both basic fibroblast growth factor (bFGF) and vascu-
lar EC growth factors (VEGF; see Beck and D’Amore16 for a
detailed discussion of growth factors and vascular develop-
ment). Three alternatively spliced isoforms of VEGFs, mem-
bers of the platelet-derived growth factor family (VEGF,
VEGF-B, and VEGF-C17), interact with specific tyrosine kinase
receptors. The growth factor-receptor interactions include
VEGFR-1 (also known as flt-1 or fms-like tyrosine kinase-1)
with VEGF and a related placenta growth factor (PlGF);
VEGFR-2 (known alternatively as flk-1, fetal liver kinase-1; or
Kdr, kinase-inserted domain containing receptor) with both
VEGF and VEGF-C; and VEGFR-3 (originally designated
flk-4) with VEGF-C. All VEGFs stimulate receptor autophos-
phorylation and EC replication and migration. The crucial role
of this ligand in early vasculogenesis is demonstrated by the fact
that loss of the VEGF gene results in embryonic death.
Subsequent assembly of ECs into vessels requires activation of
VEGFR-1 on the surface of the newly differentiated cells.18,19

The decision for a vessel to become a vein or an artery appears
to be under the control of yet another growth factor, VEGFR-
3,20 that is expressed later in development only on ECs that will
become veins or lymphatic vessels.

Expansion of the vascular tree, continued endocardial and
ventricular development, and formation of the vascular wall is
controlled by two members of a second family of RTKs and
their ligands,19 tie-1 (tyrosine kinase with Ig and epidermal
growth factor homology domains) and tie-2 or tek (tunica
interna EC kinase). Two ligands, termed angiopoietin-1 and
angiopoietin-2,21,22are specific for tie-2 and are synthesized by
cells surrounding the developing vessels. Ligand binding results
in autophosphorylation of tyrosine residues in the intracellular
domain of tie-2, but does not lead to EC replication or tube
formation, as is the case for other endothelium-associated
receptor-ligand interactions. Interestingly, angiopoietin-2 ap-
pears to function as an antagonist for angiopoietin-1, blocking
its binding to tie-2. Targeted mutations of the genes for either
tie-2 or angiopoietin-1 result in embryos with abnormal hearts

3528 CINES ET AL

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/91/10/3527/1416608/3527.pdf by guest on 08 June 2024



and vessels with poorly formed walls.23 This has led to the
suggestion that angiopoietin-1 acts via its receptor on ECs to
stimulate the production of growth factors that, in turn, stimu-
late the differentiation of surrounding mesenchyme into peri-
cytes or smooth muscle cells required for vessel wall forma-
tion.24 This is consistent with the phenotype of a Tie-2 mutation
in humans that leads to smooth muscle deficiencies around
small vessels and microaneurysms.25 These observations sug-
gest that carefully regulated activity of tie-1 and 2 is required
for continued vascular branching and vessel remodeling. Thus,
the assembly of the early vascular tree depends on the pro-
grammed expression of at least two sets of RTKs and their
ligands, one set for EC differentiation and initiation of vessel
formation and the other for subsequent branching, establish-
ment of capillary beds, and vessel wall formation.

Although genetic manipulations now possible in the mouse
have provided important insights, there is much that we do not

know about vascular development. Random genetic mutations
introduced into the zebrafish have also generated many surpris-
ing and fascinating cardiovascular anomalies.6,26 For example,
zebrafish can be induced to develop with hearts that do not
contain an endocardium although the remainder of the vascular
system appears functional. Thus, it is likely that a combination
of genetics and developmental biology, unencumbered by
previous assumptions, will continue to show new genes and
suggest new paradigms that will advance our understanding of
vascular development.

Extracellular matrix and matrix adhesion receptors in vascu-
lar development. The ability of ECs to form capillary-like
tubes is regulated not only by specific cytokine/receptor combi-
nations, but also by the extracellular matrix. For example,
human umbilical vein ECs (HUVECs) exposed to transforming
growth factor-b (TGF-b) grow as a rapidly dividing monolayer
if cultured on a flat surface coated with type I collagen.27

Fig 1. The formation of new vessels during vasculogenesis and angiogenesis. Vasculogenesis, the de novo organization of ECs into vessels in

the absence of preexisting vascular structures, takes place during embryogenesis in the blood islands of the yolk sac (pictured) and in the embryo

through expression of growth factors, in particular fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). The tyrosine

receptor kinases, VEGFR-1 (flk-1) and VEGFR-2 (flt-1), are expressed on mesenchymal cells and newly formed ECs, respectively, and are essential

for the generation and proliferation of new ECs and the formation of tubal EC structures. Angiogenesis, the continued expansion of the vascular

tree, is mediated through the expression of additional tyrosine kinase receptors, tie-2 (tek), which binds to Ang1 and Ang2 (angiopoietins),

resulting in the maintenance of mature vessels, the development of new vessels, and the regression of formed vessels in processes dependent

on a combination of factors, most notably the presence or absence of growth factors.

ENDOTHELIUM: PHYSIOLOGY AND PATHOBIOLOGY 3529

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/91/10/3527/1416608/3527.pdf by guest on 08 June 2024



However, under similar TGF-b exposure, but within a type I
collagen gel, ECs spontaneously organize into capillary-like
tubules and continue to divide. Several kinds of molecules on
the EC surface act together to mediate cell-extracellular matrix
(ECM) interactions, including proteoglycans as well as pro-
teins. The best studied family of receptors that mediate cell-
matrix interactions is the integrins,28 which serve both a
tethering and an information transfer function. Integrin-ligand
binding triggers cytoskeletal organization at specific sites on the
surface membrane to facilitate cell movement or maintain tissue
stability. Binding also activates intercellular pathways that can
result in either cell replication or programmed cell death.29

Cells express more than one integrin and the combination of
integrins expressed during embryonic development is con-
stantly changing, suggesting that specific combinations are
required as development proceeds. Experimental results in the
developing mouse embryo suggest that functional compensa-
tion by integrins can occur during embryogenesis. It is also
possible that receptors required for angiogenesis in early
development may differ from those required for collateral
vessel formation or tumor angiogenesis or that both gene
inactivation and the introduction of inhibitory agents have
unknown secondary effects. Similarly, mouse embryos continue
to develop normally when genes for certain ECM components
have been inactivated, whereas inactivation of other genes, such
as the abundant fibronectin, results in early embryonic lethal-
ity.30 Similarly, knocking out the gene for a fibronectin receptor
subunit (a5b1) also results in a poorly developed heart and
vascular system and early embryonic death.30 Again, other
integrins, most likelyavb3, appear to compensate for the
absence ofa5b1 during preimplantation development and early
gastrulation, but are unable to do so as development proceeds.

Endothelial cell-cell interactions and vessel formation.An-
gioblasts and ECs must contact like cells for vessels to sprout
and lengthen. Such cell-cell adhesion is mediated by a distinct
series of cell surface receptors that includes platelet EC
adhesion molecule (PECAM-1),31 a member of the Ig superfam-
ily, and vascular endothelial (VE)-cadherin.8 ECs express two
isoforms of PECAM that mediate cell adhesion that differ in
their requirement for divalent cations and sulfated proteogly-
cans. VE-cadherin, also known as cadherin-5, found almost
exclusively on ECs, promotes cell-cell adhesion by a calcium-
dependent homotypic mechanism,32 ie, in the presence of
calcium, VE cadherin from one cell binds to the VE-cadherin
expressed on an adjacent cell. As the vessel matures, more
classic junctional complexes, such as tight junctions and gap
junctions, form depending on the function of the particular
vascular bed. Thus, during vascular development, junction
formation initially involves rather weak adhesion complexes,
likely required for cell-cell recognition, that facilitate the
assembly of additional junctional complexes. However, the
factors that determine the organ-specific nature of junction
formation remain unknown.

Proteinases and vascular development.Vascular develop-
ment may be regulated by some of the same factors that are
involved in the control of blood clotting and capillary forma-
tion. EC movement through the ECM is tightly regulated and
requires integrin mediated cell-matrix adhesion complex forma-
tion and subsequent disassembly. This involves repetitive cycles

of reversible integrin/matrix binding, assembly, and disassem-
bly of cytoskeletal elements as well as matrix degradation
restricted to the advancing edge of the moving cell.33 This is
accomplished through the organization of active molecular
complexes that approximate integrins and integrin ligands with
matrix metalloproteinases and plasminogen activators with
their respective substrates and inhibitors at sites of cell-matrix
interaction.34 It has long been hypothesized that, when ECs are
exposed to angiogenic stimuli, plasminogen activation is initi-
ated through the binding of plasminogen and urokinase to their
receptors. This leads to the formation of plasmin that activates
prometalloproteases, degrades noncollagenous components of
the matrix, provides a path for cell migration, and releases
peptides that can promote or inhibit continued angiogenesis.35

Two peptides, angiostatin and endostatin,36,37 are currently
being evaluated for clinical use in reversing tumor angiogen-
esis.36 However, much of the dogma regarding the role of
plasmin in angiogenesis may have to be revisited in light of
recent data indicating that transgenic animals with targeted
disruption in the genes for tissue-type plasminogen activator
(t-PA), urokinase (u-PA), the urokinase receptor (u-PAR), and
plasminogen appear to develop a normal vasculature in the
absence of trauma or other stressors (see below).

Perspective. The induction of embryonic angioblasts to
differentiate into ECs, organize into a vascular network, and
subsequently populate the specialized vascular bed of an organ
results from a complex genetic program, the details of which are
only now emerging. This program is not only sensitive to the
composition and structure of the ECM but is influenced by
cell-cell contact as well as angiogenic and angiostatic growth
factors and peptides generated by vascular expansion itself.
Many of these same events are recapitulated after injury or as
part of an inflammatory response and, if allowed to proceed
unchecked (eg, tumor angiogenesis and diabetic retinopathy),
can have serious consequences for the organism. Insight into the
molecular and genetic programs involved in vascular differen-
tiation may suggest better approaches to minimize ischemic
tissue damage, avoid tissue rejection, stimulate wound healing,
and inhibit tumor growth. This section has focused on the
development of the vascular endothelium; however, the forma-
tion of the basement membrane, the induction and differentia-
tion of vascular smooth muscle cells, and the complex process
of assembling the elastic lamina are all essential to vessel
formation and are under separate regulation. Ultimately, preven-
tion of devastating effects from congenital abnormalities and
facilitation of normal vascular function will, in a large part, be
influenced by our ability to manipulate molecular mechanisms
involved in vascular development.

EC HETEROGENEITY

Many human vascular diseases are exquisitely restricted to
specific types of vessels. For example, the contribution of
platelets to the pathogenesis of arterial and venous thrombosis
differs as does the susceptibility of these two types of vessels to
atherosclerosis. It is also common for vasculitis to show marked
predilection for specific arteries, veins, or capillaries or for
certain organs. Tumor cells may show similar predilection to
metastasize through particular vascular beds.38 Even when
systemic risk factors are clearly evident, such as is the case with
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inherited disorders of lipoprotein metabolism or proteins that
control coagulation, there is marked regional variation in
disease expression. Furthermore, clinical events such as throm-
boses are generally episodic and often localized to single
vessels. The basis for variation is poorly understood, but may
lie, in part, in the heterogeneity of ECs themselves (see
Augustin et al2 and McCarthy et al39 for reviews).

To date, appreciation of EC function has been largely based
on the behavior of cultured umbilical vein ECs (HUVECs).
Indeed, it is remarkable that so many concepts in vascular
biology have been predicated on the repertoire of umbilical ECs
studied under such potentially unphysiologic in vitro condi-
tions; this is especially true considering their derivation from a
type of vessel that rarely, if ever, is affected by the most
common human vascular disorders. More recently, there has
been greater appreciation that EC heterogeneity may contribute
both to the maintenance of adaptive processes and to the
development of disorders restricted to specific vascular beds.

EC heterogeneity among and within tissues.Variation in
the appearance of capillary endothelium from different vascular
sites has long been recognized and appears well suited to
postulated differences in function (Fig 2). For example, the
brain and retina are lined by continuous ECs connected by tight
junctions that help to maintain the blood-brain barrier; the liver,
spleen, and bone marrow sinusoids are lined by discontinuous
ECs that allow cellular trafficking between intercellular gaps;
while the intestinal villi, endocrine glands, and kidneys are
lined by fenestrated ECs that facilitate selective permeability
required for efficient absorption, secretion, and filtering (see

Dejana32 for review). ECs from diverse tissues are also hetero-
geneous with respect to their surface phenotype and protein
expression. For example, von Willebrand factor (vWF), used
commonly as a marker for ECs, is not expressed uniformly on
cells from all types of vessels,40,41 the expression of tissue type
plasminogen activator is limited in vivo to approximately 3% of
vascular ECs,42 and the constitutive expression of u-PA is
reportedly confined to renal ECs,43,44 which are also uniquely
susceptible to injury by verotoxin.45 Microvascular ECs also
differ in their susceptibility to undergo apoptosis induced by
plasma from patients with thrombotic thrombocytopenic pur-
pura.46 The induction of tissue factor after infusion of cytokines
or endotoxin is similarly restricted to specific vessels,47 among
many other examples of heterogeneity at the level of protein
expression.

One of the clearest examples of EC heterogeneity lies in the
expression of homing receptors involved in cell trafficking. In
the mouse, Lu-ECAM-1 (lung-specific EC adhesion molecule)
is exclusively expressed by pulmonary postcapillary ECs and
some splenic venules,48 whereas Mad-CAM-1 (mucosal ad-
dressin cell adhesion molecule-1) is expressed primarily on
high endothelial venules in Peyer’s patches of the small
intestine.49 Microvascular ECs derived from the bone marrow
show an affinity for binding megakaryocytes and CD341

progenitor cells and constitutively secrete hematopoietic stimu-
lating factors such as Kit-ligand, granulocyte colony-stimulat-
ing factor, granulocyte-macrophage colony-stimulating factor,
and interleukin-6 (IL-6), which help control trafficking, prolif-
eration, and hematopoietic lineage-specific differentiation.50

Fig 2. EC heterogeneity. (A) Electron micrograph showing the junction between two capillary ECs in a guinea pig pancreas (micrographs

reprinted with permission from R.F. Bolender, The Journal of Cell Biology, 1974, vol. 61, p. 269). (B) Electron micrograph demonstrating the

diversity of ECs from two types of capillaries: (1) vesicular invaginations (arrow) on both luminal and abluminal plasma membrane of a muscle

capillary EC; (2) fenestrated capillary from the lamina propria of the colon with thin diaphragms (arrow) covering the plasma membrane pores

(micrographs reprinted with permission from E. Weihe, Textbook of Histology, (ed 12), 1994, p. 391, courtesy of Chapman and Hall).
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Tumor cells may show clear preferential adhesion to the
endothelium of specific organs paralleling their in vivo meta-
static propensities (see McCarthy et al39 for review).

Microvascular ECs cultured from the brain, liver, and other
organs each express distinct patterns of cell surface markers,
protein transporters, and intracellular enzymes.51 These tissue-
specific phenotypic differences can be maintained for some time
under identical tissue culture conditions (eg, Grau et al52).
Distinct subsets of ECs often exist within a single organ. In situ
studies of adult human liver show two distinct sinusoidal EC
phenotypes: hepatic periportal vessels express PECAM-1 and
CD34, whereas sinusoidal intrahepatic ECs do not.53 During the
development of the human liver, ECs progress from a pheno-
type closely resembling adult hematopoietic sinusoidal bone
marrow ECs, which supports fetal intrahepatic hematapoiesis,
to one resembling adult hepatic sinusoidal ECs, including the
expression of the T-lymphocyte marker CD4.54

Environmental and genetic regulation of EC phenotype.
There is extensive evidence to indicate that heterogeneity
develops in part as a result of variation in exposure of EC to
environmental stimuli, some of which act only over short
distances or even require cell-cell contact to effect change.
Numerous exogenous factors affect EC phenotype, including
mechanical forces, soluble growth promoters and inhibitors,
cytokines, plasma lipids and proteins [eg, thrombin, plasmin,
antibodies, Lp(a), etc], and contact with circulating and tissue-
based cells (eg, smooth muscle cells and pericytes) and with the
ECM, microbes, and their soluble products.

There are numerous examples of how the microenvironment
can regulate the endothelial phenotype, a phenomenon that has
been referred to as transdifferentiation.2 For example, aortic
ECs cultured on extracellular matrix derived from the lung are
induced to express Lu-ECAM-1,48 whereas the cells develop
fenestrae when cultured on matrix derived from kidney-derived
MDCK cells.55 Transplantation studies in the chick-quail sys-
tem illustrate that ECs can take on the characteristics of the
tissue into which they are transplanted in vivo,56 whereas other
examples show that ECs acquire a different phenotype ex
vivo.57 Studies in transgenic mice expressing the Lac Z reporter
gene under control of 2,182 bp of the 58 flanking sequence and
the first exon and intron of the vWF gene suggest that
expression is regulated by signals derived from the local
microenvironment that influence pathways specific for particu-
lar vascular beds.58

EC heterogeneity can thus arise as a consequence of local
concentrations of exogenous effectors or due to intrinsic
variations in responsiveness (reviewed in McCarthy et al39).
ECs grown on extracts of basement membrane from different
organs have been observed to develop preferential adhesivity
for tumor cells prone to metastasize to that organ.59 ECs derived
from saphenous vein have been reported to synthesize less
prostaglandin I2 (PGI2) than those from the internal mammary
artery, a finding that may contribute to the rapidity with which
pathogenic changes may develop in venous bypass grafts placed
under arterial pressure.60 Possible genetic bases for EC diversity
have only recently been considered and have not been studied in
depth. Microvascular and macrovascular ECs differ in the
fastidiousness of their growth, propsensity to form capillary-
like structures, synthesis of PGI2, and expression of adhesion

receptors for lymphocytes, among other properties (see Ades et
al61 for review). Tissue-specific transcription factors or signal
transduction molecules responsible for activating and/or de-
repressing transcription apparati in a tissue-specific manner are
only beginning to be understood. Identification of these control
factors will be important in the design of vectors that will enable
expression of EC proteins in a tissue-specific manner.

The effects of cell culture.Only in the past few years has the
technology become available that permits in situ study of EC
behavior. These studies indicate that the constitutive phenotype
of ECs is unstable and their behavior can change rapidly once
explanted. Commonly used culture conditions may activate or
otherwise alter the endothelial phenoytpe (eg, Grant et al62).
There is, as yet, no model for generating the resting EC in vitro.
Thus, all the information described in subsequent sections
should be considered in the context of the cell source as well as
the ex vivo culture conditions, including passaging, the presence/
omission of shear forces, and factors released into blood that
alter the behavior of the endothelium from that which occurs in
healthy blood vessels in vivo. Thus, much may be gained in the
future by a more critical consideration of EC heterogeneity both
in terms of understanding homeostasis and vascular pathology,
as well as in targeting the delivery of gene therapy, antithrom-
botic agents, and antitumor agents to an anatomically or
functionally distinct endothelial region.63

VASOREGULATION

The endothelium not only provides a structural barrier
between the circulation and surrounding tissue, but ECs also
secrete mediators that influence vascular hemodynamics in the
physiologic state (Table 1). ECs contribute to the regulation of
blood pressure and blood flow by releasing vasodilators such as
nitric oxide (NO) and prostacyclin (PGI2), as well as vasocon-
strictors, including endothelin (ET) and platelet-activating
factor (PAF). These chemically diverse compounds are not
stored in intracellular granules. Rather, their major biologic
effects are regulated by localization of specific receptors on
vascular cells, through their rapid metabolism, or at the level of
gene transcription. NO is constitutively secreted by ECs, but its
production is modulated by a number of exogenous chemical
and physical stimuli, whereas the other known mediators (PGI2,
ET, and PAF) are synthesized primarily in response to changes
in the external environment.

NO. ECs elaborate NO, a heterodiatomic free radical
product generated through the oxidation of L-arginine to
L-citrulline by NO synthases.64 One isoform, eNOS or the Nos3
gene product, is constitutively active in ECs but is stimulated
further by receptor-dependent agonists that increase intracellu-
lar calcium and perturb plasma membrane phospholipid asym-
metry.65 Receptor-dependent agonists that stimulate eNOS
include thrombin, adenosine 5’-diphosphate, bradykinin, sub-
stance P, and muscarinic agonists, in addition to shear stress66

and cyclic strain.67 The increase in eNOS activity evoked by
shear stress contributes to the phenomenon of flow-mediated
vasodilatation, an important autoregulatory mechanism by
which blood flow increases in response to exercise.68 This is in
part a result of shear-induced transcriptional activation due to
the presence of a shear response consensus sequence, GAGACC,
in the promoter of the Nos3 gene.69 In addition to eNOS,
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cytokines have been shown to stimulate bovine microvascular
endothelium in culture to express an inducible isoform of NO
synthase, iNOS, or the Nos2 gene product.70 EC-derived NO
has several important effects on the vasculature. First, NO
maintains basal tone by relaxing vascular smooth muscle cells71

through the binding of NO to the heme prosthetic group of
guanylyl cyclase. Endothelial-derived NO also inhibits platelet
adhesion, activation, secretion, and aggregation and promotes
platelet disaggregation, in part through a cyclic GMP-
dependent mechanism.72 PGI2, which does not affect platelet
adhesion,73 acts synergistically with NO to inhibit other steps in
the platelet activation cascade.74 NO also inhibits expression of
P-selectin on platelets and, by inhibiting the agonist-dependent
increase in intraplatelet calcium,72 suppresses the calcium-
sensitive conformational change in the heterodimeric integrin
glycoproteinaIIbb3 (GP IIb-IIIa) required for fibrinogen bind-
ing.75 Additionally, NO appears to promote platelet disaggrega-
tion indirectly by impairing the activity of phosphoinositide
3-kinase, which normally supports conformational changes in
aIIbbIIIa, rendering its association with fibrinogen effectively
irreversible.76

In addition to these effects on the vasculature, endothelial-
derived NO inhibits leukocyte adhesion to the endothelium77,78

and inhibits smooth muscle cell migration79 and proliferation.80

These latter effects serve to limit neointimal proliferation that
occurs after vascular injury and, combined with its stimulatory
effect on EC migration and proliferation,81 suggest that NO
helps to sustain vascular reparative mechanisms.

ECs also produce a less well-characterized compound known
as endothelium-derived hyperpolarizing factor (EDHF) that
promotes vascular smooth muscle relaxation (see Garland et
al82 for review). Muscarinic agonists stimulate ECs to release

EDHF, causing a transient hyperpolarization of the cell mem-
brane. It has been proposed that EDHF exerts its vascular
effects by activating ATP-sensitive potassium channels, smooth
muscle sodium-potassium ATPase, or both,83 but its role in
vascular (patho)physiology requires further study.

ET. Remarkably, ECs produce not only the potent vasodila-
tor NO, but also synthesize endothelin-1 (ET),84 the most potent
vasoconstrictor identified to date. Endothelins comprise a
family of 21-amino acid peptides produced by many cell
types.84 ET-1 is not stored in granules85 but is formed after
transcription of the gene encoding preproendothelin-1, the
inactive precursor of ET-1, after stimulation by hypoxia, shear
stress, and ischemia. ET-1 released from ECs binds to the
abundant G-protein–coupled ET-A receptor expressed on vascu-
lar smooth muscle cells, which results in an increased intracellu-
lar calcium concentration and, in turn, increases vascular
smooth muscle cell tone.86 Of interest, this effect of ET-1
persists after the hormone dissociates from its receptor through
longer-lived effects on intracellular calcium. NO shortens the
duration of these effects by accelerating the restoration of
intracellular calcium to basal levels.87 The interplay between
ET-1 and ET-A receptors likely contributes to basal vascular
tone as well. ET-1 potentiates the vasoconstrictor actions of
catecholamines, which, in turn, potentiate the actions of ET-1.
In states of endothelial dysfunction, such as atherosclerosis, in
which concentrations of bioactive NO are reduced, the rela-
tively unopposed actions of ET-1 promote vasoconstriction and
smooth muscle proliferation.88

Prostacyclin (PGI2) and PAF. The contribution of ECs to
the regulation of vasomotor tone is even more finely regulated
as evidenced by the production of additional vasoactive com-
pounds such as prostacyclin (PGI2) and PAF. Prostacyclin and

Table 1. Vasoregulatory Substances Synthesized by the Endothelium

Substance Principal Effect Other Effects Secretion Compound Precursor Compound

NO (nitric oxide) Vasodilatation Maintains basal tone of

vessels; inhibits leuko-

cyte adhesion; inhibits

platelet adhesion, acti-

vation, secretion, and

aggregation; promotes

platelet disaggrega-

tion; inhibits smooth

muscle cell migration

and proliferation

Paracrine/Constitutive

and induced by

thrombin, ADP, brady-

kinin, substance P,

muscarinic agonists,

shear stress, cyclic

strain, cytokines

Heterodiatomic

free radical

L-arginine

PGI2 (prostacyclin) Vasodilatation Retards platelet aggrega-

tion and deposition

Paracrine/Induced at

sites of vascular

perturbation

Eicosanoid Arachidonic acid

PAF (platelet-

activating

factor)

Vasoconstriction Promotes leukocyte

adhesion at cell sur-

face

Juxtacrine/Induced Phospholipid Arachidonic acid

ET-1 (endothelin-1) Vasoconstriction Mitogen for smooth

muscle cells; modu-

lates effect of

numerous compounds

Paracrine/Induced by

hypoxia, shear stress,

and ischemia

21 Amino acid

peptide

Preproendothelin-1

(203 amino acids)

Principal regulatory compounds synthesized by the endothelium, their effects on the vasculature and other processes, their mode of secretion,

and the nature of their chemical composition and precursor compound.
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PAF factor provide an interesting contrast. Both are intercellular
signaling molecules synthesized by stimulated ECs in vitro and
in vivo.89 Both are lipids: PGI2 being an eicosanoid and PAF
being a phospholipid.90,91 Neither is constitutively present in
resting human ECs nor stored within the cell. The synthesis of
each is induced rapidly by humoral and mechanical stimuli via
discrete, regulated pathways.90,91 Once formed, PGI2 and PAF
have relatively short half lives, one of several features that
limits the magnitude of their signals and exerts control over
their biologic activities.92,93

However, a major difference between the two factors lies in
the range over which they exert their effects: PAF acts in a
juxtacrine fashion, whereas PGI2 acts as a paracrine signaling
molecule. PAF, expressed on the surface of the endothelium,
remains cell-associated even in the presence of physiologic
concentrations of albumin or other acceptor molecules91 and
binds to and activates its receptor on leukocytes,94 fulfilling
critical criteria of a juxtacrine signaling molecule. Consistent
with this notion, PAF synthesized by cultured human ECs acts
in concert with P-selectin (see below) to promote leukocyte
adhesion.94

In contrast, PGI2 is rapidly released from ECs,95 although the
export mechanism has not been precisely defined. Thus, PAF
and PGI2 have spatially differentiated realms of signaling, even
though both derive from a common precursor and are synthe-
sized concurrently.91,96 This feature may contribute to differ-
ences in their actions at the endothelial interface with the blood:
PAF is specialized to signal leukocytes at the cell surface,
whereas PGI2 acts primarily in solution to retard platelet
aggregation and deposition. Both PGI2 and PAF also elicit
autocrine effects on ECs,91,92 which may be important in
modulating angiogenesis and controlling the synthesis of EC-
derived mediators.

PGI2 was the first endothelial-derived vascular smooth muscle
relaxing factor to be identified. PGI2, which was generated
locally, and PGI2 or its analogs, which were infused systemi-
cally, caused vasodilatation and altered regional blood flow.93A
receptor for PGI2, the IP receptor, is present on vascular smooth
muscle as well as on platelets,97 consistent with early experimen-
tal observations, indicating that PGI2 acts principally to modu-
late the function of these two cell types.98Although IP receptors
are present in the arterial vascular wall, PGI2 is not constitu-
tively produced and does not appear to regulate basal systemic
vascular tone.99 Rather, PGI2 synthesis is induced at sites of
vascular perturbation, where it may regulate vasoconstriction
and platelet deposition.66 Because of its effects on blood flow
and relevant cell-cell interactions, PGI2 may influence local
inflammatory responses as well. An important recent advance
has been the identification of prostaglandin H synthase-II
(PHS-II), an inducible form of a key enzyme in PGI2 formation
providing a mechanism by which the production of PGI2 and
other eicosanoids can be sustained in chronic states of inflamma-
tion and vascular injury.

The receptor for PAF, the first receptor characterized at a
molecular level that recognizes a biologically-active lipid, is a
member of the serpentine G-protein–linked family (reviewed in
Whatley et al91). Intravascular infusion of PAF causes either
vasodilatation or vasoconstriction, depending on the concentra-
tion administered, the time, and the specific vascular bed

studied.93 Some hemodynamic effects of PAF in vivo are
indirect and depend on the generation of eicosanoids or
leukotrienes or mediators derived from activated leukocytes or
platelets and on cardiac effects.91-93 In shock and other in vivo
pathologic states, PAF acts concomitantly or sequentially with
other classes of mediators, including leukotrienes and tumor
necrosis factor-a (TNF-a).90,91,100As with PGI2, it is unlikely
that PAF is a circulating regulator of blood pressure under basal
conditions, despite early studies suggesting that PAF-like
activity is released from kidneys.92

THE ROLE OF THE ENDOTHELIUM IN COAGULATION

A crucial physiologic function of the endothelium is to
facilitate blood flow by providing an antithrombotic surface that
inhibits platelet adhesion and clotting. However, when the
endothelium is perturbed by physical forces or by specific
chemical factors, the cells undergo programmatic biochemical
changes that culminate in their transformation to a prothrom-
botic surface. A dynamic equilibrium exists between these two
states, modulated both at the level of gene transcription and at
the level of the intact cell, that often permits the injured
endothelium to return to its unperturbed state once the procoagu-
lant stimulus has dissipated (Table 2; see Bombeli et al101 for
review). Although the fibrin clots formed as a consequence of
procoagulant activity may serve a protective organ function by
limiting vascular damage induced by trauma, infection, and
inflammation, the loss of anticoagulant activity may predispose
to several common thrombotic disorders discussed in the
sections that follow.

Anticoagulant mechanisms.Control of thrombin genera-
tion is a pivotal step in the balance between the natural
antithrombotic and the induced procoagulant activities of the
endothelium. Thrombin, a serine protease, serves diverse func-
tions in coagulation, including the activation of platelets,
several coagulation enzymes, and cofactors. Thrombin also
stimulates procoagulant pathways on the ECs themselves.
Therefore, it is not surprising that several highly regulated
pathways have evolved to constrain the generation and activity
of thrombin (see Rosenberg and Rosenberg102 for review), such
that little enzyme activity is found in the plasma of healthy
individuals.103 The matrix surrounding the endothelium con-
tains heparan sulfate and related glycosaminoglycans (GAGs)
that promote the activity of cell/matrix associated antithrombin
III (AT-III) 104; the subendothelium contains dermatan sulfate,
which promotes the antithrombin activity of heparin cofactor
II.105 ECs also prevent thrombin formation through the expres-
sion of tissue factor pathway inhibitor (TFPI), which binds to
factor Xa within the tissue-factor/VIIa/Xa complex (see Broze106

for review). TFPI is released from its EC stores by heparin.
TFPI and AT-III both contribute to physiologic hemostasis and
can be depleted in acquired thrombotic states.107,108

The endothelium also helps to contain thrombin activity
through the expression of thrombomodulin (see Esmon and
Fukudome109 for review). Binding of thrombin to TM facilitates
the enzyme’s ability to activate the anticoagulant protein C. In
turn, the activity of activated protein C (APC) is enhanced by its
cofactor protein S, which is synthesized by EC, among other
cell types.110ECs also express receptors for APC111that regulate
the activity of this pathway. APC, in turn, promotes the
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inactivation of activated factors V and VIII. Binding of
thrombin to TM also dampens the enzyme’s ability to activate
platelets, factor V, factor XIII, and fibrinogen and promotes EC
fibrinolytic activity (see below). TM also inhibits prothrombi-
nase activity indirectly by binding factor Xa.112 Thrombin
bound to TM is rapidly endocytosed and degraded.113 Various
inflammatory cytokines downregulate TM gene transcription
and accelerate TM internalization114,115while at the same time
promote tissue factor expression (see below). Soluble TM is
also shed into plasma and elevated plasma levels have been
identified in various disorders associated with EC injury (see
Cucurull and Gharavi116 and below).

Procoagulant mechanisms.The pivotal step in transform-
ing the EC membrane from an anticoagulant to a procoagulant
surface is the induction of tissue factor (TF). TF dramatically
accelerates factor VIIa-dependent activation of factors X and
IX, so it is not surprising that TF is not expressed by
unperturbed endothelium, at least in the adult organism.117

Interruption of the gene for TF is associated with impaired
vascular development and lethal embryonic bleeding,118-120but
the source and function of TF during development have not
been elucidated. Synthesis of TF is induced in vitro by diverse

agonists, including thrombin, endotoxin, several cytokines,
shear, hypoxia, oxidized lipoproteins, and many other provoca-
tions (see Rapaport and Rao121 and Nemerson122 for reviews).
Procoagulant activity is accelerated by exposure of anionic
phospholipids that may occur as a consequence of apoptosis.108

TF is localized primarily beneath and between cultured ECs,123

although some evidence for expression on the cell surface has
been presented.124 TF mRNA and protein levels decline despite
continued exposure to agonists, a mechanism that may help
contain the extent of fibrin formation. Cells in culture also shed
microvesicles containing TF,125 and plasma levels of TF are
elevated in patients with disseminated intravascular coagula-
tion,126although the cellular source has not been established. TF
expression is rapidly induced after vascular injury,127 and TF is
found associated with ECs within atherosclerotic plaque128,129

and in tumor-derived vessels.130 TF may also contribute to the
regulation of angiogenesis and tumor metastases through mecha-
nisms independent of coagulation.131,132Yet, it has been difficult
to demonstrate expression of TF by ECs in vivo even in
response to potent provocations where expression was ex-
pected, another example of the dissociation between the behav-
ior of these cells in culture and that seen in the whole
organism.47

Once ECs expressing TF are exposed to plasma, prothrombi-
nase activity is generated and fibrin is formed on the surface of
the cells.133 This implies that ECs express binding sites for
factors IX, IXa, X, and Xa; thrombin; and fibrin.134 Yet, the
identity and location of most of these binding sites is unknown,
as is their role in either physiologic hemostasis or in thrombosis.
Factor IX has recently been shown to bind type IV collagen in
the EC matrix,135 although its cellular association site promot-
ing assembly of the intrinsic FX activation complex has not
been identified. Several candidate FX/Xa binding sites have
been reported,136,137whereas others may be induced as a result
of exogenous stimuli.138 ECs also express receptors for proteins
of the contact factor pathway,139 but their role in hemostasis is
uncertain.

The most thoroughly characterized EC binding site for a
coagulation protein is the thrombin receptor, also termed the
protease-activated receptor-1 (PAR1). The thrombin receptor is
a high-affinity G-protein–coupled protein140 that is activated
when a fragment derived from the amino terminus of the
protein, formed as a result of cleavage by thrombin, binds to the
remaining cell-associated receptor fragment. Binding of throm-
bin leads to a wide array of changes in expression of prothrom-
botic and antithrombotic molecules by cultured ECs, including
TF, PAI-1, NO, PAF, ET, and PGI2, among others (see Kanthou
and Benzakour141 for review) and disruption of cell-cell con-
tacts (see Garcia et al142for review). Thrombin is also mitogenic
for ECs, fibroblasts, and smooth muscle cells and is chemotactic
for monocytes.

The seemingly normal phenotype of surviving adult mice
with targeted disruptions in the thrombin receptor gene143 was
unanticipated and raised questions about the physiologic role of
this protein as well as other proteinase activated receptors
expressed on ECs.144 The subsequent discovery of two addi-
tional protease-activated G-protein–coupled receptors, PAR-2
and PAR-3, helped to explain this observation.145 Both PAR-1
and PAR-2 are present on some human ECs, whereas PAR-1,

Table 2. Regulation of Hemostasis and Thrombosis

by the Endothelium

Antithrombotic Prothrombotic

Coagulation protein

binding sites

Glycosaminogly-

cans/ATIII

Binding sites for:

fibrin, FIX, IXa, X,

Xa, FXII, kallikrein

TFPI Tissue factor

Thrombomodulin Thrombin receptor

Receptor for protein

C/APC

Products produced

and/or stored by

platelets

PGI2

NO

ADPase

vWF

PAF

Fibrinogen

FV

FXI

Fibrinolytic factors t-PA production

u-PA expression

PAI-1, PAI-2

PAI-3 (protein C

Inhibitor)

u-PAR TAFI activation

Plasminogen

binding sites

Annexin II

Vasomotor factors NO

PGI2

TxA2

Endothelin-1

Outline of the antithrombotic and prothrombotic properties of ECs

detailing the binding sites expressed by ECs, the factors stored and/or

secreted by ECs that affect platelet function, factors produced by the

EC that influence the fibrinolytic state of the vasculature, and vasomo-

tor substances secreted by the EC.

Abbreviations: ATIII, antithrombin III; PGI2, prostacyclin; TFPI, tissue

factor pathway inhibitor; APC, activated protein C; PAF, platelet-

activating factor; t-PA, tissue plasminogen activator; u-PA, urokinase

plasminogen activator; u-PAR, urokinase plasminogen activator recep-

tor; PAI, plasminogen activator inhibitor; TAFI, thrombin activatable

fibrinolysis inhibitor; TxA2, thromboxane A2.
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but not PAR-2, is expressed on human platelets. PAR-3 is
expressed by human bone marrow and mouse megakaryocytes,
but its expression on ECs has not been established. Notable
tissue- and species-specific differences in expression and cellu-
lar distribution of PARs have been described,145,146 making it
difficult at present to relate the phenotype of the various murine
knockouts to human physiology.

ECs also express several receptors for fibrin and specific
fibrin degradation products,147 including a 130-kD glycopro-
tein,148 a tissue transglutaminase,149 and the avb3 integrin,
although evidence regarding their expression in vivo is only
now emerging.150,151Binding of fibrin promotes EC adhesion,
spreading, proliferation, and migration; cell retraction; leuko-
cyte adhesion; and inhibition of PGI2 synthesis. Cultured ECs
also express glycoprotein Ib, which binds vWF secreted consti-
tutively by ECs and, presumably, the ultralarge vWF multimers
released from Weibel-Palade bodies in response to a number of
agonists (see Wagner and Bonfanti152 for review). Expression of
GPIba by ECs is enhanced by TNF-a,153 but whether this
glycoprotein participates in the physiologic or pathophysiologic
binding of vWF in vivo requires additional study. Theavb3

integrin also binds vWF in the EC substratum. In vitro,
conditions that decreaseavb3 expression (TNF-a plus inter-
feron-g [IFN-g] or arterial shear stress) increase GPIba expres-
sion,154 suggesting that the EC state may affect the availability
of adhesion receptors, although these finding require confirma-
tion in vivo.

Undoubtedly, additional receptors for coagulation proteins
with distinct functions will be characterized in the future.
Genetic and acquired alterations in the structure, expression,
and function of these EC receptors may contribute to hitherto
unexplained hemorrhagic and thrombotic disorders. However,
despite rather extensive study of EC procoagulant function in
culture, the extent to which platelet adherence or fibrin forma-
tion actually occurs on the surface of the intact endothelium in
vivo (as opposed to subendothelial matrix exposed to blood)
remains unclear. Perhaps the best indirect evidence comes from
animal models ofEscherichia colisepsis and cytokine infusion
in which TF- and contact factor-dependent intravascular coagu-
lation and multiorgan ischemic injury occurs in the absence of
overt EC disruption.155 Nevertheless, the contribution of endo-
thelium, platelets, monocytes, and other cell types in these
models will require further study.

ECs AND FIBRINOLYSIS

Experiments using cultured ECs have yielded a concept that
the endothelial surface is profibrinolytic and thus helps maintain
blood in its fluid state.156 However, experiments using animal
models have shown this conceptually satisfying hypothesis does
not accurately reflect the situation in vivo.42,157 It has also
become clear that the contribution of ECs to fibrinolysis varies
with their metabolic status (ie, quiescent or activated), their
vascular derivation, and the concentration of other hemostati-
cally active molecules in the local plasma milieu.

Plasminogen activators.Studies with ECs cultured from
various tissues have led to the widely held inference that t-PA
production and secretion is a property of all ECs.156 However, a
few studies have gone largely unnoticed in which PA activity,
demonstrated by fibrin zymography, was observed only in

association with the adventitia and not with lumenal ECs.157

More recent studies using in situ hybridization and immunohis-
tochemistry have demonstrated t-PA antigen and mRNA only in
a distinct subset of quiescent microvascular ECs of both
primates and mice.42,158 Hence, contrary to assumptions based
on work with cultured ECs, t-PA is associated only with a
distinct subpopulation of the microvasculature, even after
provocation. In both murine brain and lung, the percentage of
microvascular ECs producing t-PA increases markedly upon
exposure to pertinent stimuli; however, in both cases, t-PA
production remains an exclusive property of microvascular
ECs.42 Hence, invoking local EC production of t-PA in large
vessels as a mechanism of maintaining blood flow may not
adequately describe the in vivo situation.

t-PA production by cultured ECs is regulated by a variety of
external stimuli at the level of gene transcription and cellular
release.159 Measurements of plasma t-PA levels suggest such
regulated production/secretion occurs in vivo as well.160 Intra-
cellular signaling pathways operative in stimulated t-PA release
have been described in vitro.161 The mechanisms that control
EC t-PA production in vivo are less well understood, but clearly
such regulation occurs.162 Humans exhibit higher plasma levels
of t-PA after exercise or venous compression, but the cellular
source of this increase has not been established.161

The other mammalian PA, u-PA, appears not to be produced
by most quiescent ECs.43 Rather, it is expressed by ECs
involved in wound repair or angiogenesis,163consistent with the
hypothesized importance of u-PA in cell migration and tissue
remodeling. Yet, u-PA is obviously important to vascular
homeostasis, because mice genetically deficient in u-PA de-
velop inflammation induced thrombi164 and manifest throm-
botic tissue injury in response to lipopolysaccharide (LPS).165

However, the extrarenal source of u-PA in physiologic states has
not been established.

PA receptors. The presence of EC receptors for t-PA has
been reported by several groups.166-171Binding of t-PA to ECs
has been reported to promote its fibrinolytic activity166,172and to
stimulate cell proliferation.173 Recently, one such t-PA binding
site has been identified as annexin II, which is expressed on
ECs174 and binds t-PA in a specific and saturable manner in
vitro.172 However, the expression of annexin II on the endothe-
lium in vivo has not yet been demonstrated.

The u-PA receptor (u-PAR) expressed by ECs appears
identical to that expressed on other cell types.175,176u-PAR is a
three-domain protein linked to cell surfaces by a glycerophos-
phatidyl inositol anchor. Single-chain u-PA (the form found in
plasma177) bound to cells via u-PAR exhibits increased plasmino-
gen activating efficiency175,178and is relatively protected from
inhibition by PAI-1 and PAI-2.179,180u-PAR may be expressed
primarily on the surface of migrating ECs participating in
angiogenesis, rather than on quiescent ECs lining normal
vessels.181 Mice genetically lacking u-PAR develop normally
and do not exhibit spontaneous vascular occlusion.182 Hence,
u-PAR has yet to be shown to participate in maintaining
physiologic blood fluidity, although it may be important in
vascular repair.

Cells express diverse binding sites for plasminogen, among
which are proteins that exhibit a carboxyterminal lysine (see
Plow et al35 for review). Plasminogen binds to ECs in vitro with
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an affinity that would predict receptor occupancy at physiologic
plasma concentrations.183 Cell-associated plasmin may be rela-
tively protected from inhibition bya2-plasmin inhibitor.184

However, the exact identity of these EC plasminogen binding
sites remains uncertain and their expression in vivo has not been
established.185 Lp(a) competes for the binding of plasminogen
to ECs,186 which may contribute to the prothrombotic effects of
this lipoprotein.187

Plasminogen activator inhibitors (PAIs).ECs in culture
produce abundant PAI-1 that is associated primarily with its
extracellular matrix, resulting in stabilization of its activity.188

PAI-1 synthesis is stimulated by numerous agents, including
thrombin, endotoxin, various cytokines, Lp(a), and oxidized
LDL, among others.189 Yet, experiments in mice have shown
that liver is the major source of plasma PAI-1 and that quiescent
EC express little or no inhibitor.190 However, after exposure to
inflammatory stimuli, ECs in virtually every tissue express
PAI-1.190 PAI-2 is found normally in plasma only during
pregnancy191 and is not synthesized by ECs to an appreciable
extent. However, multiply passaged ECs express PAI-2 in
response to some agonists that may point to a local effect in
select settings.192 PAI-3 (also known as the protein C inhibitor)
has a much lower affinity for u-PA and t-PA than does PAI-1, but
it is present in plasma at much higher concentrations.193

Production of PAI-3 by ECs has not been reported, but PAI-3
antigen can bind to heparan sulfate proteoglycan on the lumenal
surface of ECs, thereby increasing its activity.194

Thrombomodulin. Binding of thrombin to thrombomodulin
(see ‘‘The Role of the Endothelium in Coagulation’’ above)
accelerates its capacity to activate a protein known as thrombin-
activatable fibrinolysis inhibitor (TAFI).195TAFI is a procarboxy-
peptidase-B–like molecule that, when activated, cleaves basic
carboxyterminal residues within fibrin and other proteins. This
results in the loss of plasminogen/plasmin and t-PA binding
sites on fibrin such that fibrinolysis is retarded.195Thus, through
the regulated expression of thrombomodulin, ECs serve as
potent templates to decrease the rate of intravascular fibrinoly-
sis.

Although a simple balance between profibrinolytic (PAs) and
antifibrinolytic (PAIs) pathways seemed an attractive mecha-
nism to explain the clinical experience that unperturbed endothe-
lium helps maintain blood fluidity, more recent in vivo data
have shown that the mechanism may not be quite so straightfor-
ward. Indeed, ECs seem to express more antifibrinolytic than
profibrinolytic activity in many settings studied to date. Clearly,
more work will be required to clarify the contribution of
quiescent and activated ECs to fibrinolysis.

Summary. The first part of this two part series has focused
on the development of the vasculature and the physiological
functions of the endothelium as a gate-keeper regulating blood
flow and hemostasis. Current insights into the generally unappre-
ciated heterogeneity of endothelium from different vascular
sites have been noted as potential discrepancies between the
quiescent state of the endothelium in vivo and the behavior of
these cells in culture. The second part of this review will
concentrate on the mechanism by which the endothelium
contributes to cell trafficking and the impact of endothelial
injury on the development of several common human vascular
disorders.

PART II

The endothelium, positioned at the interface between blood
and tissue, is equipped to respond quickly to local changes in
biological needs caused by trauma or inflammation. In the first
part of this review, the capacity of the endothelium to move
rapidly between an antithrombotic and prothrombotic state was
discussed. In this second part, the mechanisms by which the
endothelium regulates the trafficking of the cellular elements of
the blood will be considered first, after which the impact of EC
dysfunction on the pathogenesis of several common vascular
disorders will be reviewed.

INTERACTION BETWEEN ECs AND BLOOD CELLS

In addition to the above-mentioned contribution of the
endothelium to regulating blood coagulation, ECs also express
cell surface-molecules that orchestrate the trafficking of circulat-
ing blood cells. These cell-associated molecules help direct the
migration of leukocytes into specific organs under physiologic
conditions and accelerate migration towards sites of inflamma-
tion, eg, in response to IL-6196 or IL-8,197 among many others.
Recently, these pathways have also been implicated in the
adhesion of platelets and erythrocytes in several common
disorders associated with vascular occlusion.

Interactions of platelets and leukocytes with the vessel wall.
Flowing leukocytes and platelets may adhere to specific regions
of the endothelium, to exposed subendothelial components, or
to each other during the process of immune surveillance as well
as in response to tissue injury or infection. These multicellular
interactions are essential precursors of physiologic inflamma-
tion and hemostasis. Conversely, uncontrolled adhesion of
leukocytes and platelets contributes to inflammatory and throm-
botic disorders. Under shear forces, both platelets and leuko-
cytes interact with vessel surfaces through a multistep process
that includes (1) initial formation of usually reversible attach-
ments; (2) activation of the attached cells; (3) development of
stronger, shear-resistant adhesion; and (4) spreading, emigra-
tion, and other sequelae (Fig 3).

Platelet adhesion during hemostasis.Circulating platelets
normally do not interact with the EC surface (see Schafer198 for
review), in part due to the release of PGI2, the release of NO,
and the recently described expression of an Ecto-ADPase
(CD39).199 However, during hemorrhage, platelets adhere av-
idly to exposed subendothelial components, where they are
rapidly activated. Circulating platelets interact with the adher-
ent platelets, producing a hemostatic plug that promotes throm-
bin generation and development of a stable fibrin clot. Platelets
adhere particularly efficiently to the subendothelium under high
shear stress, accounting for the greater number of platelets in
fibrin clots within arteries compared with those within veins.200

Under the influence of arterial shear stress, unactivated
platelets attach first to the subendothelium through interactions
of the platelet glycoprotein (GP) Ib-IX-V complex with immo-
bilized vWF, a large, multimeric protein with binding sites for
several other molecules, including subendothelial collagen.201

The GPIb-IX-V complex consists of four proteins, each with
one or more leucine-rich repeats: the disulfide-linked GPIba
and GPIbb and the noncovalently associated GPIX and GPV.
The binding site for vWF is located on GPIba, between the
amino-terminal leucine-rich repeats and the membrane-
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proximal O-glycan–rich domain. The region includes clustered
tyrosines that must be sulfated for GPIba to bind vWF.202

GPIba binds weakly to plasma vWF, but with high activity to
immobilized vWF under conditions of high shear stress, which
may favor binding by altering the conformation of GPIba
and/or vWF.200,203Flowing platelets attach transiently to vWF,
resulting in continuous movement of the cells along the
surface.204Such cellular interactions require very fast molecular
rates for attachment and detachment; the fast dissociation rates
are not significantly accelerated by shear stresses for detach-
ment. Under the lower shear stresses found in veins, unactivated
platelets use the integrinaIIbb3 to attach to and immediately
arrest on immobilized fibrinogen.204 Under low shear condi-
tions, platelets may also use integrins or other molecules to
attach to subendothelial matrix components, such as fibronectin,
laminin, and thrombospondin.205

Once platelets adhere to either vWF or fibrinogen, they are
activated by secreted products such as ADP or epinephrine or by
surface molecules, such as collagen, that cross-link the integrin
a2b1 and other platelet receptors. The activated platelets spread
and adhere more avidly to the subendothelial surface, princi-
pally through binding of activatedaIIbb3 to fibrinogen, which
recruits additional platelets into aggregates206; platelet aIIbb3

also binds to a distinct site on vWF.201 Shear-resistant adhesion
may be further enhanced by interactions of other integrins or
receptors with laminin, fibronectin, and thrombospondin.200 As
thrombin is generated, converting bound fibrinogen to fibrin,
the aggregated platelets contract to strengthen the clot. Signal-
ing through adhesion receptors, particularly integrins, may
regulate the cytoskeletal-protein redistributions required for
clot retraction.206 Increased bleeding is observed in patients
with inherited defects in molecules that mediate platelet
adhesion such as Bernard-Soulier disease (absence/dysfunction
of GPIb-IX-V) and Glanzmann’s thrombasthenia (absence/
dysfunction of aIIbb3), confirming their physiological func-
tion.203

Leukocyte adhesion during inflammation.During inflamma-
tion, leukocytes tether to and roll on the EC surface. The cells
then arrest, spread, and finally emigrate between ECs to reach
the underlying tissues. Unlike platelets, which typically attach

to the subendothelium of arteries under high shear stresses,
leukocytes usually attach to the ECs, where shear stresses are
lowest, in the lining postcapillary venules.

In most circumstances, interactions with selectins, transmem-
brane glycoproteins that recognize cell-surface carbohydrate
ligands found on leukocytes, initiate and mediate tethering and
rolling of leukocytes on the EC surface.207Selectins constitute a
family of three known molecules, each of which has an
amino-terminal Ca21-dependent lectin domain, an EGF do-
main, a series of short consensus repeats, a transmembrane
domain, and a cytoplasmic tail. L-selectin is expressed on most
leukocytes and binds to ligands constitutively expressed on high
endothelial venules of lymphoid tissues, to ligands induced on
endothelium at sites of inflammation, and to ligands exposed on
other leukocytes. E-selectin is expressed on activated ECs and
leukocytes. P-selectin is rapidly redistributed from secretory
granules to the surface of platelets and ECs stimulated with
thrombin or other secretagogues. Like E-selectin, P-selectin
binds to ligands on leukocytes. Leukocytes adherent to the
endothelium can make contact with flowing leukocytes through
the L-selectin molecule, resulting in amplification of leukocyte
recruitment to sites of inflammation.208At sites of hemorrhage,
leukocytes tether to and roll on adherent platelets.209Monocytes
recruited in this manner may augment fibrin generation, perhaps
by elaborating tissue factor after their activation.210 Selectin
ligands expressed on high endothelial venules also mediate
rolling of activated platelets and enhance accumulation of
lymphocytes in lymph nodes.211 Thus, selectins initiate inflam-
matory, immune, and hemostatic responses by promoting
transient multicellular interactions under conditions of shear
stress.

The selectins bind weakly to sialylated and fucosylated
oligosaccharides, such as sialyl Lewis x, a terminal component
of glycans attached to many proteins and lipids on most
leukocytes and some ECs. Strikingly, the selectins bind with
higher affinity to only a few sialylated and fucosylated glycopro-
teins on target cells.207 E-selectin binds preferentially to ESL-1,
a protein with at most five N-glycans and no described
O- glycans. L-selectin and P-selectin bind preferentially to sialomu-
cins whose recognition requires sulfation as well as sialylation

Fig 3. Physiologic interaction of leukocytes with the endothelium. Leukocyte adhesion and transmigration occurs during inflammation,

usually at the postcapillary venules where shear stress is lowest.
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and fucosylation. The sulfate esters are attached to O-glycans
on GlyCAM-1, a ligand for L-selectin secreted by high
endothelial venules.212In contrast, the sulfate esters are attached
to tyrosines near the amino terminus of PSGL-1, a ligand for
selectins on leukocytes.213 Construction of some glycans may
be restricted to specific sites on the polypeptide backbone of
only a few proteins.214Of the described glycoprotein ligands for
selectins, only PSGL-1, a ligand for selectins on leukocytes, has
been shown to mediate cell-cell interactions under shear
conditions (reviewed in McEver and Cummings215). The a4b1

anda4b7 integrins, which are expressed on mononuclear cells
and eosinophils, but not on neutrophils, also mediate tethering
and rolling and occasionally arrest the flow of leukocytes on
ECs by binding to the Ig-ligands VCAM-1 and MAdCAM-
1.216,217 Some lymphocytes use CD44 to roll on hyaluronate-
bearing surfaces.218

Under hydrodynamic flow, cell tethering and rolling requires
bonds with sufficient mechanical strength between adhesion
molecules and rapid rates of association and dissociation.219

Interestingly, attachment of leukocytes through selectins re-
quires a threshold hydrodynamic shear force that may prevent
leukocyte aggregation in regions of low flow.220A higher shear
threshold for L-selectin may reflect faster dissociation rates of
L-selectin ligand bonds220 and/or adhesion-induced shedding of
L-selectin from the cell surface.221Because L-selectin, PSGL-1,
anda4 integrins are concentrated on the tips of the leukocyte
microvilli, the probability of rapid contact with PSGL-1 is
increased and the repulsion is minimized between the charged
glycocalyces of apposing cells.222

The slow velocities of rolling leukocytes favor encounters
with chemokines or lipid autacoids presented at or near the
apical surface of the endothelium. These mediators transduce
signals that cooperate with those produced by engagement of
L-selectin or PSGL-1 to activate the leukocytes.223 This crucial
activation event, coupled with the slow rolling velocities,
enables theb2 integrins on leukocytes to bind to Ig ligands such
as ICAM-1 and ICAM-2 on the EC surfaces.224 Plasma
fibrinogen also links leukocytes to the endothelium by binding
simultaneously toaMb2 and ICAM-1,225 two integrins on the
vessel wall that provide shear-resistant attachments. Subse-
quently, leukocytes migrate between ECs into tissues by
mechanisms that are not completely understood but are affected
by gradients of chemokines with restricted specificities,49 b1

and b2 integrins activation states, and homotypic interactions
with the Ig-like receptor, PECAM-1.226 This may require
disruption of homotypic interaction of cadherins at endothelial
tight junctions.227

Leukocyte recruitment to lymphoid tissues or inflammatory
sites requires the coordinated expression of specific combina-
tions of adhesion and signaling molecules. Diversity at each
step of the multistep cascade ensures that the appropriate
leukocytes accumulate for a restricted period in response to a
specific challenge.49,224Absence of P-selectin delays fatty streak
formation in mice predisposed to developing atherosclerotic
lesions.228 On the other hand, increased numbers of infections
are observed in patients who are congenitally deficient inb2

integrins229or in fucosylated ligands for selectins,230confirming
the physiologic significance of these molecules in immune and
inflammatory responses. Increased susceptibility to infection

combined with impaired leukocyte accumulation in mice ren-
dered genetically deficient in selectins,231-234in fucosyltransfer-
ases,235 in ICAM-1,236-239 or in a4 integrins240 further support
the overlapping functions of these molecules.

Endothelium in cell-mediated immunity (CMI).CMI is
defined as the protective set of immune reactions that can be
adoptively transferred from a sensitized individual to an unim-
munized host by a subset of T lymphocytes but not by
antibodies. Vascular ECs may play two important roles in the
evolution of CMI reactions: (1) antigen presentation to T cells
(reviewed in Pober et al241) and (2) recruitment of inflammatory
cells.49 Recall responses such as CMI reactions develop directly
in peripheral tissues in which circulating memory T cells are
activated by antigen presented on the surface of a resident cell
population. This is in contrast to primary immunity that begins
in the secondary lymphoid organs such as lymph node or spleen,
where naive T cells encounter antigen on the surface of a
specialized antigen-presenting cell. Once effector and memory
cells develop in a secondary lymphoid organ, they may
emigrate to the peripheral site via the blood stream, where
reactivation by the antigenic stimulus is possible.

The two cell types that may present antigen to specific T cells
in peripheral tissues are macrophages, resident in the tissues, or
local microvascular ECs. In vitro, cultured human ECs from a
variety of vascular beds constitutively express class I MHC
molecules (used to present peptides derived from foreign
proteins to CD81 T cells). IFN-g can induce ECs to express
class II MHC molecules (used to present peptides derived from
foreign proteins to CD41 T cells). There is only limited
information on antigen processing by cultured ECs, but indirect
evidence (ie, the formation of functional peptide-MHC mol-
ecule complexes that can be recognized by cultured T-cell lines)
suggests that EC are fully competent to perform this function. In
vivo, microvascular ECs constitutively express both class I and
class II MHC molecules, although the levels of both molecules
can be increased further by cytokines (eg, IFN-g).

How do ECs compare with tissue macrophages as antigen-
presenting cells? This has been a difficult question to address
experimentally in humans because the relevant cell populations
(ie, ECs, macrophages, and T cells) are not readily isolated from
one immunized individual. A commonly used indirect approach
is to examine the response of T cells isolated from one donor to
cultured ECs and monocytes isolated from a second donor. This
allogeneic response of T cells is directed against complexes
formed between peptides associated with allogeneic MHC
molecules and results from a cross-reaction of T cells that are
specific for a foreign peptide associated with a self MHC
molecule; it is an excellent model of normal immunity that
avoids the requirement for isolating ECs from immunized
donors. ECs activate about one fifth as many allogeneic T cells
(either CD81 or CD41) as monocytes, determined in limiting
dilution analyses for production of IL-2. Some of this difference
may arise from a larger number of different peptide-MHC
molecule complexes displayed on freshly isolated monocytes
compared with serially cultured ECs, but a critical contribution
to this difference is that monocytes can activate both naive and
memory T cells, whereas ECs can only activate memory T
cells.242 It has recently been reported that ECs actually make
naive T cells unresponsive to stimulation (ie, induce clonal
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anergy).243 The ability of ECs to activate memory but not naive
T cells in vitro is consistent with a role in presentation of
antigen as an initiating event in CMI, which is a memory T-cell
response.

The differences in ability among cell types to activate resting
naive or memory T cells are best explained by differences in
expression of cell surface ligands, called costimulators, that
provide antigen-independent signals that complement those
provided by T-cell antigen-dependent recognition.241 Human
ECs primarily provide costimulation to T cells through LFA-3
(CD58), which interacts with T-cell CD2. Monocytes and other
professional antigen-presenting cells additionally provide co-
stimulation to T cells through B7.1 (CD80) or B7.2 (CD86),
which interact with T-cell CD28. Surprisingly, pig ECs express
B7.2 and, more remarkably, pig B7.2 can functionally costimu-
late human T cells through CD28, a potential problem facing
those who wish to use pigs as organ donors in human
transplantation.244

The recruitment of inflammatory cells is the second role
played by ECs in CMI. Once memory T cells become activated
by antigens, they, in turn, can activate a variety of EC functions
that contribute to recruitment of inflammatory cells. The signals
provided by T cells to activate ECs may involve contact-
dependent signals (eg, T-cell CD40 ligand may engage EC
CD40)245 or cytokines (eg, T-cell–secreted TNF/LT, IFN-g, or
IL-4 may act on the EC; reviewed in Pober and Cotran246).
Several different responses of ECs to these signals contribute to
inflammation, including production of vasodilators to increase
delivery of leukocytes to the tissue, expression of adhesion
molecules that tether and bind circulating leukocytes, synthesis
of chemokines that contribute to transendothelial migration, and
leakage of plasma proteins that form a provisional matrix in
tissues for migration of extravasated leukocytes (reviewed in
Pober and Cotran247).

The expression of various adhesion molecules on the endothe-
lial surface changes over time, favoring neutrophil recruitment
initially (eg, dependent on E-selectin expression) and recruit-
ment of other leukocytes at later times (eg, dependent on
VCAM-1 expression). The identity of chemokines may also
change over time from synthesis of neutrophil-activating C-X-C
chemokines early on to the subsequent synthesis of C-C
chemokines that act on other leukocytes. The net result is that
the composition of infiltrates change over time from neutrophil-
rich to T-cell–rich and monocyte-rich delayed hypersensitivity
(DTH) reactions or to T-cell–rich, eosinophil-rich, and basophil-
rich late-phase reactions. The differences between DTH and
late-phase inflammation appear to be attributable to local
production of IFN-g versus IL-4 and IL-5, respectively. The T
cells recruited in DTH reactions are predominantly Th1-like
cells (that mediate DTH), whereas those in late-phase reactions
are predominantly Th2-like cells (that mediate late-phase
reactions). The selective recruitment of Th1 cells into DTH
reactions may be mediated by E-selectins and P-selectins.248

Interestingly, although Th1 and Th2 cells appear to express
equivalent levels of PSGL-1, only Th1 cells are able to bind
P-selectin.249

Once infiltrates develop, a cytokine-rich milieu is generated
that is sustained until the antigen is eliminated. Such chronic
cytokine exposure has effects on ECs not seen at early times.

For example, over the first few days, adhesion molecules that
are initially expressed diffusely on the lumenal surface redistrib-
ute to inter-EC junctions.250 The basement membrane becomes
enriched in sulfated glycosaminoglycans,251 and the cells as-
sume an altered morphology characteristic of endothelium at
sites of high lymphocyte extravasation, such as the high
endothelial venules of lymph nodes.252 These features may
promote leukocyte extravasation in acute settings. More chronic
CMI reactions result in angiogenesis and tissue remodeling.

In general, CMI reactions do not produce endothelial injury,
perhaps because T cells efficiently focus the response on the
source of antigen, microbe-infected cells. An exception may be
instances in which ECs are themselves infected by intracellular
microbes (eg, viruses), so that cytolytic T lymphocytes (CTLs)
kill the infected endothelium. Endothelial injury may also
develop in transplantation, in which the immune system may
perceive engrafted cells as self-cells that have been infected by
virus. Some of the peptides recognized by graft-rejecting CTLs
in association with allogeneic MHC molecules may be EC-
specific and not found on leukocytes.253 In these instances, the
CTL response may be directed at the endothelium. In addition,
endothelium may be killed when CTL or natural killer (NK)
cells are overstimulated by cytokines and lose their specificity.
The actions of such lymphokine-activated killer (LAK) cells
may contribute to the vascular leak syndrome associated with
IL-2 or LAK therapy in cancer patients.254 It is increasingly
appreciated that ECs may actively resist immune-mediated
injury and that several of the resistance mechanisms involve
cytokine-inducible genes.255 Thus, the CMI response itself may
protect ECs if the onset is sufficiently gradual (or if it is delayed
by immunosuppression), so that the cells have had adequate
time to acquire the resistant phenotype.

Erythrocyte-endothelial adherence.Interactions between the
endothelium and erythrocytes may contribute to the vascular
complications of sickle cell anemia (SSA),256 infection with
Plasmodium falciparummalaria,257 and diabetes.258 Red blood
cell (RBC) adherence may initiate or promote intravascular
sludging and occlusion leading to ischemic tissue and organ
damage, retinopathy, dermal ulcers, strokes, and other infarctive
pathologies. RBC adherence is dependent on EC surface
molecules and is modulated by local hemodynamic factors.
Recently, some of the RBC receptors, EC adhesion molecules,
cytokines, and other vaso-active substances involved in adher-
ence have been identified.

Sickle cell anemia. Although the tendency for hemoglobin
SS to polymerize at low oxygen tension is assumed to be the
dominant factor in the pathogenesis of occlusive pain episodes,
morphologic evidence of sickling is not seen immediately after
hemoglobin is deoxygenated.259 Rather, adherence of SS-RBCs
to vascular endothelium, which retards transit through the
microvasculature, may be an important initiating event in this
cascade.260,261 Adherence of SS-RBCs in vitro is sufficiently
strong to withstand fluid shear forces typical of those seen in
postcapillary venules.262 The resultant delay in capillary transit
may allow time for sickle cells containing deoxygenated
hemoglobin to deform leading to stable vascular obstruction263

and the resultant development of painful crises.
Adherence of SS-RBCs appears to result not only from the

intrinsic membrane abnormalities induced in the erythrocytes,
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but also as a result of specific plasma factors and the state of EC
activation (reviewed in Wick and Eckman264). For example,
plasma from patients with SSA promotes RBC adherence in
excess of that seen with normal plasma,265,266 and plasma
collected during painful crises promotes adherence to an even
greater extent.265 Fibrinogen,265 fibronectin,262 vWF,262 and
thrombospondin267,268 have all been identified as factors in
plasma that modulate SS-RBC adhesion.

Several adherence pathways have been described in vitro,
including (1) bridging of GPIb-like molecules on sickle cells
with their cognate receptors on ECs by unusually large vWF
multimers released from activated platelets or by the stimulated
endothelium itself262; (2) bridging by thrombospondin via
CD36 on sickle reticulocytes269 and theavb3 integrin on large
vessel ECs267 or avb3 and CD36 on microvascular endothe-
lium268; (3) binding of sickle reticulocytes viaa4b1 recep-
tors269,270 to VCAM-1 expressed on ECs stimulated by cyto-
kines270,271or by double-stranded RNA272; (4) binding of sickle
reticulocyte viaa4b1 activated by phorbol ester or IL-8 to
EC-associated fibronectin273; and (5) binding of SS-RBCs to
E-selectin expressed on ECs stimulated by IL-1b.274 The
expression of VLA-4 and CD36 on reticulocytes from sickle
cell patients is reduced by treatment with hydroxyurea.275

However, the precise contribution of each of these or additional
pathways to SS-RBC adherence in vivo requires further study.

In vitro, adherence of sickled RBCs to large venous vessels
differs both qualitatively and quantitatively from adherence to
microvascular endothelium.276 High molecular weight vWF
multimers promote greater adherence to venous than to micro-
vascular endothelium.276 Autologous plasma promotes greater
adherence of sickle RBCs to microvascular endothelium than
does plasma from individuals without SS disease.276 Sickle cell
adherence is localized to postcapillary venules in ex vivo tissue
perfusion studies, with no adherence observed in either capillar-
ies or arterioles.263 These differences are likely due, at least in
part, to variation in the expression of adhesion molecules and
their receptors on the vasculature (see, eg, Swerlick et al277).

Sickle cell adherence is also dependent on local hemody-
namic conditions (reviewed in Wick and Eckman264). Under
static conditions, the dense SS-RBCs adhere most avidly,
possibly due to intrinsic membrane alterations.261 In contrast,
the least-dense sickle cells and reticulocytes are most adherent
to the endothelium in vitro270,273,274and ex vivo under flow
conditions.230 Sickle cell adherence under flow is also more
tenacious than under static conditions.278 Thus, adherence of
reticulocytes expressing adhesion receptors may dominate in
vivo in situations in which flow is maintained.264Adherence and
trapping of membrane-damaged sickled erythrocytes may fol-
low once flow has been further impeded, ultimately leading to
complete vascular occlusion.279

Painful crises frequently accompany ischemia, infarction,
infection, or inflammation, situations in which the coagulation
cascade may be activated as well.256 Activation of leukocytes
and/or platelets may result in the generation and release of
cytokines, adhesive proteins, or other factors that modulate
endothelial or sickle cell adhesivity. Observations that activa-
tion of sickle cells273 and ECs with cytokines,270 virus,272 or
thrombogenic plasma proteins262,265,267,268promotes RBC adher-
ence suggests a mechanism by which infection and inflamma-

tion may initiate or propagate vaso-occlusion and episodic pain.
Presumably, sickle cell adherence in vivo is most extensive at
sites where the relevant adherence molecules are expressed
most highly and shear stresses are sufficiently low to permit
binding.264 Adherence of sickle cells may alter their metabo-
lism,280 promote leukocyte adhesion,281 and contribute to their
desquemation.281

Malaria. Plasmodium falciparumcauses cerebral manifes-
tations, perhaps the most serious complication of malaria.
Maturation of the parasite within host RBCs induces membrane
changes which promote adherence to cerebral microvascular
endothelium in vitro and may lead to vascular congestion and
hypoxia in vivo.257 It has been proposed that cytoadherence
provides selective advantage to the invading parasites by
facilitating their growth under the conditions of reduced oxygen
tension found in the cerebral microcirculation and by enabling
parasitized RBCs to avoid splenic filtration.257

Parasitized RBCs bind to cell surface molecules on ECs,
including CD36,257 ICAM-1,257 VCAM-1,282 and E-selectin.282

Additionally, thrombospondin allows bridging between parasit-
ized RBCs and CD36 receptors on ECs.257The various endothe-
lial receptors act synergistically to slow and arrest parasitized
RBCs under flow conditions and at shear stresses in the
physiological range.283,284Additional binding sites for parasit-
ized RBCs may be induced as a consequence of the inflamma-
tory response toPlasmodium falciparuminfection257 due to
leukocyte activation,285 cytokine release,286 and EC activa-
tion.285

Binding to the endothelium occurs through knobs on RBCs
induced by the parasite. These knobs containPlasmodium
falciparum erythrocyte membrane protein 1 that appears to
participate in this process.257 Cytoadherence is inhibited by
peptide fragments of the erythrocyte band 3 protein287 and by
monoclonal antibodies that recognize band 3 on RBCs infected
with mature parasites, suggesting involvement of cryptic re-
gions of the protein exposed or altered during the course of
infection.288 It has also been reported that some field isolates of
Plasmodium falciparumpromote adherence to chondroitin
sulfate A.289 These data provide additional opportunities for
antimalarial therapy based on inhibition of interactions between
parasitized RBCs and ECs.

Diabetes mellitus. Erythrocytes from patients with diabetes
mellitus are more adherent to normal ECs than are RBCs from
healthy donors.290 The extent of adhesion correlates with the
severity of vascular complications290; greater adherence is
observed in the absence of plasma,266 suggesting a defect
intrinsic to the RBC. Adhesion is augmented further by plasma
from diabetic patients as well as by fibrinogen,258 suggesting a
mechanism by which acute-phase reactants may modulate
vascular obstruction. Persistent exposure to hyperglycemia
induces the formation of advanced glycation end products
(AGEs) that modify structures on erythrocyte. AGE modifica-
tion of erythrocytes allows them to engage a specific receptor,
RAGE, (receptor for advanced glycation endproducts), which
has been identified immunohistochemically and by in situ
hybridization in the vasculature in vivo.258 Exposure of RBCs
harvested from patients with diabetes to cultured endothelium
results in increased adherence compared with those from
euglycemic individuals due to erythrocyte-associated AGEs
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binding to endothelial RAGE.258 Furthermore, it has been
hypothesized that interaction of diabetic erythrocytes with
endothelium through an AGE/RAGE linkage may promote
oxidant stress leading to EC activation (see below).

EC PERTURBATION AND VASCULAR DISEASE

It is currently believed that endothelium must remain in a
resting or unperturbed state to optimize expression of anticoagu-
lant activities which prevent thrombus formation (see ‘‘The
Role of the Endothelium in Coagulation’’ above). However, the
endothelium is a dynamic organ that responds to an array of
agonists and environmental challenges by undergoing an activa-
tion process not unlike that of platelets, which eventuates in the
loss of anticoagulant properties and/or acquisition of procoagu-
lant function. Although the role of the endothelium in the
pathogenesis of thrombosis in vivo remains unproven, accumu-
lating evidence points towards dysregulation of EC function as
pivotal in the development of several important thrombotic
disorders. Plasma factors such as antibodies or lipoproteins that
perturb EC function in vitro have been identified. It is likely that
genetic differences in EC responsiveness to environmental
pressures will be uncovered as contributors to the development
of other common vascular diseases.

The endothelium in atherosclerosis.Atherosclerosis is the
most prevalent vascular disease in developed countries. The
concept that atherosclerosis arises in response to endothelial
injury was first proposed more than 20 years ago, when it was
appreciated that irregularities in EC organization are often
found overlying early fatty streaks, whereas overt endothelial
denudation is seen only in the late stages of the disease (see
Ross and Glomset291 for review; Fig 4). There is now extensive
evidence that this morphologically abnormal endothelium is
also dysfunctional and actually contributes to the propagation of
lesions (see Ross292and McGorisk and Treasure293 for reviews).

These findings not only provide insight into the pathogenesis of
atherosclerosis, but also suggest means to monitor the progres-
sion of lesions and effectiveness of treatment.

Atherosclerosis is a multifactorial disease with numerous
predisposing factors, including smoking, diabetes, hyperlipid-
emia, hypertension, mechanical stress, and inflammation. Such
diverse and complex processes may perturb EC function
through a common pathway. Alternatively, the endothelium
may react to diverse stimuli with a limited repertoire of
reparative, but ultimately dysfunctional, responses.

Oxidant stress. Oxidant stress has been proposed as a
mechanism common to diverse injuries such as unsaturated
lipids that can be converted to cytotoxic lipid peroxidation
products, various chemicals, radiation, and reactive oxygen
metabolites released by leukocytes that migrate into the vascula-
ture in response to infection and autoimmune injury. The
pathways involved in the initiation and control of oxidant injury
are receiving considerable study. Oxidized LDL and its perox-
ide derivative lysophosphatidylcholine stimulate protein kinase
C activity, phosphoinositide turnover, and release of internal
calcium; impair EC replication and angiogenesis; and induce
apoptosis (reviewed in Henry294). Cytokines, such as TNF-a,
can both induce reactive oxygen species in ECs and stimulate
the ubiquitous transcription factor NF-kB, resulting in a tran-
scriptional activation of other proatherogenic molecules such as
VCAM-1 (reviewed in Larrick and Wright295). Oxidation
reactions also promote the formation of AGEs that contribute to
diabetic vasculopathy (reviewed in Schmidt et al296) and initiate
transcriptional activation of VCAM-1297 and monocyte chemo-
tactic protein-1 (MCP-1), which promotes monocyte entry into
the vessel wall (reviewed in Gimbrone298).

Shear stress. ECs are exposed continuously to fluid shear
stresses that lead to a dynamic interaction between the cell and
the substratum via focal contact sites. Shear-induced changes in

Fig 4. Very early development

of atherosclerosis in a nonhu-

man primate. The focal origin of

atherosclerosis is apparent be-

neath an intact endothelium.

Scanning electron microscopy of

ECs outlined by silver deposition

in a thoracic aorta (photograph

courtesy of Peter F. Davies, PhD,

Institute for Medicine and Engi-

neering, University of Pennsylva-

nia, Philadelphia, PA).
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transduced biomechanical forces can cause not only cytoskel-
etal rearrangement and altered morphology but changes in
endothelial gene expression299,300 (Fig 5). Most studies have
examined primarily changes that occur within hours of initiat-
ing flow, which may best reflect the situation in vascular beds
exposed to newly flowing blood such as postangioplasty, but the
adaptive response of endothelium to shear forces is less well
characterized.

An effect of shear on vascular biology is suggested by the
observation, eg, of decreased vasodilator function at coronary
branch points that have a predilection for atherosclerosis.301

Consistent with this notion, a number of genes relevant to the
development of atherosclerosis expressed by ECs have shear
stress response elements that coordinate their induction. Shear
modulates EC production of products regulating vasoconstric-
tion (NO, endothelin-1), vessel growth (bFGF, platelet derived
growth factor [PDGF]-A and -B, and TGF-b), fibrinolysis
(t-PA), and cell adhesion (MCP-1, VCAM-1, and ICAM-1) (see
Malek and Izumo,300Ando and Kamiya,302 and Tsao et al303 for
reviews). Shear has been reported to modulate the expression of
thrombomodulin in a reversible manner299and abrogate cytokine-
induced EC tissue factor expression.304

The mechanism(s) responsible for the modulation of gene
expression by shear is under study. At least part of these
shear-induced effects are mediated through modulation of gene
transcription. A number of genes, such as PDGF-B, contain one
or more shear stress responsive elements (SSREs) that include
an NF-kB–responsive GAGACC promoter sequence305in the 58
upstream region. However, the induction of TGF-b and MCP-1
appear to occur through alternative sites, eg, a TRE/AP-1–
responsive element.306 Levels of transcription factors NF-kB
and AP-1 are increased in sheared EC.307 How shear-related
transcription factors affect immediate and persistent gene
transcription and how this inductive pathway differs from other
injury-related responses remain to be elucidated.

Homocysteine. Homocysteine is a sulfhydryl amino acid
formed during the conversion of methionine to cysteine.
Elevated plasma levels of homocysteine may result from
deficiencies of cystathionine-b-synthase, deficiencies of en-
zymes involved in the folate-dependent pathway of homocyste-
ine remethylation, or deficiencies of folate or vitamin B12

themselves (see Guba et al308 and Rees and Rodgers309 for
reviews). Homozygous deficiency of cystathionineb-synthase
leads to markedly elevated plasma concentrations of homocys-
teine and is associated with premature atherosclerosis and
arterial thrombosis. The results of several recent large prospec-
tive and case-controlled studies suggest that even modestly
elevated levels of homocysteine may pose a risk factor for
atherosclerosis as well as for arterial and venous thrombosis
(reviewed in Mayer et al310), although it is not clear that all
pathways leading to hyperhomocysteinemia pose comparable
risks. Several large prospective studies are underway to assess
the magnitude of this risk.

These observations have led to the identification of several
pathways by which homocysteine may affect the anticoagulant
and procoagulant functions of cultured ECs (Table 2).311 It is
important to consider that most studies to date have used
cultured cells exposed for brief periods to concentrations of
homocysteine that exceed that which is observed in vivo.
Clearly, such concentrations of homocysteine induce formation
of hydrogen peroxide312 and oxidized LDL313 and may be
directly cytotoxic for ECs; NO is at least partially protective.314

However, induction of TF,315activation of factor V,316decreased
binding of t-PA to annexin-II,317 inhibition of thrombomodu-
lin,318and reduced expression of heparan sulfate319and possibly
PGI2,320 among many other changes, have all been observed in
ECs exposed to high concentrations of homocysteine. Homocys-
teine is also mitogenic for rat aortic smooth muscle cells.321

That similar effects may occur in vivo is suggested by vascular
dysfunction in monkeys with diet-induced hyperhomocystein-
emia322 and elevated levels of thrombomodulin and vWF in the
plasma of homocysteinemic patients with peripheral arterial
disease. Therapy with pyridoxine and folic acid led to rapid
reductions in the levels of both markers.323 Studies in animal
models in which moderately elevated levels of homocysteine is
sustained may provide additional insight into the role of the
endothelium and other pathogenic mechanisms of thrombosis
and atherosclerosis.

Consequences of EC injury on endothelial-derived vasoac-
tive factors. Healthy human epicardial coronary arteries dilate
when acetylcholine is infused,324 whereas atherosclerotic arter-
ies constrict325due to impaired release of NO (see ‘‘Vasoregula-

Fig 5. EC alignment by directional steady flow in

vitro (photographs courtesy of Peter F. Davies, PhD,

Institute for Medicine and Engineering, University of

Pennsylvania, Philadelphia, PA). (A) Before exposure

to shear stress (no flow). (B) Twenty-four hours after

exposure to flow (shear stress, 10 dynes/cm2).
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tion’’ above) and PGI2 from the endothelium.326 Loss of
vasodilitation in the absence of overt stenosis has been observed
in patients with hypercholesterolemia,327 increased Lp(a),328

diabetes,329 homocystinuria,330 and possibly hypertension (re-
viewed in Woodman331 and Heistad et al332). Similar effects
have been observed with advancing age,333exposure to cigarette
smoke,330,334and sedentary life style.335Endothelial dysfunction
is almost universal 12 to 24 months after cardiac transplanta-
tion.336 Indeed, abnormal vasodilator function may be a more
sensitive marker of coronary artery disease in some settings
than is angiography.337

The reduction in NO is attributable in part to lowered levels
of eNOS in atherosclerotic vessels,338 but the reason for this is
uncertain. One clue may be that impaired vasodilatation is
especially marked at coronary branch points where flow and
shear stress have been shown to stimulate NO production in
healthy vessels.301 In addition, free oxygen radicals and hydro-
gen peroxide generated by EC exposed to high levels of LDL
may inactivate NO.339

Inhibition of NO activity accelerates atherosclerosis in ani-
mal models,340 whereas supplementation with L-arginine, the
precursor of NO, diminishes lesion formation (reviewed in
Cooke341) and reverses endothelial dysfunction in otherwise
healthy young humans with hypercholesterolemia.342 The loss
of NO may impact on multiple steps in the atherogenic
process.341 NO may also counteract the proatherogenic effects
of endothelin (reviewed in Mathew et al343). Oxidized LDL
binds to a newly described receptor on ECs344 and increases the
production and secretion of ET in cultured ECs and in intact
blood vessels.345 ET is also released by dysfunctional coronary
arteries that constrict in response to acetylcholine.346 Plasma
concentrations of ET are elevated in asymptomatic patients with
hypercholesterolemia and increased plasma levels of both
Lp(a)347 and ET have been reported to correlate with the
severity of atherosclerosis.346

Monitoring the reversal of EC dysfunction.A significant
reduction in cardiac events has been reported as a result of lipid
lowering therapy, but the mechanism responsible for this benefit
has not been elucidated. Little reduction in the cross-sectional
area of preexisting lesions is seen, although progression of the
lesions may be slowed348 and incidence of plaque rupture may
be lessened. What is clear is that there is an improvement in
various indirect measures of EC function in vivo possibly as a
result of a more favorable profile of vasoactive agents that are
produced at critical locations.349 Similar beneficial effects on
surrogate markers of EC function have been seen with the use of
antioxidants,350 whereas in other studies the acute administra-
tion of vitamin C has been associated with improved EC-
dependent vasodilatation in chronic smokers351 and patients
with coronary artery disease.352 Similar beneficial effects of
angiotensin converting enzyme inhibitors have been confirmed
in some353 but not in all354 animal models (reviewed in Lonn et
al355).

Thus, with the advent of potential means to treat atherosclero-
sis, the need for reliable, noninvasive surrogate markers of risk
and vascular function have become apparent. Several candidate
molecules have emerged. Abnormalities in serotonin-induced
arterial vasodilatation, a process dependent on NO, precede the
development of clinical disease and resolve within 12 weeks of

the institution of cholesterol lowering therapy.356 Elevated
plasma levels of PAI-1 and thrombomodulin revert towards
normal as well.357 In contrast, little change has been seen in the
elevated plasma levels of E-selectin, VCAM-1, and ICAM-1.358

There is also interest in measuring levels of 8-epi PGF2a, an
isoprostane with potent vasoconstrictor activity in the pulmo-
nary and renal circulations generated through free radical
catalyzed peroxidation of arachidonic acid by ECs and other
vascular cells. Levels of 8-epi PGF2a in the urine have been
used as a marker of oxidant stress in vivo (reviewed in Morrow
and Roberts359). Levels in smokers are elevated and fall with
cessation of smoking or treatment with vitamin C but not with
vitamin E or aspirin therapy.360

Perspective. Healthy ECs contribute to the prevention of
atherosclerosis in medium to large arteries by inhibiting platelet
activation, limiting the entry of cells and lipids into the vessel
wall, maintaining a nonproliferative and biochemically quies-
cent intima,361 and secreting products under appropriate stimuli
that limit potentially injurious responses that occur as a
byproduct of host response to injury. These self-protective
mechanisms are impaired as a result of oxidant, chemical, and
shear stress, while at the same time the biochemical profile of
the endothelium changes in a way that promotes inflammatory
and fibroproliferative responses. The role of ECs in preventing
or limiting the effects of plaque rupture and terminal thrombosis
is little understood. The injurious processes that initiate athero-
sclerosis appear to persist throughout life in most individuals.
Studies are now being conducted to determine the extent to
which the biochemical and functional changes in the vessel wall
can be reversed at different stages of the disease.

Endothelial perturbation and vascular dysfunction in diabe-
tes. Vascular dysfunction is a contributing factor in the
etiology of several clinically important secondary complica-
tions of diabetes mellitus including retinopathy, accelerated
atherosclerosis, microvascular disease, nephropathy, neuropa-
thy, and impaired wound healing.362,363The effects of hypergly-
cemia on EC function can be imparted through several path-
ways: (1) production of reactive oxygen intermediates; (2)
direct activation of protein kinase C; (3) activation of the aldose
reductase pathway resulting in an accumulation of sorbitol and
diminished levels of myo-inositol; and (4) nonenyzmatic glycoxi-
dation of long-lived macromolecules.362,363Because glycoxida-
tion of proteins and lipids occurs ubiquitously in patients with
diabetes and is irreversible, its consequences are especially
relevant to long-term vascular dysfunction. Initially, exposure
of free amino groups to reducing sugars, such as glucose, results
in the formation of early glycation products, Schiff bases, and
Amadori products. These are reversibly modified species, such
as hemoglobin A1c, used for long-term monitoring of blood
sugar in diabetic patients. Further molecular rearrangements
occur, in part due to oxidation, resulting in irreversible AGEs
(Fig 6). The latter have pathophysiologic relevance in that
AGE-modified proteins may not function normally and/or may
perturb cellular properties in a manner distinct from that of the
native molecule. This occurs when the AGE form of the
molecule binds to cellular receptors which recognize AGEs,
including RAGE364,365 and the macrophage scavenger recep-
tor.366 RAGE is expressed by endothelium, monocytes, and
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Fig 6. A two-hit model of vascular perturbation.

Stage 1 shows the interaction between AGEs, modi-

fied biochemical species and their receptors (RAGEs),

transmembrane protein receptors of the Ig family

present at low levels on a range of cells including ECs

in addition to macrophages (Mfs), smooth muscle

cells, and neurons. AGEs may perturb the normal

physiologic function of the modified species and

thus alter the EC’s normal vascular functions. Stage 2

details subsequent perturbations resulting from the

superimposed stimuli of accumulated lipoprotiens

as seen in atherosclerotic lesions, foreign materials

that may be seen in wound repair, and bacterial

infection that may be seen in periodontal disease.

Fig 7. EC injury in a case of antiphospholipid antibody syndrome (photographs courtesy of Emma E. Furth, MD, Department of Pathology and

Laboratory Medicine, University of Pennsylvania, Philadelphia, PA). EC injury seen in a duodenal biopsy from a 40-year-old woman who

presented with profuse intestinal bleeding and was found to have a lupus anticoagulant and a markedly positive anticardiolipin antibody. (A)

Elastic stain (original magnification 3 200) highlighting a fresh thrombus (right) with the beginning stages of organization and EC ingrowth, an

older organized thrombus with fibroblast proliferation (center), within a vessel showing vacuolated, injured, and disrupted ECs. (B) A trichrome

stain (original magnification 3 400) of the same field highlighting the thrombus material (red acellular material on the right) with early stages of

organization. (C) A hematoxylin and eosin (H and E) stain (original magnification 3 400) showing fibrinoid intimal necrosis (right) in the absence

of an inflammatory reaction within a small vessel in the same duodenal biopsy as shown in (A) and (B). The ECs show marked vacuolization (left).

The surrounding eosinophilic vascular cells are smooth muscle cells surrounded by fibroblasts. (D) A higher power view (original magnification 3

600) of the same biopsy showing four capillaries with grossly vacuolated ECs and luminal effacement.
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smooth muscle cells and is likely to play a major role in the
development of vascular disease in diabetics.365

RAGE is a member of the Ig superfamily of cell surface
molecules. It is composed of an extracellular domain with one
V-type, followed by two C-type regions.364,365There is a single
transmembrane spanning domain and a short, highly charged
cytosolic tail that likely transmits the signal of ligand occu-
pancy by interacting cytosolic transduction molecules. The
single RAGE gene is located on chromosome 6 in the major
histocompatibility complex between genes for class II and class
III molecules. This proximity of RAGE to genes contributing to
the host response is in keeping with expression of the receptor.
In mature animals, RAGE is present at low levels in a range of
cells (endothelium, smooth muscle cells, mononuclear phago-
cytes, and neurons), but after perturbation, as in diabetes,
immune/inflammatory disorders, or Alzheimer’s disease, RAGE
expression is dramatically upregulated. In diabetes, AGE-
modified proteins appear to act as ligands for RAGE modulat-
ing a number of secondary messenger pathways. For example,
AGE interaction with RAGE results in cellular oxidant stress
eventuating in activation of p21ras, MAP kinases (erk’s 1 and
2), and the transcription factor NF-kB.367 Such activation of
NF-kB results from binding of p50/p65 heterodimers to DNA
binding motifs, as in the gene for vascular cell adhesion
molecule-1 (VCAM-1). RAGE-dependent enhanced VCAM-1
expression is observed both in cultured ECs and in vivo in mice
infused with AGEs.368 Increased VCAM-1 levels are also
observed in diabetic vasculature upon immunohistological
analysis. In parallel with expression of VCAM-1 on the cell
surface, ECs release a soluble form of VCAM-1 (sVCAM-1)
into culture supernatants, potentially providing a means of
monitoring cellular stress in vivo. Patients with diabetes and
microalbuminuria, the latter considered a harbinger of impend-
ing future vascular complications, display higher plasma
sVCAM-1 than those without microalbuminuria.369

AGE-RAGE interaction likely underlies vascular hyperperme-
ability, another salient feature of diabetic vasculopathy. Such
hyperpermeability is blocked by anti-RAGE IgG or by prevent-
ing AGE binding by infusion of a soluble form of the
extracellular domain of RAGE (the latter is termed sRAGE).
Vascular leakage of solutes in diabetic animals can be largely
blocked by infusion of sRAGE. These data identify a reversible
component of diabetic vascular dysfunction and suggest that
AGE-RAGE-induced cellular perturbation may be a contribu-
tor. The principal insights to be gained from analysis of RAGE
binding to nonenzymatically glycated ligands is probably in the
setting of chronic vascular perturbation.365 Because AGE modi-
fication of proteins is irreversible, AGEs accumulated in the
vessel wall are present for extended periods of time. Thus, the
diabetic vascular milieu has properties that distinguish it from
that in euglycemic subjects. A two-hit model can be envisioned
(Fig 6) in which tissue and blood AGEs interacting with RAGE
provide a baseline state of vascular activation for the first-hit.
The second stage comprises a superimposed stimulus, such as
accumulated lipoproteins in atherosclerotic lesions, foreign
material in wounds, and bacterial infection in periodontal
disease. AGE-RAGE interaction provides a backdrop of chronic
inflammation, with increased expression of proinflammatory
cytokines, thrombogenic factors, cell adherence mol-

ecules, and vascular permeability, which aggravates and prob-
ably accelerates the development of vascular lesions.

Antibody-mediated EC injury: Solid organ transplantation.
Transplantation of vascularized organs, such as kidney, heart,
lung, and liver, has become the treatment of choice for
end-stage organ failure. The key limitations on clinical transplan-
tation today are rejection of allografts posttransplantation and
the shortage of available donor organs. The EC lining of graft
vessels plays a prominent role in both of these clinical
problems.

Despite the enormous advances in clinical immunosuppres-
sion of transplant recipients that have been made in the last 50
years of practice, the principal cause of graft failure is still
rejection, ie, immunological reactions of the host against graft
cell alloantigens that injure and destroy the graft. ECs play three
crucial roles in the process of graft rejection: (1) ECs stimulate
the host immune system by presenting alloantigens in an
immunogenic form to host lymphocytes, thereby helping to
initiate graft rejection; (2) ECs respond to host stimuli, eg,
inflammatory cytokines, to promote intragraft inflammation and
thrombosis that contribute to graft injury; and (3) ECs lining
graft vessels are primary cellular targets of the host antigraft
response. In addition, graft ECs are sensors and mediators of
antigen-independent injury to which the graft is subjected
during harvest, transport, and implantation, a dramatic instance
of ischemia reperfusion. The mechanisms by which ECs present
antigens to lymphocytes, promote inflammation in response to
cytokines, are injured by the immune response, and respond to
oxidant injury have been discussed in previous sections of this
review and will not be duplicated in this section. We will focus
here on specific issues related to immunologic allograft rejec-
tion.

Rejection reactions are commonly classified according to the
time when they occur after surgical transplantation and by their
histopathologic features.370 Hyperacute rejection occurs within
minutes to hours of perfusion of the graft by host blood, ie, in
the perioperative period. It is characterized by extensive intra-
vascular thrombosis of graft vessels and consequent graft
ischemic infarction. Hyperacute rejection is mediated by host
antigraft antibodies, usually IgM antibodies reactive with graft
endothelial carbohydrate epitopes such as ABO blood groups,
and by complement activation that is initiated by the antibodies
bound to graft ECs. Thrombosis results from EC lysis and
desquamation, exposing thrombogenic subendothelial base-
ment membrane, or, in cases of sublytic quantities of comple-
ment depositon, by loss of endothelial antithrombotic mecha-
nisms (eg, shedding of cell surface anticoagulant heparan
sulfate) combined with activation of endothelial prothrombotic
mechanisms (eg, release of stored high molecular weight vWF,
release of lipid procoagulants, and possibly induction of TF).371

Matching of donors and recipients for ABO blood groups has
significantly reduced the incidence of hyperacute rejection in
allografts.

Acute rejection reactions usually develop between the first
and second week after transplantation. Although a variety of
effector mechanisms may be involved, recent studies of human
allograft biopsies have emphasized the primary role of cytolytic
cells, principally CTLs.372,373Some host CTLs recovered from
rejecting grafts have shown specificity for graft ECs over graft
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leukocytes.374 Because the specificity of CTL is determined by
the antigens involved in their induction (ie, the same antigen
receptor mediates initial differentiation and subsequent effector
function of CTL), graft ECs must have played a role in
stimulating host CTL development by presenting antigen to
precursor cells, ie, to resting CD81 T cells recruited from the
circulation into the graft. Lysis of microvascular ECs is a
prominent and early component of acute cell-mediated rejec-
tion.375 More severe rejection reactions typically involve injury
of larger graft vessels as well. Such vascular rejection is
believed to start as a host CTL reaction against graft arterial or
arteriolar ECs (called endothelialitis or intimal arteritis at this
early stage373) and may progress to severe necrotizing, transmu-
ral vasculitis. The most severe vascular rejection reactions
appear to involve host antigraft antibodies (both IgG and IgM)
as well as cytolytic lymphocytes. Presensitized hosts (eg,
resulting from a prior transplantaton procedure) who have
expanded numbers of memory T or B cells reactive with the
donor may show accelerated acute rejection during the first few
days after transplantation370). These accelerated rejection reac-
tions are similar to experimental second set rejection seen in
animal models of retransplantation. The use of tissue typing (for
renal transplantation) and of improved immunosupression (espe-
cially since the introduction of cyclosporin A) have reduced the
incidence of graft loss due to acute and/or accelerated rejection
to fewer than 10% of organs. ECs are considered prime targets
for further improvements in immunosupression, eg, by targeting
adhesion molecules such as ICAM-1 to reduce posttransplant
ischemia-reperfusion, inflammation, and CTL effector func-
tions.

With current advances in controlling acute rejection, the
major cause of graft loss has become chronic rejection.376

Chronic rejection appears in biopsies as replacement fibrosis of
graft parenchyma, developing over months to years. These
changes are widely thought, at least in cardiac and renal
transplantation, to be secondary to graft ischemia caused by
progressive occlusion of the lumen of graft arteries (called graft
arteriosclerosis). Graft arteriosclerosis is characterized by con-
centric, diffuse intimal hyperplasia of large, medium, and small
graft arteries. These changes are accelerated compared with
atherosclerosis in that they can develop into clinically signifi-
cant lesions as early as 6 months to a few years posttransplanta-
tion. Despite all of the advances in immunosuppresion for acute
rejection, the incidence of allograft failure to chronic rejection
has remained at about 10% of grafts per year, with no evidence
of improvement.

Graft arteriosclerosis is restricted to graft vessels, ie, it
completely spares the host’s vessels. Involved graft arteries
contain increased numbers of intimal smooth muscle cells and
deposition of extracellular matrix accompanied (or preceeded)
by a sparse subendothelial infiltrate of host T cells and
macrophages.377 Cytolytic effector cells are markedly fewer
than in acute vascular rejection,378 and the endothelium shows
only rare apoptotic cells.379 The major theories of pathogenesis
are that graft arteriosclerosis results from chronic, low-level
endothelial injury (ie, persistent endothelialitis caused by CTLs
and/or alloantibodies), followed by fibroproliferative repair, or
that graft arteriosclerosis results from a conversion of an acute
cytolytic immune response to a chronic delayed-type hypersen-

sitivity reaction in response to persistent immune stimulation by
graft ECs. There is currently no therapy for graft arteriosclerosis
except retransplantation. Future therapy may be targeted at
preventing the intimal smooth muscle fibroplastic reaction
rather than further increases in immunosuppression.

The next horizon in transplantation is to address the donor
organ shortage by xenotransplantation of animal organs (eg,
pigs) into human recipients.380 The use of pig organs has raised
concerns about introducing new infectious agents into the
human population, but the major practical problem is a very
high incidence of hyperacute rejection. Two factors contribute
to development of severe, uncontrollable hyperacute rejection
of pig xenografts by human or old world monkey recipients.
First, all mammals, except humans and old world monkeys,
express a galactosea-1,3 galactose carbohydrate epitope in-
stead of ABO blood groups on their ECs.381 Moreover, virtually
all humans have high levels of circulating natural IgM antibod-
ies reactive with this alternative epitope, so that ABO matching
cannot be used to evade hyperacute rejection in xenotransplan-
tation. Second, the problem of abundant natural antibody is
compounded by the fact that pig ECs express complement
regulatory proteins, eg, DAF and CD59, that are unable to
control the human complement system, ie, they are species
specific for pig complement proteins.382 The combination of
high levels of complement-activating IgM antibodies and
limited EC resistance to human (or primates) complement
proteins invariably leads to rapid and overwhelming intravascu-
lar graft thrombosis.

A major current effort is underway to produce transgenic pigs
that will have reduced levels of galactosea-1,3 galactose and/or
express human complement regulatory proteins. If successful,
transplanters will still need to address later phases of the
human-antipig rejection reaction (eg, potentially strong acute
cellular rejection due to expression B7.2 costimulator mol-
ecules on pig ECs383 or to strong NK reactions384 due to
possibly antibody binding and absence of self class I MHC
molecules on pig ECs). Some of these problems may be partly
ameliorated by the failure of pigs to respond to certain human
cytokines (eg, to IFN-g385), but additional studies will be
needed to determine the significance of these differences.

Systemic lupus erythematosus (SLE) and the antiphospho-
lipid antibody syndrome (aPS).Immune-mediated endothelial
dysfunction may contribute to the development of thrombosis in
patients with SLE and the aPS (see McCrae and Cines386 for
review). One mechanism by which endothelial damage and/or
activation may occur is through the effects of EC-reactive
antibodies. Several groups have demonstrated anti-EC antibod-
ies (AECA) in sera of patients with SLE387 and in patients with
primary and secondary aPS (see McCrae et al,388among others).
Controversy remains as to whether antiphospholipid antibodies
per se comprise the biologically important subpopulation of
AECA (see Cines389for review), although recent studies suggest
that they may activate ECs through an effect on the plasma
proteinb2-glycoprotein I.390AECA have been shown to alter the
anticoagulant and procoagulant activities of cultured ECs in a
number of ways. However, the in vivo importance of these
antibodies in the pathogenesis of thrombosis remains unknown.
Indeed, in only some studies has the presence of AECA
correlated with thrombotic events or disease activity.388 Never-
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theless, the fact that such antibodies induce the secretion of
markers of EC injury/activation such as vWF from cultured
ECs,388 when considered in light of reports demonstrating
elevated levels of vWF in the plasma of patients with SLE,391

suggests that at least some of these in vitro effects may reflect
processes that occur in vivo.

Heparin-induced thrombocytopenia and thrombosis (HITT).
Approximately 1% to 3% of patients who receive heparin
develop severe thrombocytopenia, approximately 20% of whom
also develop venous and/or arterial thrombi (see Arepally and
Cines392 and McCrae and Cines393 for reviews). Plasma from
approximately 90% of patients with HITT contain antibodies
that bind to complexes of heparin and platelet factor 4 (PF4).394

PF4 released from activated platelets may form complexes with
heparin on the surface of activated platelets, targeting them for
FcgRIIA-dependent activation by antiheparin-PF4 antibodies.
However, the remarkable propensity of patients with HITT to
develop thrombosis may also be promoted by the capacity of
these antibodies to recognize PF4 bound to EC-heparan sulfate
proteoglycans, which stimulate ECs to express TF and to bind
platelets.395,396

EC-reactive antibodies in other vasculitic disorders.AE-
CAs have been described in several other disorders in which
their role in pathogenesis is even less certain. PR-3, a common
target of antineutrophil cytoplasmic antibodies (ANCA) is
expressed on activated ECs in vitro397 and has been implicated
in vascular injury in an animal model of vasculitis.398 However,
EC-specific antibodies, apparently distinct from ANCA, have
also been described in many patients with Wegener’s granuloma-
tosis.399 Plasma from children with the hemolytic uremic
syndrome contain lytic AECA that recognize an unidentified EC
surface protein that is suppressed by IFN-g in vitro.400 AECA
have also been implicated in mixed connective tissue disease,
rheumatoid arthritis, and scleroderma,401 in which EC apoptosis
has been implicated,402 as well as in atherosclerosis,403 Kawas-
ki’s disease,404 Bechet’s disease,405 and various forms of
vasculitis.406 In each of these conditions, elevated levels of
EC-derived proteins have also been described in the plasma of
affected patients implying endothelial activation or injury.407

However, a pathogenic role of AECA or immune complexes in
human vasculitis has not been proven. It is also pertinent to note
that complex changes in antigen expression occur when ECs
have been activated by cytokines or other agonists in vitro (see
Favaloro408 for review) and in vivo.409This activation promotes
cell mediated immunity, promotes leukocyte/platelet adhesion
(see ‘‘EC Pertubation and Vascular Disease’’ above) and
exposes cryptic autoantigens. Fcg receptors capable of binding
circulating immune complexes may exist410 or can be induced
on ECs411 at certain vascular sites.

Complement-mediated EC activation.The vascular endothe-
lium is exposed to activated complement components as a
consequence of antigen-antibody interactions that occur natu-
rally in plasma and within the vessel wall in certain pathologic
conditions.387 ECs also constitutively express several comple-
ment proteins412 and can be induced to synthesize others by
various cytokines,413 at least in vitro. Complement deposition
on the vasculature is controlled, in part, by concerted actions of
the regulatory proteins C1-esterase inhibitor, which is secreted
by ECs,414and by decay-accelerating factor, membrane cofactor

protein of complement, and homologous restriction factor,
which are expressed on the cell surface.415-419Complement that
deposits on the endothelium when these containment mecha-
nisms are exceeded can increase vascular permeability, stimu-
late procoagulant pathways, and recruit ECs to become active
participants in the inflammatory processes.

For example, multiple components of the complement cas-
cade act in concert to augment the recruitment of leukocytes to
sites of vascular inflammation. Binding of C1q to specific EC
receptors420 augments expression of E-selectin and possibly
ICAM-1 and VCAM-1,421 C5a upregulates the expression of
P-selectin,422and the terminal C5b-9 membrane attack complex
(MAC) acts synergistically with TNF-a to stimulate expression
of E-selectin and ICAM-1.423 Sublytic concentrations of MAC
also activate the NF-kB pathway leading to secretion of IL-8
and MCP-1.424

MAC also stimulates cultured ECs to express TF,425,426 to
release large vWF multimers,427 and to release procoagulant
microvesicles containing anionic phospholipids and binding
sites for factor Va that accelerate prothrombinase activity.428 On
the other hand, MAC also stimulates production of PGI2

429 and
the complement components C7 and C9 provide sites for the
binding and activation of plasminogen.430 However, as with
other areas of research in vascular biology, studies have been
confined largely to cultured cells and additional studies are
required to elucidate the relative contribution of complement-
dependent responses in vivo.

Thrombotic disorders of uncertain cause: Thrombotic throm-
bocytopenic purpura (TTP) and the hemolytic uremic syndrome
(HUS). TTP and HUS are related-disorders characterized
pathologically by the development of platelet microthrombi that
occlude small arterioles and capillaries and clinically by
microangiopathic hemolytic anemia and thrombocytopenia.
Endothelial dysfunction plays a prominent role in the pathogen-
esis of both disorders (see Moake431 and Heild432). Approxi-
mately 90% of cases of HUS occur in early childhood, often
after an episode of bloody diarrhea caused by enteropathic
strains ofEscherichia colithat release an exotoxin, designated
verotoxin-1 (VT-1), which is similar to the 70-kD Shiga toxin
18. VT-1 binds with high affinity to globotriosylceramide (Gb3)
receptors expressed at the highest density on renal glomerular
ECs.431 VT-1 is directly cytotoxic to ECs. In addition, VT-1
promotes neutrophil-mediated EC injury433,434and induces the
production of TNF-a by monocytes435 and cells within the
kidney.436 In turn, TNF-a, in concert with IL-1, increases Gb3
expression and exacerbates the sensitivity of the endothelium to
toxin-mediated437 and antibody-mediated404 cytotoxicity, pro-
motes vWF release,438 and impairs fibrinolytic activity.44 In
accord with this putative pathogenic mechanism, elevated
plasma levels of PAI-1 have been reported to be a sign of a poor
prognosis in childhood HUS.439 EC injury may also contribute
to the pathogenesis of the microangiopathic syndromes that
may follow the use of certain chemotherapeutic agents,440

cyclosporin,441 quinine/quinidine (see Gottschall et al442 for
review), or after bone transplantation.440

There is considerable evidence to suggest that EC injury
plays a role in the pathogenesis of TTP. The most exhaustively
studied protein in this regard is plasma vWF, which circulates in
plasma as oligomers that range in size from 1 to 153 106 kD.
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The so-called unusually large vWF multimers (ULvWF) are
normally found in subendothelial matrix, in the supernatant of
cultured ECs,431 and in platelet releasates, but are not normally
detected in plasma.431 Platelet microthrombi in TTP contain
abundant vWF but little fibrinogen, in contrast to those seen in
DIC. A subgroup of patients has been identified who suffer from
chronic, relapsing TTP and whose plasma continues to contain
elevated levels of ULvWF between relapses.443 Furthermore,
plasma from patients with sporadic or isolated episodes of TTP
often contains either ULvWF or decreased amounts of larger
vWF multimers during periods of active disease. ULvWFs may
exacerbate microvascular thrombosis through their ability to
aggregate platelets at high levels of shear stress. The secretion
of ULvWF by cultured ECs is stimulated by many agonists
including Shiga toxin.431 However, elevated levels of vWF
occur in other thrombotic microangiopathies, and their exact
role in TTP/HUS requires further study. Reports of elevated
levels of thrombomodulin,444 tissue-type plasminogen activator
(t-PA), plasminogen activator inhibitor type 1 (PAI-1),445ELAM-
1,446and decreased levels of PGI2

447and TFPI448 in plasma from
patients with TTP provides additional support for the notion that
endothelial damage plays a pivotal role in the pathogenesis of
the disease.

The events that initiate TTP remain unknown. AECA have
been described in TTP and HUS, but their role is uncertain.
More recently, plasma from patients with TTP and HUS has
been reported to induce apoptosis in microvascular ECs; it is of
great interest that cells from dermal, renal, and cerebral origin
were most susceptible, whereas pulmonary and coronary arte-
rial cells were not.46 The plasma factors responsible for these
changes remain to be identified.

Pregnancy-induced hypertension.Pregnancy-induced hy-
pertension (or preeclampsia) is the most common medical
disorder of pregnancy, affecting 5% to 13% of all primaras.
Although the clinical manifestations of preeclampsia are gener-
ally not evident until the third trimester, the pathogenesis of this
disorder may involve a deficiency in placentation,449the process
in which fetal trophoblast cells remodel the maternal uterine
spiral arteries early in pregnancy. Incomplete remodeling of the
spiral arteries leads to compromised placental perfusion. Alter-
ations in EC morphology occur within the placenta450and in the
glomerular capillaries (glomerular endotheliosis), the latter
being characterized by EC swelling and lipid accumulation (see
Ferris451 for review). Fibrin deposition in microvasculature is
common. Affected women show increased responsiveness to
the pressor effects of angiotensin II,314 increased amounts of
thromboxane A2 relative to PGI2 in their urine,452 elevated
plasma levels of endothelin,453 and their umbilical vessels
demonstrate less PGI2 synthesis and decreased NO release in
response to bradykinin (see Ferris451 for review). Additional
evidence suggesting endothelial damage is the reported findings
of elevated plasma levels of EC-derived fibronectin,454,455

vWF,455and PAI-1455 in affected women. Importantly, increased
levels of vWF456 and cellular fibronectin454 may be detected
before the onset of clinical manifestations.

The pathophysiology of EC damage in preeclampsia remains
a mystery. Some,457,458 but not all groups,459,460 have reported
that plasma from affected women is cytotoxic for cultured ECs.

Preeclamptic sera have also been reported to impair EC
proliferation,461stimulate fibronectin release,462increase triglyc-
eride accumulation,463and increase PDGF synthesis464; variable
effects on PGI2 synthesis have been reported.463,465A role for
abnormalities of lipid peroxidation,466 for immunologic factors,
and for underlying, but otherwise inapparent, maternal vascular
disease (see Ness and Roberts467 for review) have also been
advanced. Yet, it must be noted that all of these studies remain
largely unconfirmed, the putative injurious plasma factor(s) has
yet to be identified, and the pathophysiology and significance of
EC injury outside of the terminal cases of eclampsia remains
enigmatic.

CONCLUSION

The endothelium can no longer be viewed as a static physical
barrier that simply separates blood from tissue. Rather, it is now
clear that the endothelium helps to coordinate functions of
differentiated tissues in a way that meets the requirements of the
organism as a whole. In part, this is accomplished by the
location of the endothelium at the interface with the blood and
the capacity of these specialized cells to receive and transmit
biochemical and physical information bidirectionally. Informa-
tion sensed on the lumenal surface of the endothelium can be
transmitted either by direct permeation or active transport of
soluble mediators through the capillaries to deeper tissues or
indirectly through the capacity of ECs to modulate the behavior
of smooth muscle cells and other components of the vessel wall.
In turn, physiologic and pathophysiologic events in tissue alter
EC interactions with soluble and cellular blood components.

The endothelium, as with all cell types, displays an immedi-
ate and prototypic response to diverse agonists that is modu-
lated in complex ways by subsequent events. In the case of the
endothelium, this first response appears designed to prevent
physical disruption of the vessel wall by trauma, microbial
organisms, toxins, or other threats to the maintenance of
intravascular volume and oxygen delivery. This protective
response is accomplished by the rapid transformation of the
endothelium to a procoagulant, vasoconstrictive, and proinflam-
matory state that has multiple effects on of its structure and
behavior.

Several ramifications of this reflexive, adaptive response of
the endothelium have now become evident. First, it is clear that
ECs rapidly undergo some of these same biochemical and
phenotypic changes soon after being placed in culture, as a
consequence of which the behavior of the unperturbed endothe-
lium cannot be reliable inferred from currently available in vitro
techniques.

Second, an extensive experimental literature has emerged
supporting the notion that several common human vascular
diseases are in part a consequence of the same responses of the
endothelium to stress; ie, that prolonged or exaggerated endothe-
lial activation leads to dysfunction that is an early, often
preclinical component of vascular disease. Unfortunately, it is
generally impossible to access vascular tissue directly and
sequentially during these preclinical stages of disease develop-
ment; without such tissue, the EC contribution to disease
development can only be inferred. As a consequence, most
research in vascular biology continues to (1) focus on the
footprints of disease by analyzing damaged vessels, generally at
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the endstage of the process; (2) link putative circulatory factors
to disorders through their effect on cultured ECs, often derived
from unaffected tissue; and (3) develop animal models that may
simulate human diseases.

Third, it is now clear that the endothelium is not a homoge-
neous organ. ECs from different vascular beds show highly
differentiated functions as a consequence of genetic diversity
and the impact of specialized surroundings. These biochemical
and phenotypic differences extend to their susceptibility to
injury and effect function of the vasculature as a whole.

Fourth, there is remarkably little information on the potential
contribution of genetic differences in EC behavior among
individuals with respect to bleeding disorders, thrombosis,
atherosclerosis, and vasculitis. Without such information, our
current approach to studying these major vascular disorders can
be compared with the study of anemia without appreciating the
existence of hemoglobinopathies or the study of bleeding
disorders without appreciating the contribution of genetic
abnormalities in platelet function. It is hoped that future
research will enable the direct study of EC behavior and thereby
enhance our understanding of the contribution of the endothe-
lium to vascular biology.
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